Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-06-30
Page range: 72–97
Abstract views: 2029
PDF downloaded: 1121

Fossil mosses: What do they tell us about moss evolution?

Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia
Bryophyta evolution paleobotany protosphagnalean

Abstract

The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca. 70 million years ago (Ma), while earlier they were found twice as small leaf fragments from Lower Jurassic (ca. 200 Ma) and Late Ordovician (ca. 455 Ma). Pleurocarpous mosses appear in fossil state near the border between Jurassic and Cretaceous, although most Cretaceous mosses belong to acrocarps. Only in Eocene amber pleurocarps become more numerous than acrocarps. Some Eocene mosses can be assigned to extant families and sometimes genera, although the majority of Eocene pleurocarps are difficult to identify up to the family, as their morphology often allows placement of a particular specimen into several different families.

Downloads

Download data is not yet available.

References

  1. Amaral, P.G.C., Bernardes de Oliveira, M., Ricardi-Branco, F. & Broutin, J. (2004) Presencia de Bryopsida fértil en los niveles Westfalianos del subgrup Itararé, Cuenca de Paraná, Brasil. Tropical Bryology 25: 101–110. https://doi.org/10.11646/bde.25.1.12

  2. Anderson, J.M. & Anderson, H.M. (1985) Palaeoflora of South Africa. Prodromus of South African Megafloras, Devonian to Lower Cretaceous. A.A. Balkema, Rotterdam, 423 pp.

  3. Arnold, C.A. (1932) Microfossils from Greenland coal. Papers of the Michigan Academy of Science, Arts and Letters 15: 51–61.

  4. Barclay, R.S., McElwain, J.C., Duckett, J., Es, A.S., van, Mostaert, M.H., Pressel, S. & Sageman, B.B. (2013) New methods reveal oldest known fossil epiphyllous moss: Bryiidites utahensis gen. et sp. nov. (Bryidae). American Journal of Botany 100 (12): 2450–2457. https://doi.org/10.3732/ajb.1300209

  5. Bell, N.E. & York, P.V. (2007) Vetiplanaxis pyrrhobryoides, a new fossil moss genus and species from Middle Cretaceous Burmese amber. The Bryologist 110 (3): 514–520. https://doi.org/10.1639/0007-2745(2007)110[514:VPANFM]2.0.CO;2

  6. Bescherelle, É. (1873) Florule bryologique de la Nouvelle-Calédonie. Annales des Sciences Naturelles; Botanique sér. 5 18: 184–245.

  7. Bippus, A., Stockey, R.A., Rothwell, G.W. & Tomescu, A.M.F. (2017) Extending the fossil record of Polytrichaceae: Early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island. American Journal of Botany 104: 584–597. https://doi.org/10.3732/ajb.1700002

  8. Bippus, A.C., Escapa, I.H. & Tomescu, A.M.F. (2018) Wanted dead or alive (probably dead): Stem group Polytrichaceae. American Journal of Botany 105 (8): 1243–1263. https://doi.org/10.1002/ajb2.1096

  9. Bippus, A.C., Savoretti, A., Escapa, I.H., García Massini, J.L. & Guido, D. (2019) Heinrichsiella patagonica gen. et sp. nov.: a permineralized acrocarpous moss from the Jurassic of Patagonia. International Journal of Plant Sciences 180 (8): 882–891. https://doi.org/10.1086/704832

  10. Bippus, A., Rothwell, G.W. & Stockey, R.A. (2021) Cynodontium luthii sp. nov. a permineralized moss gametophyte from the Late Cretaceous of the North Slope of Alaska. American Journal of Botany 108 (3): 1–10. https://doi.org/10.1002/ajb2.1617

  11. Bomfleur, B. & Kerp, H. (2010) Dicroidium diversity in the Upper Triassic of North Victoria Land, East Antarctica. Review of Palaeobotany and Palynology 160: 67–101. https://doi.org/10.1016/j.revpalbo.2010.02.006

  12. Bomfleur, B., Klymiuk, A.A., Taylor, E.L., Taylor, T.N., Gulbranson, E.L. & Isbell, J.L. (2014) Diverse bryophyte mesofossils from theTriassic of Antarctica. Lethaia 47: 120–132. https://doi.org/10.1111/let.12044

  13. Boulter, M. (1994) An approach to a standard terminology for palynodebris. In: Traverse, A. (Ed.) Sedimentation of Organic Particles. Cambridge University Press, Cambridge, pp. 199–216. https://doi.org/10.1017/CBO9780511524875.012

  14. Britton, E.G. (1899) A new Tertiary fossil moss. Bulletin of the Torrey Botanical Club 26: 79–81. https://doi.org/10.2307/2478308

  15. Brown, J.T. & Robison, C.R. (1974) Diettertia montanensis, gen. et sp. nov., a fossil moss from the Lower Cretaceous Kootenai Formation of Montana. Botanical Gazette 135: 170–173. https://doi.org/10.1086/336747

  16. Brown, R.W. (1962) Paleocene flora of the Rocky Mountains and Great Plains. U.S. Geological Survey Professional Paper 375: 1–119. +69 pls. https://doi.org/10.3133/pp375

  17. Busche, R. von (1968) Als Laubmossreste gedeutete Pflanzenfossilien aus den Lebacher Schichten (Autunien) von St. Wendel, Saar. Argumenta Palaeobotanica 2: 1–14.

