The Australian Monstrilloida (Crustacea: Copepoda) I. Monstrilopsis Sars, Maemonstrilla Grygier & Ohtsuka, and Australomonstrillopsis gen. nov.

EDUARDO SUÁREZ-MORALES1,4 & A. DAVID MCKINNON2,3
1El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. P.O. Box 424. Chetumal, Quintana Roo 77014, Mexico
2Australian Institute of Marine Science, P.M.B. No. 3, Townsville M.C., Queensland 4810, Australia
3School of Marine and Tropical Biology, James Cook University, Queensland, Australia
4Corresponding author. E-mail: esuarez@ecosur.mx

Table of contents

Abstract .. 301
Introduction ... 302
Materials and methods 302
Systematics ... 303
Order Monstrilloida Sars, 1901 303
Family Monstrillidae Dana, 1849 303
Genus Monstrilopsis Sars, 1921 303
 Monstrilopsis hastata sp. nov. 303
 Monstrilopsis boonwurrungorum sp. nov. 308
 Monstrilopsis nanus sp. nov. 311
Genus Australomonstrillopsis Suárez-Morales & McKinnon gen. nov.
 Australomonstrillopsis crassicaudata sp. nov. 315
Genus Maemonstrilla Grygier and Ohtsuka, 2008 319
 Maemonstrilla ohtsukai sp. nov. 319
 Maemonstrilla hoi sp. nov. 323
 Maemonstrilla protuberans sp. nov. 328
 Maemonstrilla crenulata sp. nov. 333
Discussion .. 338
Acknowledgements 339
References .. 339

Abstract

Monstriloid copepods were collected during zooplankton surveys in reef and coastal areas of Australia. Representatives of all four genera of the Monstrilloida (Monstrilla Dana, Monstrilopsis Sars, Cymbasoma Thompson, and Maemonstrilla Grygier & Ohtsuka) were recorded. In this contribution a taxonomic analysis of specimens belonging to the latter two genera is provided, and a new genus described. The genus Monstrilopsis was represented exclusively by male specimens, on the basis of which three new species are described: Mon. hastata sp. nov., Mon. boonwurrungorum sp. nov., and Mon. nanus sp. nov. These are distinguished from each other and previously described species of this genus by details of the genital complex (or genital apparatus), body size, ornamentation of the cephalic surface, number of caudal setae, and characteristic modifications of the fifth antennular segment. All have distinctive characters not associated with sexual modifications, which will ease the task of matching females collected in future studies. Australomonstrillopsis gen. nov. is proposed to accommodate a male specimen with a unique combination of characters including massively developed caudal rami, cephalic perioral protuberances, and absence of an inner seta on the first exopodal segment of legs 1–4, among other characters. The new genus is monotypic and contains A. crassicaudata sp. nov. Three of the four new species of Maemonstrilla (Mae. ohtsukai sp. nov., Mae. hoi sp. nov., and Mae. protuberans sp. nov.) belong to the Mae. hyottoko species group, and the remaining one, Mae. crenulata sp. nov., belongs to the Mae. turgida group. Each of the new species of Maemonstrilla from Australia can be distinguished from its known congeners by a unique combination of characters.
including the type of body reticulation, body size, antennule and body proportions, distinctive characters of the swimming legs, details of the antennular armature, and the presence/absence of a posteroventral process on the genital compound somite. With the addition of the four new species of Monstrillopsis and the four of Maemonstrilla described herein, the number of species in these genera has increased to 13 and 11 species, respectively. In no case did congeneric species co-occur, hinting that there may be a rich species diversity yet to be discovered within the Australian Monstrilloida.

Key words: marine zooplankton, taxonomy, associated Copepoda, reef crustaceans

Introduction

Monstrilloids are protelean parasites of benthic polychaetes and molluscs; most postnaupliar and preadult stages are endoparasitic (Suárez-Morales 2011; Suárez-Morales et al. 2010, 2014). Only the first naupliar stage, a final, transitory copepodid stage (“subimago”), and the planktonic adults are free-living. The adults are the most conspicuous stage; they are non-feeding, reproductive forms that lack second antennae and mouthparts. These copepods are part of the zooplankton community in coastal-neritic waters at all latitudes, including Arctic and Antarctic waters (Razouls, 1996; Suárez-Morales & Ivanenko 2004; Suárez-Morales 2011). Monstrilloids are frequently collected during routine plankton surveys but are rarely found in large numbers, although high densities in samples collected at night in and around coral reefs have been reported (Sale et al. 1976, 1978; Suárez-Morales 2001, 2011). The systematic position of the Monstrilloida is unclear: Huys et al. (2007) regarded the group as belonging within the Siphonostomatoida, a case considered unproven by Suárez-Morales (2011) and Suárez-Morales et al. (2014). For the purposes of the present work we retain the ordinal status of the Monstrilloida. Currently, the order is known to contain over 120 nominal species arranged in four valid genera: Monstrilla Dana, Monstrillopsis Sars, Cymbasoma Thompson, and Maemonstrilla Grygier and Ohtsuka (Suárez-Morales et al. 2006; Grygier & Ohtsuka 2008; Suárez-Morales 2011). The taxonomic status of all valid and invalid genera of the Monstrilloida was briefly reviewed by Grygier and Ohtsuka (2008). Except for Maemonstrilla, the valid genera can be identified following Boxshall and Halsey’s (2004) key.

