Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-12-30
Page range: 44–66
Abstract views: 681
PDF downloaded: 4

HISTORICAL BIOGEOGRAPHY OF THE AUSTRAL HORNWORT GENUS PHAEOMEGACEROS (DENDROCEROTACEAE, ANTHOCEROTOPHYTA)

Laboratório de Sistemática Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais, Brasil
Département de Biologie, Université Laval, Québec, G1V 0A6, Canada, Institut de Biologie Intégrative et dês Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
Institute of Genetics and Cancer University of Edinburgh, Crewe Road, Edinburgh, EH9 3FL
Department of Plant Biology, Southern Illinois University, Carbondale, IL, USA
Département de Biologie, Université Laval, Québec, G1V 0A6, Canada, Institut de Biologie Intégrative et dês Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
Antarctica cryptogams Gondwana long-distance dispersal speciation spore morphology

Abstract

The transoceanic disjunct distributions between Australasia and Austral America have been observed in many plant groups. The processes behind these disjunct distributions remain a source of debate due to differences in species vagility, biogeographical history, and complex geological and climatic changes. We address the phylogenetic relationships and biogeographical history of the austral hornwort genus Phaeomegaceros based on eight molecular markers from the three genomes (nuclear: phytochrome, mitochondrial: nad5, and chloroplast: rbcL, trnL intron, trnL-trnF spacer, rps4 gene, rps4-trnS spacer, and matK gene). With ten taxa based on morphological and molecular data, the three phylogenetic analyses supported the genus Phaeomegaceros as monophyletic. Phaeomegaceros is composed of two major clades corresponding to the New Zealand species, which presents a conspicuous trilete mark with one depression in the middle of the spore’s proximal face, and the Austral American species, which lack this middle depression. Dating and biogeographical analyses indicate that the Phaeomegaceros ancestral area was New Zealand and Antarctica in the Late Cretaceous (53.51 Ma, HPD 95% = 31.64–72.63). While Austral American species diverged during the Eocene. We speculate that climatic fluctuations in the Antarctic continent during the middle to late-Miocene led to the isolation of Phaeomegaceros taxa with both processes (dispersal events and vicariance) acting on the independent evolution of the disjunct clades. Furthermore, recent diversification of Phaeomegaceros taxa in Austral America and range expansion to northern Andes and oceanic islands, are explained by dispersal events and subsequent cladogenesis coinciding with the uplift of the Andes and the formation of volcanic oceanic islands (Juan Fernandez and Tristan da Cunha).

Downloads

Download data is not yet available.

References

  1. Biersma, E.M., Jackson, J.A., Stech, M., Griffiths, H., Linse, K., & Convey, P. (2018) Molecular data suggest long-term in situ Antarctic persistence within Antarctica’s most speciose plant genus, Schistidium. Frontiers in Ecology and Evolution 6: 77.  https://doi.org/10.3389/fevo.2018.00077

  2. Blöcher, R. & Frahm, J.-P. (2002) A comparison of the moss floras of Chile and New Zealand. Studies in austral temperate rain forest bryophytes 17. Tropical Bryology 21: 81–92. https://doi.org/10.11646/bde.21.1.13

  3. Blume, C.I. (1850) Lugduno-Batavum, sive, Stirpium exoticarum novarum vel minus cognitarum ex vivis aut siccis brevis expositio et descriptio. Museum botanicum 1: 307.Campbell, D. 1907. Studies on some Javanese Anthocerotaceae. I. Annals of Botany 21: 467–486. https://doi.org/10.5962/bhl.title.274

  4. Campbell, E.O. & Hasegawa, J. (1993). Phaeoceros hirticalyx (Steph.) Haseg. (Anthocerotae) new to New Zealand. New Zealand Journal of Botany 31: 127–131.  https://doi.org/10.1080/0028825X.1993.10419488

  5. Campbell, D. (1907) Studies on Some Javanese Anthocerotaceae. Annals of Botany, 21, 467–486. https://doi.org/10.1093/oxfordjournals.aob.a089148