  18. Cantrill, D.J. (2000) A Cretaceous (Aptian) flora from President Head, Snow Island, Antarctica Palaeontographica, Abteilung B 253: 153–191. https://doi.org/10.1127/palb/253/2000/153

  19. Cardona-Correa, C., Piotrowski, M.J., Knack, J.J., Kodner, R.B., Geary, D.H. & Graham, L.E. (2016) Peat moss-like vegetative remains from Ordovician carbonates. International Journal of Plant Sciences 177: 523–538. https://doi.org/10.1086/686242

  20. Chandra, S. (1995) Bryophytic remains from the early Permian sediments of India. The Palaeobotanist 43 (2) 16–48.

  21. Christiano de Souza, I.C., Ricardi Branco, F.S. & Leon Vargas, Y. (2012) Permian bryophytes of western Gondwanaland from the Parana Basin in Brasil. Palaeontology 55 (1): 229–241. https://doi.org/10.1111/j.1475-4983.2011.01111.x

  22. Dixon, H.N. (1932) Classification of mosses. In: Verdoorn, F. (Ed.) Manual of Bryology. The Hague: Martinus Nijhoff, pp. 397–412.

  23. Dozy, F. & Molkenboer, J.H. (1846) Musci Frondosi Inediti Archipelagi Indici 2. H. W. Hazenberg, Lugduni-Batavorum, pp. 25–51, pl. 11–20.

  24. Drinnan, A.N. & Chambers, T.C. (1986) Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Memoir of the Association of Australasian Palaeontologists 3: 1–77.

  25. Durante, M.V. (1976) Paleobotanical foundation of the Carboniferous and Permian stratigraphy of Mongolia. Nauka, Moscow, 279 pp. [In Russian]

  26. Ettingshausen, C. von & Debey, M.H. (1859) Die Unweltlichen Acrobryen des Kreidegebirges von Aachen und Maestricht, 150 (17). Denkschriften, Akademie der Wissenschaften in Wien.

  27. Fedosov, V.E., Fedorova, A.V., Fedosov, A.E. & Ignatov, M.S. (2016) Phylogenetic inference and peristome evolution in haplolepideous mosses, focusing on Pseudoditrichaceae and Ditrichaceae s. l. Botanical Journal of the Linnean Society 181 (2): 139–155. https://doi.org/10.1111/boj.12408

  28. Fefilova, L.A. (1973) [New Permian mosses from northern Pre-Ural Depression]. Geologija i Poleznye Iskopaemye Severo-Vostoka Evropejskoj Chasti SSSR. 1972. Syktyvkar, Akademija Nauk SSSR: 85–91, 2 pl. [In Russian]

  29. Fefilova, L.A. (1978) Permian mosses of European North of USSR [Listostebelnye mkhi permi Evropeiskogo Severa SSSR] Nauka, Leningrad, 120 pp. [In Russian]

  30. Frahm, J.-P. (1993) Mosses in Dominican amber. Journal of the Hattori Botanical Laboratory 74: 249–259.

  31. Frahm, J.-P. (1996) New records of fossil mosses from Dominican amber. Cryptogamie, Bryologie, Lichénologie 17: 231–236.

  32. Frahm, J.-P. (2001) New records of mosses from Dominican amber. Tropical Bryology 20: 39–42. https://doi.org/10.11646/bde.20.1.6

  33. Frahm, J.-P. (2004a) A new contribution to the moss flora of Baltic and Saxon amber. Review of Palaeobotany and Palynology 129: 81–101. https://doi.org/10.1016/j.revpalbo.2003.11.004

  34. Frahm, J.-P. (2004b) Atrichum (Musci, Polytrichaceae) in Baltic amber. Journal of the Hattori Botanical Laboratory 95: 219–227.

  35. Frahm, J.-P. (2004c). New records of mosses from Dominican amber. Tropical Bryology 25: 25–27. https://doi.org/10.11646/bde.25.1.5

  36. Frahm, J.-P. (2008) Eohypopterygiopsis dominicensis, a new genus and species, and Pyrrhobryum spiniforme from the Miocene of the Dominican Republic. Tropical Bryology 29: 48–50. https://doi.org/10.11646/bde.29.1.6

  37. Frahm, J.-P. (2009) The first record of a Sphagnum from the Tertiary in Baltic Amber and other new records of mosses from Baltic and Dominican amber. Cryptogamie, Bryologie 30: 259–263.

  38. Frahm, J.-P. (2010) Die Laubmoosflora des Baltischen Bernsteinwaldes. Weissdorn-Verlag, Jena, 101 pp.

  39. Frahm, J.-P. & Gröhn, C. (2013) More fossil bryophytes from Baltic amber. Archive for Bryology 159: 1–9.

  40. Frahm, J.-P. & Newton, A.E. (2005) A new contribution to the moss flora of Dominican amber. The Bryologist 108: 526–536. https://doi.org/10.1639/0007-2745(2005)108[0526:ANCTTM]2.0.CO;2

  41. Frey, W. (1970) Blattenwicklung bei Laubmoosen. Nova Hedwigia 20: 463–556.

  42. Frey, W. & Stech, M. (2009) Bryophyta (Musci, mosses). In: Frey, W. (Ed.) Syllabus of plant families A. Engler’s Syllabus der Pflanzenfamilien. Part 3. Bryophytes and seedless vascular plants. 13th ed. Gebr. Borntraeger Verlagsbuchhandlung, Stuttgart, Germany, pp. 116–257.

