DNA barcoding of Neotropical black flies (Diptera: Simuliidae): Species identification and discovery of cryptic diversity in Mesoamerica

Luis M. Hernández-Triana, Luis G. ChavERRI, Mario A. Rodríguez-Pérez, Sean W. J. ProssER, Paul D. N. Hebert, T. Ryan Gregory & Nick Johnson

Abstract

Although correct taxonomy is paramount for disease control programs and epidemiological studies, morphology-based taxonomy of black flies is extremely difficult. In the present study, the utility of a partial sequence of the COI gene, the DNA barcoding region, for the identification of species of black flies from Mesoamerica was assessed. A total of 32 morphospecies were analyzed, one belonging to the genus *Gigantodax* and 31 species to the genus *Simulium* and six of its subgenera (*Aspathia*, *Eusimulium*, *Notolepria*, *Psaroniocompsa*, *Psilopelmia*, *Trichodagmia*). The Neighbour Joining tree (NJ) derived from the DNA barcodes grouped most specimens according to species or species groups recognized by morphotaxonomic studies. Intraspecific sequence divergences within morphologically distinct species ranged from 0.07% to 1.65%, while higher divergences (2.05%–6.13%) in species complexes suggested the presence of cryptic diversity. The existence of well-defined groups within *S. callidum* (Dyar & Shannon), *S. quadrivittatum* Loew, and *S. samboni* Jennings revealed the likely inclusion of cryptic species within these taxa. In addition, the suspected presence of sibling species within *S. paynei* Vargas and *S. tarsatum* Macquart was supported. DNA barcodes also showed that specimens of species that are difficult to delimit morphologically such as *S. callidum*, *S. pseudocallidum* Díaz Nájera, *S. travisi* Vargas, Martínez Palacios, Varg as & Ramírez-Pérez, relatives of the species complexes such as *S. callidum, S. pseudocalidum* Díaz Nájera, *S. travisi* Vargas, Vargas & Ramírez-Pérez, of the species complexes such as *S. metallicum* Bellardi s.l. (e.g., *S. horacioi* Okazawa & Onish, *S. jobbinsi* Vargas, Martínez Palacios, Díaz Nájera, and *S. puigi* Vargas, Martínez Palacios & Díaz Nájera), and *S. virgatum* Coquillett complex (e.g., *S. paynei* and *S. tarsatum*) grouped together in the NJ analysis, suggesting they represent valid species. DNA barcoding combined with a sound morphotaxonomic framework provided an effective approach for the identification of medically important black flies species in Mesoamerica and for the discovery of hidden diversity within this group.

Key words: DNA barcoding, COI, Simuliidae, medically important black flies, Mesoamerica

Introduction

Black flies (Diptera: Simuliidae) comprise 26 genera and an estimated 2,163 species (2,151 living and 12 fossil) (Adler & Crosskey 2014). In most of these species, the female requires a blood meal for egg maturation, and it is this requirement that makes members of this family important as biting pests and in the transmission of parasites and pathogens of the blood and skin of humans and other warm-blooded animals (Hernández-Triana et al. 2011; 2012; Shelley et al. 2010). The most important parasites in humans that are transmitted by simulids are the nematodes *Onchocerca volvulus* (Leuckart), which causes onchocerciasis or "river blindness", primarily in sub-Saharan Africa, and *Mansonella ozzardi* Manson, which causes mansonelliasis or "serous cavity filariasis", primarily in Latin America (Shelley et al. 2010). Recently, it has been hypothesized that certain species of black flies, in onchocerciasis endemic areas, may also transmit a neurotropic virus that may be an endosymbiont of the microfilariae that causes nodding syndrome and epilepsy without nodding (Colebunders et al. 2014).
vector complexes in combination with their chromosomal banding pattern across their distribution range (Hernández-Triana et al. 2011, 2012). The latter highlights the continuing need for research using an integrated taxonomic approach on the Simuliidae in the Neotropical Region.

