
YURI M. MARUSIK1,2 & MIKHAIL M. OMELKO1,4

1 Institute for Biological Problems of the North RAS, Portovaya Str. 18, Magadan, Russia. E-mail: yurmar@mail.ru
2 Zoological Museum, University of Turku, FI-20014 Turku, Finland.
3 Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia. E-mail: omelkom@gmail.com
4 Gornotayozhnaya Station FEB RAS, Gornotayozhnoye Vil., Primorski Dist., Primorski Krai, 692533 Russia.

Abstract

Two new species, *Gnaphosa koponeni* sp. n. (♂♀, Tuva, Russia) and *G. tunevae* sp. n. (♀, Mongolia) are described. New figures and distribution data are provided for *G. gracilior* Kulczyński, 1901, *G. kansuensis* Schenkel, 1963, *G. manschurica* Schenkel, 1963, *G. sticta* Kulczyński, 1908, *G. stoliczkai* O. Pickard-Cambridge, 1885 and *G. wiehlei* Schenkel, 1963. Additional morphological evidence is provided that *G. similis* Kulczyński, 1926 is not a synonym of *G. muscorum* (L. Koch, 1866). *Gnaphosa stoliczkai* is reported from Mongolia for the first time. The synonymy of *Gnaphosa potanini* Simon, 1895 with *G. silvicola* Kamura, 1988 is discussed and is likely to be incorrect.

Key words: Mongolia, Asia, Siberia, Far East, Altai, new species, distribution

Introduction

Gnaphosa Latreille, 1804 is the third largest genus of ground spiders (Gnaphosidae) with 141 species (Platnick 2014) and is one of the best-studied, species-rich genera of Holarctic spiders. The genus is well studied due to the several wide-scale revisions of the Nearctic (Platnick & Shadab 1975), European (Grimm 1985), Asian (Ovtsharenko et al. 1992) and Chinese (Song et al. 2004) species. Only six species in the genus (*G. jodhpurensis* Tikader & Gajbe, 1977, *G. kailana* Tikader, 1966, *G. kankhalae* Biswas & Roy, 2008, *G. pauriensis* Tikader & Gajbe, 1977, *G. poonaensis* Tikader, 1973, *G. rohtakensis* Gajbe, 1992) are known outside of the Holarctic. All are from India and judging from the original descriptions, are misapplied. Although the genus is well studied, 39 species remain known only from one sex (33 from females and six from males). One species, *Gnaphosa limbata* Strand, 1900, was described from a juvenile specimen.

While South Siberia, Mongolia and China are well studied thanks to a revision of Asian *Gnaphosa* (Ovtsharenko et al. 1992) and a synopsis of Chinese Gnaphosidae (Song et al. 2004), there are still many poorly known or entirely new species. Recent studies of Mongolian *Gnaphosa* revealed three new species that represent a separate species group (Fomichev et al. 2013; Marusik et al. 2014). Working with recently collected material and studying museum collections, we found two species new to science, several species with inadequately illustrated copulatory organs, some records that were interesting in terms of geographical distribution or considerable size variation, and new evidence of the validity of *G. similis* Kulczyński, 1926, earlier to be a junior synonym of the Holarctic *G. muscorum* L. Koch, 1866.

The aims of the paper are 1) to provide detailed descriptions of new species, 2) to illustrate poorly know species and show their variation, 3) to provide new records that extend the known range of four species and 4) to show differences between two sibling species, *G. similis* and *G. muscorum*.
record lies 250 km east from the current record, which is the northeasternmost in the whole range. *Gnaphosa mandschurica* is known from northern Kazakhstan to Eastern Mongolia and neighbouring Inner Mongolia, and from Nepal to Gansu.

FIGURES 95-96. 95—Correlation between femur I length (x axis) and carapace length (y axis) in males of *Gnaphosa similis* (square: red-brown—Kolyma R. mouth, yellow—Pevek, green—Maritime Province) and *G. muscorum* (ring: light blue—Finland, dark blue—Tuva, red—Mongolia. 96—Correlation between femur I length (x axis) and carapace length (y axis) in females of *Gnaphosa similis* (square: red-brown—Kolyma R. mouth, yellow—Pevek) and *G. muscorum* (ring: light blue—Tuva, dark blue—Finland, orange—Mongolia).

Acknowledgements

We thank the late S. Mahunka (NHMB, Budapest) and Kirill G. Mikhailov (Moscow) for the loan of material and the American Museum of Natural History for allowing the reproduction of two figures. Special thanks to Seppo Koponen (University of Turku) for providing museum facilities. Helpful comments on a draft of the manuscript were provided by Mykola M. Kovblyuk (Simferopol) and Galina Azarkina (Novosibirsk). English of the final draft was kindly checked and corrected by Cor Vink. This study was supported in part by the Russian Foundation for Basic Research (grant № 12–04–01548) and Far Eastern Federal University.

References