  43. Goffinet, B., Buck, W.R. & Shaw, A.J. (2009) Morphology, anatomy, and classification of the Bryophyta. In: Goffinet, B. & Shaw, A.J. (Eds.) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp. 55–138.

  44. Goffinet, B. & Buck, W.R. (2004) Systematics of the Bryophyta (mosses): from molecules to a revised classification. In: Goffinet, B., Hollowell, V. & Magill, R. (Eds.) Molecular systematics of Bryophytes. Missouri Bot. Garden Press, St.-Louis, pp. 205–239.

  45. Gomankov, A.V. (2020) Peculiar lycopsids from Yaman-Us locality (the Upper Permian of the Southern Mongolia). Lethaea Rossica 20: 34–43. [In Russian, English summary] [http://paleobot.ru/pdf/03_2020_20.pdf]

  46. Gomankov, A.V. & Meyen, S.V. (1986) Tatarina flora (composition and distribution in the Late Permian of Eurasia) [Tatarinovaya flora (sostav i rasprostranenie v pozdnej permi Evrasii)]. Trudy Geologicheskogo Instituta Akademii Nauk SSSR 401: 1–174. [In Russian]

  47. Gottsche, C.M., Lindenberg, J.B.G. & Nees ab Esenbeck, C.G. (1846) Synopsis Hepaticarum. Fasc. IV. Meissner, Hamburg, pp. 465–624.

  48. Grimaldi, D.A., Sunderlin, D., Aaroe, G.A., Dempsky, M.R., Parker, N.E., Tillery, G.Q., White, J.G., Barden, P. Nascimbene, P.C. & Williams, C.J. (2018) Biological Inclusions in Amber from the Paleogene Chickaloon Formation of Alaska. American Museum Novitates 3908: 1–37. https://doi.org/10.1206/3908.1

  49. Hampe, E. (1839) Relation über die von dem Reisenden C. Beyrich auf seiner letzten Reise in Nordamerika gesammelten Laubmoose. Linnaea 13: 39–48.

  50. Hattori, S. & Inoue, H. (1958) Preliminary report on Takakia lepidozioides. Journal of the Hattori Botanical Laboratory 18: 133137.

  51. Hedenäs, L., Heinrichs, J. & Schmidt, A.R. (2014) Bryophytes of the Burmese amber forest: amending and expanding the circumscription of the Cretaceous moss genus Vetiplanaxis. Review of Palaeobotany and Palynology 209: 1–10. https://doi.org/10.1016/j.revpalbo.2014.05.008

  52. Hedwig, J. (1801) Species Muscorum Frondosorum. Leipzig, 352 pp.

  53. Heinrichs, J., Hentschel, J., Wilson, R., Feldberg, K. & Schneider, H. (2007) Evolution of leafy liverworts (Jungermanniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon 56: 31–44. https://doi.org/10.2307/25065908

  54. Heinrichs, J., Vitt, D.H., Schäfer-Verwimp, A., Ragazzi, E., Marzaro, G., Grimaldi, D.A., Nascimbene, P.C., Feldberg, K. & Schmidt, A.R. (2013) The moss Macromitrium richardii (Orthotrichaceae) with sporophyte and calyptra enclosed in Hymenaea resin from the Dominican Republic. Polish Botanical Journal 58 (1): 221–230. https://doi.org/10.2478/pbj-2013-0022

  55. Heinrichs, J., Hedenäs, L., Schäfer-Verwimp, A., Feldberg, K. & Schmidt, A.R. (2014a) An in situ preserved moss community in Eocene Baltic amber. Review of Palaeobotany and Palynology 210: 113–118. https://doi.org/10.1016/j.revpalbo.2014.08.005

  56. Heinrichs, J., Wang, X., Ignatov, M.S. & Krings, M. (2014b) A Jurassic moss from Northeast China with preserved sporophytes. Review of Palaeobotany and Palynology 204: 50–55. https://doi.org/10.1016/j.revpalbo.2014.02.005

  57. Heinrichs, J., Schäfer-Verwimp, A., Hedenäs, L., Ignatov, M.S. & Schmidt, A.R. (2014c) An acrocarpous moss in Cretaceous amber from Myanmar. Cretaceous Research 51: 260–265. https://doi.org/10.1016/j.cretres.2014.06.010

  58. Heinrichs, J., Scheben, A., Bechteler, J., Lee, E., Schäfer-Verwimp, A., Hedenäs, L., Singh, H., Pócs, T., Nascimbene, P.C., Peralta, D.F., Renner, M. & Schmidt, A.R. (2016) Crown group Lejeuneaceae and pleurocarpous mosses in early Eocene (Ypresian) Indian amber. PLoS ONE 11 (5): e0156301. https://doi.org/10.1371/journal.pone.0156301

  59. Hodgetts, N.G., Söderström, L., Blockeel, T.L., Caspari, S., Ignatov, M.S., Konstantinova, N.A., Lockhart, N., Papp, B., Schröck, C., Sim-Sim, M., Bell, D., Bell, N., Blom, H.H., Bruggeman-Nannenga, M.A., Brugués, M., Enroth, J., Flatberg, K.I., Garilleti, R., Hedenäs, L., Holyoak, D.T., Hugonnot, V., Kariyawasam, I.U., Köckinger, H., Kučera, J., Lara, F. & Porley, R.D. (2020) An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology 42 (1): 1–116. https://doi.org/10.1080/03736687.2019.1694329

  60. Hooker, W.J. (1816) Some account on Tayloria splachnoides, a new moss allied to the genus Splachnum. Journal of Science and the Arts 2 (3): 144–147.