Because of their relative rarity in plankton samples and the taxonomic complexity of the group, there are large geographic areas in which the monstrilloid copepod fauna remains practically unknown (Suárez-Morales 2011). One of these is Australia. Nicholls (1944) illustrated two specimens of Monstrilla sp. from Spencer Gulf, for which Davis (1949) later proposed the new species M. nicholsii Davis, 1949. According to Grygier (1995), Razouls (1981) stated that this species was "peu reconnaissable" because of the lack of data on many important morphological details. Its taxonomical status should be revised by checking the type specimens if they are available, or by examining collections from the type locality. There are additional Australian records of two widespread species of Cymbasoma, C. longispinosum (Bourne, 1890) and C. thompsoni (Giesbrecht, 1893) (Razouls et al. 2013).

In this contribution we present a taxonomic analysis of the Australian species of Monstrillopsis Sars, 1921 and Maemonstrilla Grygier & Ohtsuka, 2008, and describe three new species of the former genus and four of the latter. We also describe a new genus to which a single new species is herein assigned. Ecological and distributional comments of the species are also provided.

Materials and methods

Monstrilloid copepods were isolated from plankton samples collected in ecological studies of Australian coastal and shelf seas during the career of the second author. In all, monstrilloids occurred in 76 samples taken between November 1982 and November 2009. The source plankton samples were fixed in formaldehyde solution. Once isolated, monstrilloid copepods were transferred to 70% ethanol for taxonomic examination and long-term preservation.

The taxonomic descriptions presented here accord with the upgraded descriptive standards proposed by Grygier and Ohtsuka (1995) for monstrilloid copepods. New micro-characters were recently proposed by Grygier and Ohtsuka (2008) to further upgrade these standards, particularly in Maemonstrilla, but some of them require SEM analysis and others are not practical to check or evaluate with a small set of specimens or with only a single specimen available, as is the case for most of the Australian material considered here. Huys et al.’s (2007) nomenclature for the terminal
Arctic, Sub-Antarctic, temperate, tropical, and subtropical zones (Suárez-Morales & Ivanenko 2004; Suárez-Morales et al. 2006; Suárez-Morales et al. 2008), but the genus seems to be most diverse in temperate and cold latitudes (7 of 10 previously known species). *Maemonstrilla* has only been recorded from the Indo-West Pacific, with species known from Japan, Indonesia, India, Singapore, the South China Sea, the Red Sea, and Australia (Grygier & Ohtsuka 2008; present data).

The present collections of *Monstrillopsis*, *Maemonstrilla*, and *Australomonstrillopsis*, come from both temperate and tropical regions of Australia (Fig. 24). The habitats sampled span coastal embayments with rich seagrass communities (Western Port Bay, Shark Bay, and Exmouth Gulf), a large temperate bay (Port Phillip Bay), a platform reef within the Great Barrier Reef (Davies Reef), and an isolated Indian Ocean coral reef off the Western Australian shelf (Scott Reef). Details of the collection sites and their plankton communities can be found in the original literature cited in the Material Examined sections, although two species (the possibly endemic *Australomonstrillopsis crassicaudata* and *Maemonstrilla protuberans*) were recovered from an *ad hoc* collection made at Davies Reef in October 1985—details of the plankton community at this location can be found in McKinnon (1991). With the exception of *Maemonstrilla ohtsukai*, all the new species are described on the basis of single individuals occurring in plankton collections. The two genera co-occurred at four of the six locations. *Maemonstrilla ohtsukai* occurred both in Western Australia (Exmouth Gulf and Shark Bay) and Victoria (Western Port Bay), indicating that this species is probably widely distributed. Although the paucity of specimens compromises any conclusion regarding the distribution of the other species, the fact that in no case did congeneric species co-occur, contrary to the case in the Ryukyu Islands (Grygier & Ohtsuka 2008), hints that there may be a rich species diversity yet to be discovered within the Australian Monstrilloida.

Acknowledgements

We wish to thank Samantha Talbot (AIMS) for her help in cataloguing and maintaining these collections and for detailed editorial suggestions. The constructive comments from two reviewers and the subject editor of Zootaxa, Susan Dippenaar, greatly contributed to improve a previous version of this work.

References

http://dx.doi.org/10.1111/j.1096-3642.2007.00381.x

http://dx.doi.org/10.1016/j.ympev.2007.02.004

http://dx.doi.org/10.1017/s0025315400002211

http://dx.doi.org/10.1016/0272-7714(85)90094-0