Although the volume of DNA barcode data in BOLD and GenBank is increasing rapidly, much work is still required to populate these databases for the global fauna of Simuliidae. In Mesoamerica, further collecting is still required to obtain new material for the Simulium canadense species group in the subgenus Trichodagmia and species in the genus Tlalocomyia across Mexico and Guatemala. As well, surveys are needed on the Caribbean Islands, especially in the high mountain ranges in the Greater Antilles. In South America, the high Andean mountain range across Colombia, Peru, and Ecuador and the lowlands in Madre de Dios in Peru are also in need of study, together with studies in the temperate regions of Patagonia in Argentina, where Cnesia, Cnesiamina, Gigantodax, and Paraustrosimulium are abundant.

In summary, the COI barcoding gene correctly distinguished 97% of the morphologically distinct species (all life stages) in the family Simuliidae examined from Mesoamerica, demonstrating its value for species identification. It has also been shown that the COI barcoding region is a useful tool in revealing high levels of genetic diversity in known species complexes (for example S. exiguum s.l., S. lutzianum s.l., S. metallicum s.l., S. ochraceum s.l., and S. virgatum s.l.), in supporting the existence of putative complexes (S. paynei, S. tarsatum), and in revealing new complexes (S. callidum, S. puigi, S. quadrivittatum, and S. samboni). We believe that available results establish that DNA barcoding is a powerful identification tool and a versatile aid for establishing species boundaries, especially when coupled with morphotaxonomy and cytogenetic analysis. The latter would have a direct impact on control strategies and studies on disease transmission by supporting the correct identification of vector and/or pest species.

Acknowledgments

The authors thank the Curators of Diptera (Zoe Adams, Erica McAlister, Theresa Howard) at the Natural History Museum (NHM), London, UK, for providing space and facilities in aid of the study. This research was enabled by grants from Genome Canada through the Ontario Genomics Institute (OGI), the Canada Foundation for Innovation (CFI), the Ontario Ministry of Research and Innovation, the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Gordon and Betty Moore Foundation. Financial support was also provided by CONACYT–México (grants no.194045 and 251085) to Mario A. Rodríguez-Pérez. We thank Luz Adriana Olaya (Colombia), Hortencia Frontado, Marisela Escalona and Maria Eugenia Grillet (Venezuela) for providing specimens of Simuliidae from sites with onchocerciasis. Luis M. Hernández-Triana thanks the staff at the Instituto de Biodiversidad (INBIO), Costa Rica (especially Manuel Zumbado) for hosting his visits to collect Simuliidae and examine specimens held in the collection. Luis also thanks Monica Springer, Paul Hanson and Rita Vargas (Museo de Zoología, Universidad de Costa Rica, San José, Costa Rica) for hosting visits to examine type material of Simuliidae described by Mario Vargas, which is held at this institution. In addition, Luis thanks staff at BIO, especially Nadia Nikilova, Gergin Blagoev and Masha Kuzmina (and family), for aid with sequence editing, discussions on DNA barcoding, the team at the Ryan Gregory Lab (University of Guelph), Doug Currie (Royal Ontario Museum), and Augusto Juarrero, Maite Garcia and their family, for their kindness and support during my stay in Guelph. In addition, I also give thanks to Dr Anthony Shelley for his friendship, and constant encouragement and expert advice on the systematics of Neotropical Simuliidae.

References


http://dx.doi.org/10.1111/1755-0998.12208


http://dx.doi.org/10.1139/g94-006


http://dx.doi.org/10.1016/j.limno.2004.05.003


http://dx.doi.org/10.1034/j.1600-0706.2001.920105.x


http://dx.doi.org/10.1093/jmedent/20.4.399


http://dx.doi.org/10.1007/s10750-009-9706-z


http://dx.doi.org/10.1111/j.1471-2286.2007.01678.x


http://dx.doi.org/10.1111/j.1755-0998.2009.02648.x


History Museum (Entomology), 69, 171–221.


Vargas, V.M. & Travis, B.V. (1973) Bionomía de los simúlidos (Diptera: Simuliidae) in Costa Rica. IV. Localización y descripción de los lugares de recolección. Revista de Biología Tropical, 21, 143–175.