  61. Hübers, M. & Kerp, H. (2012) Oldest known mosses discovered in Mississippian (late Visean) strata of Germany. Geology 40: 755–758. https://doi.org/10.1130/G33122.1

  62. Hübers, M., Kerp, H., Schneider, J.W. & Gaitzsch, B. (2013) Dispersed plant mesofossils from the Middle Mississippian of eastern Germany: bryophytes, pteridophytes and gymnosperms. Review of Palaeobotany and Palynology 193: 38–56. https://doi.org/10.1016/j.revpalbo.2013.01.006

  63. Ignatov, M.S. (1990) Upper Permian mosses from the Russia Platform. Palaeontographica Abteilung B, 217: 147–189 + Pl. 1–9.

  64. Ignatov, M.S. (1992) Bryokhutuliinia jurassica, gen. et spec. nova, a remarkable fossil moss from Mongolia. Journal of the Hattori Botanical Laboratory 71: 377–388.

  65. Ignatov, M.S. (2013) Mosses of Paleozoic and Mesozoic. Lethaea rossica, Suppl. 1: 29–40. [http://paleobot.ru/pdf/06_suppl_2013.pdf]

  66. Ignatov, M.S., Abakarova, A.S., Alekseev, P.I. & Kučera, J. (2016a) Cynodontium eocenicum, a new moss from the Baltic Amber. Arctoa 25 (2): 236–240. https://doi.org/10.15298/arctoa.25.19

  67. Ignatov, M.S., Gardiner, A.A., Bobrova, V.K., Milyutina, I.A., Huttunen, S, & Troitsky, A.V. (2007) On the relationships of mosses of the order Hypnales, with special reference to taxa traditionally classified in the Leskeaceae. Pleurocarpous mosses: systematics and evolution. Systematics Association Special Volume 71: 177–213. https://doi.org/10.1201/9781420005592.ch9

  68. Ignatov, M.S., Heinrichs, J., Schäfer-Verwimp, A. & Perkowsky, E.E. (2016b) The first record of a bryophyte in Upper Cretaceous amber from Taimyr, northern Siberia: Taimyrobryum martynoviorum gen. et sp. nov. (Bryopsida). Cretaceous Research 65: 25–31. https://doi.org/10.1016/j.cretres.2016.04.005

  69. Ignatov, M.S., Karasev, E.V. & Sinitsa, S.M. (2011) Upper Jurassic mosses from Baigul (Transbaikalia, South Siberia). Arctoa 20: 43–64. https://doi.org/10.15298/arctoa.20.03

  70. Ignatov, M.S., Karasev, E.V., Sinitsa, S.M. & Maslova, E.V. (2013) New Bryokhutuliinia species (Bryophyta) with sporophytes from the Upper Jurassic of Transbaikalia. Arctoa 22: 69–78. https://doi.org/10.15298/arctoa.22.10

  71. Ignatov, M.S., Lamkovsky, P., Ignatova, E.A. & Perkovsky, E.E. (2019) Mosses from Rovno amber (Ukraine), 4. Sphagnum heinrichsii, a new moss speices from Eocene. Arctoa 28 (1): 1–11. https://doi.org/10.15298/arctoa.28.01

  72. Ignatov, M.S. & Perkovsky, E.E. (2011) Mosses from Rovno amber (Ukraine). Arctoa 20: 1–18. https://doi.org/10.15298/arctoa.20.01

  73. Ignatov, M.S. & Perkovsky, E.E. (2013a) Mosses from Rovno amber (Ukraine). 2. Arctoa 22: 83–92. https://doi.org/10.15298/arctoa.22.12

  74. Ignatov, M.S. & Perkovsky, E.E. (2013b) Mosses from Sakhalin amber (Russian Far East). Arctoa 22: 79–82. https://doi.org/10.15298/arctoa.22.11

  75. Ignatov, M.S., Schäfer-Verwimp, A., Perkovsky, E.E. & Heinrichs, J. (2016c) Mosses from Rovno amber (Ukraine), 3. Pottiodicranum, a new moss genus from the Late Eocene. Arctoa 25: 229–235. https://doi.org/10.15298/arctoa.25.18

  76. Ignatov, M.S. & Shcherbakov, D.E. (2007) Did Pleurocarpous mosses originate before the Cretaceous? In: Newton, A.E. & Tangney, R. (Eds.) Pleurocarpous mosses: systematics and evolution. CRC Press, Boca Raton-London-New York (Systematic Association Special Volume 71), pp. 321–336. https://doi.org/10.1201/9781420005592.ch16

  77. Ignatov, M.S. & Shcherbakov, D.E. (2009) А new fossil moss from the Lower Permian of the Russian Far East. Arctoa 18: 201–212. https://doi.org/10.15298/arctoa.18.14

  78. Ignatov, M.S. & Shcherbakov, D.E. (2011a) Lower Cretaceous mosses from Khasurty (Baikal Area of South Siberia). Arctoa 20: 19–42. https://doi.org/10.15298/arctoa.20.02