  6. Carter B.E., Larraín, J., Manukjanová, A., Shaw, B., Shaw, A.J., Heinrichs, J., de Lange, P., Suleiman, M., Thouvenot, L., & von Konrat, M. (2017) Species delimitation and biogeography of a southern hemisphere liverwort clade, Frullania subgenus Microfrullania (Frullaniaceae, Marchantiophyta). Molecular Phylogenetics and Evolution 107: 16–26.  https://doi.org/10.1016/j.ympev.2016.10.002

  7. Dawes, T.N., Villarreal, J.C., Szövényi, P., Bisang, I., Li, F.-W., Hauser, D.A., Quandt, D., Cargill, D.C., & Forrest, L.L. (2020) Extremely low genetic diversity in the European clade of the model bryophyte Anthoceros agrestis. Plant Systematics and Evolution 306: 49.  https://doi.org/10.1007/s00606-020-01676-6

  8. de Queiroz, A. (2005) The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology and Evolution 20: 68–73.  https://doi.org/10.1016/j.tree.2004.11.006

  9. Duff, R.J., Villarreal, J.C., Cargill, D.C., & Renzaglia, K.S. (2007) Progress and challenges in hornwort phylogenetic reconstruction. The Bryologist 110: 214–243.  https://doi.org/10.1639/0007-2745(2007)110[214:PACTDA]2.0.CO;2

  10. Drummond, A.J., Ho, S.Y., Phillips, M.J., & Rambaut, A. (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.  https://doi.org/10.1371/journal.pbio.0040088

  11. Drummond, A.J., Suchard, M.A., Xie, D., & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.  https://doi.org/10.1093/molbev/mss075

  12. Emerson, B.C. & Patiño, J. (2018) Anagenesis, Cladogenesis, and Speciation on Islands. Trends in Ecology and Evolution 33: 488–491.  https://doi.org/10.1016/j.tree.2018.04.006

  13. Erixon, P., Svennblad, B., Britton, T. & Oxelman, B. (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematic Biology 52: 665–673.  https://doi.org/10.1080/10635150390235485

  14. Estrella, M., Buerki, S., Vasconcelos, T., Lucas, E.J., & Forest, F. (2019) The role of Antarctica in biogeographic reconstruction: A point of view. International Journal of Plant Science 180: 63–71.  https://doi.org/10.1086/700581

  15. Frey, W., Stech, M., & Meißner, K. (1999) Chloroplast DNA-relationship in palaeoaustral Lopidium concinnum (Hypopterygiaceae, Musci). An example of steno-evolution in mosses. Studies in austral temperate rain forest bryophytes 2. Plant Systematics and Evolution 218: 67–75.  https://doi.org/10.1007/BF01087035

  16. Gass, I. (1967) Geochronology of the Tristan da Cunha Group of Islands. Geological Magazine 104: 160–170.  https://doi.org/10.1017/S0016756800040620

  17. Gasson, E.G.W. & Keisling, B.A. (2020) The Antarctic Ice Sheet: A Paleoclimate Modeling Perspective. Oceanography 33: 90–100. https://doi.org/10.5670/oceanog.2020.208

  18. Graham, A. (1987) Miocene Communities and Paleoenvironments of Southern Costa Rica. American Journal of Botany 74: 1501–1518.  https://doi.org/10.1002/j.1537-2197.1987.tb12142.x

  19. Gottsche, C., Lindenberg, J. & Nees, C. (1846). Synopsis hepaticarum, fasc. 4. Meissner, Hamburg, 465–624.

  20. Gottsche, C.M. (1964). Hepaticae, in: Triana, J., Planchon, J.. (Eds.), Prodromus Florae Novo-Granatensis Ou Énumeration Des Plantes de La Nouvelle-Grenade Avec Description Des Espèces Nouvelles. Annales des sciences naturelles, Botanique, 95–198.

  21. Hasegawa, J. (1988) A proposal for a new system of the Anthocerotae, with a revision of the genera. Journal of the Hattori Botanical Laboratory 74: 105–119.

