Taxonomic assessment of Alligator Snapping Turtles (Chelydridae: Macrochelys), with the description of two new species from the southeastern United States

TRAVIS M. THOMAS1,4,8, MICHAEL C. GRANATOSKY2,4, JASON R. BOURQUE3, KENNETH L. KRYSKO4, PAUL E. MOLER5, TONY GAMBLE6, ERIC SUAREZ1, ERIN LEONE5, KEVIN M. ENGE4 & JOE ROMAN7
1Department of Wildlife Ecology & Conservation, University of Florida, Gainesville, FL 32611, USA. E-mails: travis.thomas@myfwc.com; eric.suarez@myfwc.com
2Animal Locomotion Laboratory, Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA. E-mail: michael.granatosky@duke.edu
3Division of Vertebrate Paleontology, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. E-mail: jbourque@ufl.edu
4Division of Herpetology, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. E-mail: kenneyk@ufl.edu
5Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL 32601, USA. E-mails: paul.moler@myfwc.com; erin.leone@myfwc.com; kevin.enge@myfwc.com
6Department of Genetics and Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA. E-mail: gamb1007@umn.edu
7Gund Institute for Ecological Economics, Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA. E-mail: joe.roman@uvm.edu
8Corresponding author

Abstract

The Alligator Snapping Turtle, Macrochelys temminckii, is a large, aquatic turtle limited to river systems that drain into the Gulf of Mexico. Previous molecular analyses using both mitochondrial and nuclear DNA suggested that Macrochelys exhibits significant genetic variation across its range that includes three distinct genetic assemblages (western, central, and eastern = Suwannee). However, no taxonomic revision or morphological analyses have been conducted previously. In this study, we test previous hypotheses of distinct geographic assemblages by examining morphology, reanalyzing phylogeographic genetic structure, and estimating divergence dating among lineages in a coalescent framework using Bayesian inference. We reviewed the fossil record and discuss phylogeographic and taxonomic implications of the existence of three distinct evolutionary lineages. We measured cranial (n=145) and post-cranial (n=104) material on field-captured individuals and museum specimens. We analyzed 420 base pairs (bp) of mitochondrial DNA sequence data for 158 Macrochelys. We examined fossil Macrochelys from ca. 15–16 million years ago (Ma) to the present to better assess historical distributions and evaluate named fossil taxa. The morphological and molecular data both indicate significant geographical variation and suggest three species-level breaks among genetic lineages that correspond to previously hypothesized genetic assemblages. The holotype of Macrochelys temminckii is from the western lineage. Therefore, we describe two new species as Macrochelys apalachicolae sp. nov. from the central lineage and Macrochelys suwanniensis sp. nov. from the eastern lineage (Suwannee River drainage). Our estimates of divergence times suggest that the most recent common ancestor (MRCA) of M. temminckii (western) and M. apalachicolae (central) existed 3.2–8.9 Ma during the late Miocene to late Pliocene, whereas M. temminckii-M. apalachicolae and M. suwanniensis last shared a MRCA 5.5–13.4 Ma during the mid-Miocene to early Pliocene. Examination of fossil material revealed that the fossil taxon M. floridana is actually a large Chelydra. Our taxonomic revision of Macrochelys has conservation and management implications in Florida, Georgia, and Alabama.

Key words: Macrochelys, Chelydridae, Morphology, Conservation, Fossil, Genetics, Phylogeography, Suwannee River, Apalachicola River

dataset with additional field-captured animals. Svetlana Nikolaeva and Doug Yanega provided nomenclature recommendations. We thank Brian Bowen, F. Wayne King, John Iverson, Max Nickerson, Robert H. Robins, Savanna Barry, and Brian I. Crother for comments on a draft of this paper.

References

http://dx.doi.org/10.2307/1563980

http://dx.doi.org/10.1111/j.1095-8312.2005.00503.x

http://dx.doi.org/10.1086/419656

http://dx.doi.org/10.1098/rstb.2005.1722

http://dx.doi.org/10.1371 journal.pbio.0040088

http://dx.doi.org/10.1186/1471-2148-7-214

http://dx.doi.org/10.1111/j.1755-0998.2009.02696.x

http://dx.doi.org/10.1007/s10592-009-9966-1

http://dx.doi.org/10.1666/0094-8373-35.3.460

http://dx.doi.org/10.2307/2426872

http://dx.doi.org/10.1007/bf02101694

http://dx.doi.org/10.1111/2041-210x.12107

http://dx.doi.org/10.1111/j.1469-1795.1998.tb00226.x

http://dx.doi.org/10.1098/rspb.2000.1049

APPENDIX. Specimens examined.