  79. Ignatov, M.S. & Shcherbakov, D.E. (2011b) Lower Triassic mosses from Yamanus (Mongolia). Arctoa 20: 65–80. https://doi.org/10.15298/arctoa.20.04

  80. Ivanov, O.V., Maslova, E.V. & Ignatov, M.S. (2018) Development of the sphagnoid areolation pattern in leaves of Palaeozoic protosphagnalean mosses. Annals of Botany (Oxford), n.s. 112 (5): 915–925. https://doi.org/10.1093/aob/mcy046

  81. Janssens, J.A.P., Horton, D.G. & Basinger, J.F. (1979) Aulacomnium heterostichoides sp. nov., an Eocene moss from south central British Columbia. Canadian Journal of Botany 57: 2150–2161. https://doi.org/10.1139/b79-268

  82. Jovet-Ast, S. (1967) Bryophyta. In: Boureau, E. (Ed.) Traité de Paléobotanique, Paris, 2. pp. 17–186.

  83. Katagiri, T., Mukai, M. & Yamaguchi, T. (2013) A new fossil moss Muscites kujiensis (Bryopsida) preserved in the Late Cretaceous amber from Japan. The Bryologist 116 (3): 296–301. https://doi.org/10.1639/0007-2745-116.3.296

  84. Kadlecová, V. (2020) Studium hub, řas a mechorostů z křídy Českého masivu a ostrova Jamese Rosse [Study of fungi, algae and bryophytes from the Cretaceous of the Bohemian Massif and James Ross Island]. Diplomová práce, Univerzita Karlova v Praze, Praha [In Czech].

  85. Kenrick, P. & Crane, P.R. (1997) The Origin and Early Diversification of Land Plants. Smithsonian Institution Press, Washington, DC, 441 pp.

  86. Köck, C. (1939) Fossile Kryptogamen aus der eozänen Braunkohle des Geiseltales. Nova Acta Leopoldiana H, 6: 333–359 + figs. 37–45.

  87. Kodner, R.B. & Graham, L.E. (2001) High temperature, acid-hydrolized remains of Polytrichum (Musci, Polytrichaceae) resemble enigmatic Silurian-Devonian tubular microfossils. American Journal of Botany 88 (3): 462–466. https://doi.org/10.2307/2657111

  88. Konopka, A.S., Herendeen, P.S. & Crane, P.R. (1998) Sporophytes and gametophytes of Dicranaceae from the Santonian (Late Cretaceous) of Georgia, USA. American Journal of Botany 85: 714–723. https://doi.org/10.2307/2446542

  89. Konopka, A.S., Herendeen, P.S., Merrill, G.L.S. & Crane, P.R. (1997) Sporophytes and gametophytes of Polytrichaceae from the Campanian (Late Cretaceous) of Georgia, U.S.A. International Journal of Plant Sciences 158: 489–499. https://doi.org/10.1086/297459

  90. Krassilov, V.A. (1973) Mesozoic bryophytes from the Bureja Basin, Far East of the USSR. Palaeontographica, Abteilung B 143: 95–105 + Pl. 41–51.

  91. Krassilov, V. (1982) Early Cretaceous flora of Mongolia. Palaeontographica, Abteilung B 181: 1–43.

  92. Krassilov, V.A. & Schuster, R.M. (1984) Paleozoic and mesozoic fossils. In: Schuster, R.M. (Ed.) New manual of bryology. Hattori Botanical Laboratory, Nichinan, pp. 1172–1193.

  93. Kuc, M. (1972) Muscites eocenicus sp. nov., a fossil moss from the Allenby Formation (Middle Eocene), British Columbia. Canadian Journal of Earth Science 9 (5): 600–602. https://doi.org/10.1139/e72-049

  94. Kuc, M. (1973a) Fossil flora of the Beaufort Formation, Meighen Island, NWT—Canada. Era 1: 1–44. https://doi.org/10.4095/103243

  95. Kuc, M. (1973b) Plant macrofossils in Tertiary coal and amber from northern Lake Hazen, Ellesmere Island, N.W.T. Geological Survey of Canada, Paper 73-l (B): 143. https://doi.org/10.4095/104918

  96. Kuc, M. (1974) Fossil mosses from the Bisaccate Zone of the mid-Eocene Allenby Formation, British Columbia. Canadian Journal of Earth Science 11: 409–421. https://doi.org/10.1139/e74-037

  97. Kučera, J. Kuznetsova, O.I., Manukjanová, A. & Ignatov, M.S. (2019) A phylogenetic revision of the genus Hypnum: towards completion. Taxon 68: 628–660. https://doi.org/10.1002/tax.12095

  98. Lacey, W.S., Van Dijk, D.E. & Gordon-Gray, K.D. (1975) Fossils plants from the Upper Permian in the Mooi River district of Natal, South Africa. Annals of the Natal Museum 2: 349–420.

  99. Laenen, B., Shaw, B., Schneider, H., Goffinet, B., Paradis, É., Désamoré, A., Heinrichs, J., Villarreal, J.C., Gradstein, S.R., McDaniel, S., Long, D.G., Forrest, L.L., Hollingsworth, M.L,, Crandall-Stotler, B.J., Davis, E.C., Engel, J., Konrat, M., von, Cooper, E.D., Patiño, J., Cox, C.J., Vanderpoorten, A. & Shaw, A.J. (2014) Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications 5: 6134 [1–6]. https://doi.org/10.1038/ncomms6134

  100. Lignier, O. (1914) Sur une mousse houillère a structure conservee. Bulletin de la Société Linnéenne de Normandie, ser. 6, 7: 128.