  22. Hasegawa, J. (1994) New classification of Anthocerotae. Journal of the Hattori Botanical Laboratory 76: 21–34.

  23. Hasegawa, J. (2001) A new species of Phaeoceros with remarkable spore features from Southeast Asia. Bryological Research 7: 373–377.

  24. Hässel de Menéndez, G.G. (1989) Las especies de Phaeoceros (Anthocerotophyta) de América del Norte, Sud y Central; la ornamentación de sus esporas y taxonomía. Candollea 44: 715–739.

  25. Heinrichs, J., Hentschel, J., Feldberg, K., Bombosch, A., & Schneider, H. (2009) Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. Journal of Systematics and Evolution 47: 497–508.  https://doi.org/10.1111/j.1759-6831.2009.00028.x

  26. Hill, R.S. (2001) Biogeography, evolution and palaeoecology of Nothofagus (Nothofagaceae): the contribution of the fossil record. Australian Journal of Botany 49: 321–332.  https://doi.org/10.1071/BT00026

  27. Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermúdez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D.D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010) Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science 330: 927–931.  https://doi.org/10.1126/science.1194585

  28. Ibarra-Morales A., Valencia-Avalos, S., & Muñiz-Díaz De León, M.E. (2020) Anatomy and Morphology of Phaeomegaceros fimbriatus (Gottsche) R.J.Duff, J.C.Villarreal, Cargill & Renzaglia (Anthocerotophyta), a Novel Record for North America. Cryptogamie, Bryologie 41: 219–228.  https://doi.org/10.5252/cryptogamie-bryologie2020v41a17

  29. Knapp, M., Stöckler, K., Havell, D., Delsuc, F. Sebastiani, F., & Lockhart, P.J. (2005) Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech). PLoS Biol. 3: e14.  https://doi.org/10.1371/journal.pbio.0030014

  30. Korall, P. & Pryer, K.M. (2014) Global biogeography of scaly tree ferns (Cyatheaceae): Evidence for Gondwanan vicariance and limited transoceanic dispersal. Journal of Biogeography 41: 402–413.  https://doi.org/10.1111/jbi.12222

  31. Laenen, B., Shaw, B., Schneider, H., Goffinet, B., Paradis, E., Désamoré, A., Heinrichs, J., Villarreal, J.C., Gradstein, S.R., McDaniel, S.F., Long, D.G., Forrest, L.L., Hollingsworth, M.L., Crandall-Stotler, B., Davis, E.C., Engel, J., von Konrat, M., Cooper, E.D., Patiño, J., Cox, C.J., Vanderpoorten, A. & Shaw, A.J. (2014) Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications 5: 5134.  https://doi.org/10.1038/ncomms6134

  32. Landis, M.J., Matzke, N.J., Moore, B.R., & Huelsenbeck, J.P. (2013) Bayesian analysis of biogeography when the number of areas is large. Systematic Biology 62: 789–804.  https://doi.org/10.1093/sysbio/syt040

  33. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Molecular Biology and Evolution 34: 772–773.  https://doi.org/10.1093/molbev/msw260

  34. Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hedenäs, L., Hemming, S.R., Johnson, J.V., Leng, M.J., Machlus, M.L., Newton, A.E., Ian Raine, J., Willenbring, J.K., Williams, M., & Wolfe, A.P. (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences U.S.A. 105: 10676–10680. https://doi.org/10.1073/pnas.0802501105

  35. Linder, H.P. & Crisp, M.D. (1995) Nothofagus and pacific biogeography. Cladistics 11: 5–32.  https://doi.org/10.1111/j.1096-0031.1995.tb00002.x

  36. Macphail, M., Carpenter, R., & Hill, R. (2022) Formal recognition of extinct Antarctic polar forests as a distinct biome. Antarctic Science, 34(4): 343–347.  https://doi.org/10.1017/S0954102022000190

  37. Mao, K., Milne, R.I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R.R., & Renner, S.S. (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences U.S.A. 109: 7793–7798.  https://doi.org/10.1073/pnas.1114319109