  101. Linnaeus, C. von (1753) Species Plantarum, vol. 2. Imprensis Laurentii Salvii, Holmiae, pp. 561–1200.

  102. Liu, L.J. & Yao, Z.Q. (1996) Early Late Permian Angara flora from Turpan-Hami Basin. Acta Palaeontologica Sinice 35 (6): 644–671. [In Chinese, English summary]

  103. Mamontov, Yu.S. & Ignatov, M.S. (2019) How to rely on the unreliable: examples from Mesozoic bryophytes of Transbaikalia. Journal of Systematics and Evolution 57 (4): 339–360. https://doi.org/10.1111/jse.12483

  104. Maslova, E.V., Mosseichik, Y.V., Ignatiev, I.A., Ivanov, O.V. & Ignatov, M.S. (2012a) On the leaf development in Palaeozoic mosses of the order Protosphagnales. Arctoa 21: 241–264. https://doi.org/10.15298/arctoa.21.24

  105. Maslova, E.V., Ivanov, O.V. & Ignatov, M.S. (2012b) On the distinction of two species of Palaeozoic moss genus Intia (Protospahgnales). Arctoa 21: 237–240. https://doi.org/10.15298/arctoa.21.23

  106. Maslova, E.V., & Ignatov, M.S. (2013) On the costa variation in leaves of Protosphagnalean mosses of Permian. Arctoa 22: 61–68. https://doi.org/10.15298/arctoa.22.09

  107. Maslova, E.V., Ignatiev, I.A., Mosseichik, Y.V. & Ignatov, M.S. (2016) Bulbosphagnum, a new form genus for brood bodies of mosses of the Palaeozoic order Protosphagnales. Arctoa 25: 314–331. https://doi.org/10.15298/arctoa.25.25

  108. Mays, C., Tosolini, A.-M.P., Cantrill, D.J. & Stilwell, J.D. (2015) Late Cretaceous (Cenomanian–Turonian) macroflora from the Chatham Islands, New Zealand: Bryophytes, lycophytes and pteridophytes. Gondwana Research 27: 1042–1060. https://doi.org/10.1016/j.gr.2014.03.017

  109. Meyen, S.V. (1982) The Carboniferous and Permian floras of Angaraland (a synthesis). Biological Memoirs 7: 1–110.

  110. Miller, N.G. (1980) Fossil mosses of North America and their significance. In: Taylor, R.J. & Leviton, A.E. (Eds.) Mosses of North America. Pacific Division of the American Association for the Advancement of Sciences, San Francisco, pp. 9–36.

  111. Miller, N.G. (1984) Tertiary and quaternary fossils. In: Schuster, R.M. (Ed.) New Manual of Bryology. Hattori Botanical Laboratory, Nichinan, pp. 1194–1232.

  112. Moisan, P., Voigt, S., Schneider, J.W. & Kerp, H. (2012) New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan). Review of Palaeobotany and Palynology 187: 29–37. https://doi.org/10.1016/j.revpalbo.2012.08.009

  113. Müller, C. (1848) Synopsis Muscorum Frondosorum omnium hucusque Cognitorum, Vol. 1, fasc. 3. Alb. Foerstner, Berlin, pp. 321–480. https://doi.org/10.5962/bhl.title.31

  114. Nees von Esenbeck, C.G.D. (1833) Naturgeschichte der Europäischen Lebermoose. Vol. 1. pp. 1–348.

  115. Newton, A.E., Wikstrom, N., Bell, N., Forrest L.L. & Ignatov, M.S. (2007) Dating the diversification of the pleurocarpous mosses. In: Newton, A.E. & Tangney, R. (Eds.) Pleurocarpous mosses: systematics and evolution. CRC Press, Boca Raton-London-New York (Systematic Association Special Volume 71), pp. 337–366. https://doi.org/10.1201/9781420005592.ch17

  116. Neuburg, M.F. (1956) Discovery of leafy mosses in the Permian of the USSR. Doklady Akademii Nauk SSSR 102 (2): 321–324. [In Russian]

  117. Neuburg, M.F. (1958a) Palaeozoic mosses of Angarida. Congreso geológico international. XX sessión. México, 1956: Sec. VII. Paleontología, Taxonomía y Evolución. México, pp. 97–106.

  118. Neuburg, M.F. (1958b) Permian true mosses of Angaraland. Journal of the Palaeontological Society of India 3: 22–29.

  119. Neuburg, M.F. (1960) Leafy mosses from the Permian deposits of Angarida. Transactions of the Geology Institute of the Academy of Sciences USSR (Moscow) 19: 1–104 + 78 pl. [In Russian]

  120. Oostendorp, C. (1987) The bryophytes of the Paleozoic and Mesozoic. Bryophytorum Bibliotheca 34: 5–112 + plates I–XLIX.

  121. Ottone, E.G., & Archangelsky, S. (2001) A new bryophyte from the Upper Carboniferous of Argentina. Ameghiniana 38: 219–223.

  122. Pant, D.D. & Basu, N. (1978) On two structurally preserved bryophytes from the Triassic of Nidpur, India. Palaeobotanist 25: 340–352.