  38. Markgraf, V., McGlone, M. & Hope, G. (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems: a southern perspective. Trends in Ecology and Evolution 10: 143–147.  https://doi.org/10.1016/S0169-5347(00)89023-0

  39. Matzke, N.J. (2013) Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5: 242–248.  https://doi.org/10.21425/F5FBG19694

  40. Matzke, N.J. (2014) Model selection in historical biogeography reveals that founder-events Speciation is a crucial process in island clades. Systematic Biology 63: 951–970.  https://doi.org/10.1093/sysbio/syu056

  41. McDaniel, S.F. & Shaw, A.J. (2003) Phylogeographic structure and cryptic speciation in the trans–Antartic moss Pyrrhobryum mnioides. Evolution 57: 205–215.  https://doi.org/10.1111/j.0014-3820.2003.tb00256.x

  42. Meißner, K., Frahm, J.-P., Stech, M. & Frey, W. (1998) Molecular divergence patterns and infrageneric relationship of Monoclea (Monocleales, Hepaticae). Studies in austral temperate rain forest bryophytes 1. Nova Hedwigia 67: 289–302.  https://doi.org/10.1127/nova.hedwigia/67/1998/289

  43. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees” in Proceedings of the Gateway Computing Environments Workshop (GCE). https://doi.org/10.1145/2335755.2335836

  44. Minh, B. Q., Hahn, M.W. & Lanfear, R. (2020) New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37: 2727–2733.  https://doi.org/10.1093/molbev/msaa106

  45. Mitten, W. (1868) List of Samoan mosses in Journal of the Linnean Society. Botany 10: 174–175.  https://doi.org/10.1111/j.1095-8339.1868.tb02029.x

  46. Mitten, W. (1884). Hepaticae, in: Report on the Scientific Results of the Voyage of H.M.S. Challenger during the Years 1873-76 : Under the Command of Captain George S. Nares, R.N., F.R.S. and Captain Frank Turle Thomson, R.N./ Prepared under the Superintendence of Sir C. Wyville Thomson. Publisher by Order of the Maiesty’s Gobernment, Edinburgh, 176–178.  https://doi.org/10.5962/bhl.title.6513

  47. Morero R.E., Deanna, R., Barboza, G.E. & Barrington, D.S. (2019) Historical biogeography of the fern genus Polystichum (Dryopteridaceae) in Austral South America. Molecular Phylogenetics and Evolution 137: 168–189.  https://doi.org/10.1016/j.ympev.2019.05.004

  48. Muñoz, J., Felicísimo, Á.M., Cabezas, F., Burgaz, A.R. & Martínez, I. (2004) Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304: 1144–1147.  https://doi.org/10.1126/science.1095210

  49. Newton, M. (1983) Cytology of the Hepaticae and Anthocerotae, Pp. 117–148 in New Manual of Bryology, vol. 1., ed. R. M. Schuster. Hattori Botanical Laboratory, Nichinan, Japan.

  50. Ortiz-Jaureguizar, E. & Cladera, G.A. (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments 66: 498–532.  https://doi.org/10.1016/j.jaridenv.2006.01.007

  51. Parrish, J.T. (1989) Gondwanan paleogeography and paleoclimatology, Pp. 15–26 in Antarctic paleobiology: its role in the reconstruction of Gondwana, eds. T. N. Taylor and E. L. Taylor. Springer-Verlag, New York.  https://doi.org/10.1007/978-1-4612-3238-4_2

  52. Patiño, J., Carine, M., Fernández‐Palacios, J.M., Otto, R., Schaefer, H. & Vanderpoorten, A. (2014) The anagenetic world of spore‐producing land plants. New Phytologist 201: 305–311.  https://doi.org/10.1111/nph.12480

  53. Pfeiffer, T. (2000) Relationship and divergence patterns in Hypopterygium rotulatum’ s.l. (Hypopterygiaceae, Bryopsida) inferred from trnL intron sequences. Studies in austral temperate rain forest bryophytes 7. Edinburgh Journal of Botany 57: 291–307.  https://doi.org/10.1017/S0960428600000226

  54. Pisa, S., Biersma, E.M., Convey, P., Patiño, J., Vanderpoorten, A., Werner, O., & Ros, R.M. (2014) The cosmopolitan moss Bryum argenteum in Antarctica: recent colonisation or in situ survival? Polar Biology 37: 1469–1477.  https://doi.org/10.1007/s00300-014-1537-3

  55. Pokorny, L., Oliván, G. & Shaw, A.J. (2011) Phylogeographic Patterns in Two Southern Hemisphere Species of Calyptrochaeta (Daltoniaceae, Bryophyta). Systematic Botany 36: 542–553.  https://doi.org/10.1600/036364411X583529

  56. Proskauer, J. (1957) Anthocerotales, Pp. 19 in Hepaticae from Juan Fernández Islands, ed. S. W. Arnell. Arkiv für Botanik 4.

  57. Pross, J., Contreras, L., Bijl, P., Greenwood, D.R., Bohaty, S.M., Schouten, S., Bendle, J.A., Röhl, U., Tauxe, L., Raine, J.I., Huck, C.E., van de Flierdt, T., Jamieson, S.S.R., Stickley, C.E., van de Schootbrugge, B., Escutia, C., Brinkhuis, H. & Integrated Ocean Drilling Program Expedition 318 Scientists. (2012) Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488: 73–77.  https://doi.org/10.1038/nature11300

  58. Quandt, D., Frey, W. & Frahm, J.-P. (2001) Patterns of molecular divergence within the palaeoaustral genus Weymouthia Broth. (Lembophyllaceae, Bryopsida). Studies in austral temperate rainforest bryophytes 11. Journal of Bryology 23: 305–311.  https://doi.org/10.1179/jbr.2001.23.4.305

  59. Quiroga, M.P. & Premoli, A.C. (2010) Genetic structure of Podocarpus nubigena (Podocarpaceae) provides evidence of Quaternary and ancient historical events. Palaeogeography, Palaeoclimatology, Palaeoecology 285: 186–193.  https://doi.org/10.1016/j.palaeo.2009.11.010

  60. Rambaut, A. (2014) FigTree v1.4.2. Available from. http://tree.bio.ed.ac.uk/software/figtree/

  61. Rambaut, A., Suchard, M.A., Xie, W. & Drummond, A.J. (2014) TRACER v.1.6, Available from. http://tree.bio.ed.ac.uk/software/tracer.

  62. Renner, S.S., Foreman, D.B. & Murray, D. (2000) Timing transantarctic disjunctions in the Atherospermataceae (Laurales): evidence from coding and noncoding chloroplast sequences. Systematic Biology 49: 579–591.  https://doi.org/10.1080/10635159950127402

  63. Roads, E., Longton, R. E. & Convey, P. (2014) Millennial timescale regeneration in a moss from Antarctica. Current Biology 24: 222–223.  https://doi.org/10.1016/j.cub.2014.01.053

  64. Ronquist, F. (1997) Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46: 195–203.  https://doi.org/10.1093/sysbio/46.1.195

  65. Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes3: Bayesian phylogenetic inference undermixed models. Bioinformatics 19: 1572–1574.  https://doi.org/10.1093/bioinformatics/btg180

  66. Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.  https://doi.org/10.1093/sysbio/sys029

  67. Sanmartín, I. & Ronquist, F. (2004) Southern Hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology 53: 216–243. https://doi.org/10.1080/10635150490423430

  68. Sanmartín, I., Wanntorp, L. & Winkworth, R.C. (2007) West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting. Journal of Biogeography 34: 398–416.  https://doi.org/10.1111/j.1365-2699.2006.01655.x