  123. Passalia, M.G. (2007) Nuevos registros para la flora cretácica descripta por Halle (1913) en lago San Martín, Santa Cruz, Argentina. Ameghiniana 44 (3): 565–595. [http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0002-70142007000300006]

  124. Pottier, J. (1925) Nouvelles recherches sur le développement de la feuille des Muscinées. Bulletin Société Botanique de France 72: 629–689 + pl. 11–14. https://doi.org/10.1080/00378941.1925.10832779

  125. Puebla, G.G., Mego, N. & Prámparo, M.B. (2012) Asociación de briofitas de la Formación La Cantera, Aptiano tardío, Cuenca de San Luis, Argentina. Ameghiniana 49(2): 217–229. https://doi.org/10.5710/AMGH.v49i2(504)

  126. Reissinger, A. (1950) Die “Pollenanalyse” ausgedehnt auf alle Sedimentgesteine der geologische Vergangenheit. Zweiter teil. Palaeontographica, Abteilung B 90 (4–6): 99–126 + Tabl. 11–19.

  127. Renauld, B. & Zeiller, R. (1885) Sur des Mousses de l’époque houillère. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 100: 660–662.

  128. Renauld, B. & Zeiller, R. (1888) Études sur les terrain houiller de Commentry. Livre deuxième. Flore fossile. Imprimateur Théolier and Cie, St. Étienne, pp. 3–366.

  129. Riegel, W. & Wilde, V. (2016) An Early Eocene Sphagnum bog at Schoningen, northern Germany. International Journal of Coal Geology 159: 57–70. https://doi.org/10.1016/j.coal.2016.03.021

  130. Ricardi-Branco, F., Sampaio Costa, J., Christiano da Souza, I.C., Ronh, R., Longhim, M. & Faria, R.S. (2013) Bryophytes associated with Pennsylvanian periglacial environments in southern Gondwana (São Paulo State, Itararé Group, Paraná Basin)-Brazil. New Mexico Museum of Natural History and Science, Bulletin 60: 343–347.

  131. Ricardi-Branco, F., Rohn, R., Longhim, M.E., Sampaio Costa, J., Milani Martine, A. & Christiano-de-Souza, I.C. (2016) Rare Carboniferous and Permian glacial and non-glacial bryophytes and associated lycophyte megaspores of the Parana Basin, Brazil: a new occurrence and paleoenvironmental considerations. Journal of South American Earth Sciences 72: 63–75. https://doi.org/10.1016/j.jsames.2016.07.014

  132. Robinson, H.E. (1965) Venezuelan bryophytes collected by Julian A. Steyermark. Acta Botanica Venezuelica 1: 73–83.

  133. Rubinstein, C.V., Gerrienne, P., Puente, G.S. de la, Astini, R.A. & Steemans, P. (2010) Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phitologist 188 (2): 306–309. https://doi.org/10.1111/j.1469-8137.2010.03433.x

  134. Savoretti, A., Bippus, A.C., Stockey, R.A., Rothwell, G.W. & Tomescu, A.M.F. (2018) Grimmiaceae in the Early Cretaceous: Tricarinella crassiphylla gen. et sp. nov. and the value of anatomically preserved bryophytes. Annals of Botany (Oxford), n.s. 121 (7): 1275–1286. https://doi.org/10.1093/aob/mcy015

  135. Schimper, W.P. (1856) Corollarium Bryologiae Europaeae. E. Schweizerbart, Stuttgartiae, 140 pp.

  136. Schimper, W.P. (1860) Icones morphologicae atque organographicae instructionum Synopsi Muscorum Europaeorum. E. Schweiserbarrt, Stuttgartiae, 26 pp + 11 tabs.

  137. Schneider, H., Schuettpelz, E., Pryer, K.M., Cranfill, R., Magallon, S. & Lupia, R. (2004) Ferns diversified in the shadow of the angiosperms. Nature 428: 553–557. https://doi.org/10.1038/nature02361

  138. Schuster, R.M. & Janssens, J.A. (1989) On Diettertia, an isolated Mesozoic member of the Jungermanniales. Review of Palaeobotany and Palynology 57: 277–287. https://doi.org/10.1016/0034-6667(89)90025-0

  139. Schwägrichen, C.F. (1826) Species Muscorum Frondosorum, Supplement 2, vol. 2, sect. 1. Leipzig, Barth. pp. 1–79 + plates 151–175.

  140. Shaw, A.J., Cox, C.J., Goffinet, B., Buck, W.R. & Boles, S.B. (2003) Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta). Evolution 57: 2226–2241. https://doi.org/10.1111/j.0014-3820.2003.tb00235.x

  141. Shelton, G.W.K., Stockey, R.A., Rothwell, G.W. & Tomescu, A.M.F. (2015) Exploring the fossil history of pleurocarpous mosses: Tricostaceae fam. nov. from the Cretaceous of Vancouver Island, Canada. American Journal of Botany 102: 1883–1900. https://doi.org/10.3732/ajb.1500360

  142. Shelton, G.W.K., Stockey, R.A., Rothwell, G.W. & Tomescu, A.M.F. (2016) Krassiloviella limbelloides gen. et sp. nov.: additional diversity in the pleurocarpous moss family Tricostaceae (Valanginian, Vancouver Island, British Columbia). International Journal of Plant Sciences 177 (9): 792–808. https://doi.org/10.1086/688707

  143. Smoot, E.L. & Taylor, T.N. (1986) Structurally preserved fossil plants from Antarctica. II. A Permian moss from the Transantarctic Mountains. American Journal of Botany 73: 1683–1691. https://doi.org/10.1002/j.1537-2197.1986.tb09699.x

  144. Srebrodolskaya, I.N. (1980) Novye pozdnemesozoiskie listostebelnye mkhi iz Zabaikaliya [New Late Mesozoic mosses from Transbaikalia] Trudy Vsesoyuznogo Nauchno-Issledovatelskogo Geologicheskogo Instituta 204: 27–28. [In Russian]

  145. Steere, W.C. & Murray, B.M. (1976) Andreaeobryum macrosporum, a new genus and species of Musci from northern Alaska and Canada. Phytologia 33: 407–410. https://doi.org/10.5962/bhl.part.16794

  146. Taylor, W.A. & Strother, P.K. (2008) Ultrastructure of some Cambrian palynomorphs from the Bright Angel Shale, Arizona, USA. Review of Palaeobotany and Palynology 151: 41–50. https://doi.org/10.1016/j.revpalbo.2008.01.012

  147. Thomas, B.A. (1972) A probable moss from the Lower Carboniferous of the Forest of Dean, Gloucestershire. Annals of Botany 36: 155–161. https://doi.org/10.1093/oxfordjournals.aob.a084568

  148. Tomescu, A.M.F. (2016) The Early Cretaceous Apple Bay flora of Vancouver Island: a hotspot of fossil bryophyte diversity. Botany 94 (9): 683–695. https://doi.org/10.1139/cjb-2016-0054

  149. Tomescu, A.M.F., Bomfleur, B., Bippus, A.C. & Savoretti, A. (2018) Why are bryophytes so rare in the fossil record? A spotlight on taphonomy and fossil preservation. Transformative Paleobotany: 375–416. https://doi.org/10.1016/B978-0-12-813012-4.00016-4

  150. Townrow, A. (1959) Two Triassic bryophytes from South Africa. Journal of South African Botany 25: 1–22+4 Tabs.

  151. Turutanova-Ketova, A.I. (1958) Floristic characteristics of some Lower Mesozoic deposits on the eastern slope of Middle Urals. Botanichesky Zhurnal 43 (5): 664–678. [In Russian]

  152. Vanderpoorten, A., Hedenäs, L., Cox, C.J. & Shaw, A.J. (2002) Circumscription, classification, and taxonomy of Amblystegiaceae (Bryopsida) inferred from nuclear and chloroplast DNA sequence data and morphology. Taxon 51: 115–122. https://doi.org/10.2307/1554968

  153. Vera, E.I. (2010) Livingstonites gabrielae gen. et sp. nov., permineralized moss (Bryophyta: Bryopsida) from the Aptian Cerro Negro Formation of Livingston Island (South Shetland Islands, Antarctica). Ameghiniana 48 (1): 122–128. https://doi.org/10.5710/AMGH.v48i1(477)

  154. Villarreal, A.J.C., Crandall-Stotler, B.J., Hart, M.L., Long, D.G. & Forrest L.L. (2016) Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytologist 209 (4): 1734–1746. https://doi.org/10.1111/nph.13716

  155. Wang, Y.D. & Wu, X.W. (2007) Records and diversity of the fossil bryophytes in China. Chenia 9: 61–72.

  156. Weitschat, W. &Wichard, W. (2002) Atlas of plants and animals in Baltic amber. München, Friedrich Pfeil, 256 pp.

  157. Welleman, C. (1995) ‘‘Phytodebris’’ from Scottish Silurian and Lower Devonian continental deposits. Review of Palaeobotany and Palynology 84: 255–279. https://doi.org/10.1016/0034-6667(94)00115-Z

  158. Wilson, L.R. & Webster, R.M. (1946) Plant microfossils from a Fort Union coal of Montana. American Journal of Botany 33: 271–278. https://doi.org/10.1002/j.1537-2197.1946.tb10375.x

  159. Wilson, R., Heinrichs, J., Hentschel, J., Gradstein, S.R. & Schneider, H. (2007) Steady diversification of derived liverworts under Tertiary climatic fluctuations. Biological Letters 3: 566–569. https://doi.org/10.1098/rsbl.2007.0287

  160. Wittlake, E.B. (1968) Fossil mosses from the Upper Wilcox (Lower Eocene) of Arkansas. American Midland Naturalist 80: 543–547. https://doi.org/10.2307/2423547

  161. Wu, S.Q. (1999) A preliminary study of the Jehol flora from western Liaoning). Palaeoworld 11: 7–57. [In Chinese, English summary]. [http://english.nigpas.cas.cn/sp/Palaeoworldbackup/vol11/201103/P020110303334173856367.pdf] [http://english.nigpas.cas.cn/sp/Palaeoworldbackup/vol11/201103/P020110303332812223534.pdf]

  162. Wu, X.-W., Wu, X.-Y. & Wang, Y.-D. (2000) Two new forms of Bryiidae (Musci) from the Jurassic of Junggar Basin in Xinjiang, China. Acta Palaeontologica Sinica 39 (Suppl.): 167–175.

  163. Yang, R.D., Mao, J.R., Zhang, W.H., Jiang, L.J. & Gao, H.A. (2004) Bryophyte-like fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili Formation in Guizhou Province, China. Acta Botanica Sinica 46: 180–185.