  69. Sauquet, H., Ho, S.Y., Gandolfo, M.A., Jordan, G.J., Wilf, P., Cantrill, D.J., Bayly, M.J., Bromham, L., Brown, G.K., Carpenter R.J., Lee, D.M., Murphy, D.J., Sniderman J.M.K. & Udovicic, F. (2012) Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Systematic Biology 61: 289‒313.  https://doi.org/10.1093/sysbio/syr116

  70. Schofield, W. & Crum, H. (1972) Disjunctions in bryophytes. Annals of the Missouri Botanical Garden 59: 174–202.  https://doi.org/10.2307/2394752

  71. Setoguchi, H., Ono, M., Doi, Y., Koyama, H. & Tsuda, M. (1997) Molecular phylogeny of Nothofagus (Nothofagaceae) based on the atpB-rbcL intergenic spacer of the chloroplast DNA. Journal of Plant Research 110: 469–484.  https://doi.org/10.1007/BF02506808

  72. Sérsic, A.N., Cosacov, A., Cocucci, A.A., Johnson, L.A., Pozner, R., Avila, L.J., Sites Jr., J.W. & Morando, M. (2011) Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biological Journal of the Linnean Society 103: 475–494.  https://doi.org/10.1111/j.1095-8312.2011.01656.x

  73. Söderström, L., Hagborg, A., von Konrat, M., Bartholomew-Began, S., Bell, D., Briscoe, L., Brown, E., Cargill, D.C., da Costa, D.P., Crandall-Stotler, B.J., Cooper, E., Dauphin, G., Engel, J., Feldberg, K., Glenny, D., Gradstein, S.R., He, X., Hentschel, J., Ilkiu-Borges, A.L., Katagiri, T., Konstantinova, N.A., Larraín, J., Long, D., Nebel, M., Pócs, T., Puche, F., Reiner-Drehwald, E., Renner, M., Sass-Gyarmati, A., Schäfer-Verwimp, A., Segarra-Moragues, J., Stotler, R.E., Sukkharak, P., Thiers, B., Uribe, J., Váňa, J., Wigginton, M., Zhang, L. & Zhu, R.L. (2016) World checklist of hornworts and liverworts. PhytoKeys 59: 1–828s.  https://doi.org/10.3897/phytokeys.59.6261

  74. Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 22: 2688–2690.  https://doi.org/10.1093/bioinformatics/btl446

  75. Stech, M., Pfeiffer, T. & Frey, W. (2002) Chloroplast DNA relationship in palaeoaustral Polytrichadelphus magellanicus (Hedw.) Mitt. (Polytrichaceae, Bryopsida). Studies in austral temperate rain forest bryophytes 12. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 124: 217–226.  https://doi.org/10.1127/0006-8152/2002/0124-0217

  76. Stephani, F. (1911) Botanische Ergebnisse der schwedischen Expedition nach Patagonien und dem Feuerlande 1907–1909. II. Die Lebermoose. Kungliga Svenska Vetenskapsakade- miens Handlingar (n.ser.) 46 (9): 1–92

  77. Stephani, F. (1916) Species hepaticarum 5. George & Cie, Genève & Bale. Missouri Botanical Garden 833–1008.  https://doi.org/10.5962/bhl.title.95494

  78. Stuessy, T. F., Foland, K.A., Sutter, J.F., Sanders, R.W. & Silva, O.M. (1984) Botanical and Geological Significance of Potassium-Argon Dates from the Juan Fernández Islands. Science 225: 49–51.  https://doi.org/10.1126/science.225.4657.49

  79. Spruce, R. (1885): Hepaticae of the Amazon and the Andes of Peru and Ecuador. Transactions and proceedings of the Botanical Society of Edinburgh. 15: 1–588.

  80. Sun, Y., He, X. & Glenny, D. (2014) Transantarctic disjunctions in Schistochilaceae (Marchantiophyta) explained by early extinction events, post-Gondwanan radiations and palaeoclimatic changes. Molecular Phylogenetics and Evolution 76: 189–201.  https://doi.org/10.1016/j.ympev.2014.03.018

  81. Swenson, U., Hill, R. & McLoughlin, S. (2001) Biogeography of Nothofagus supports the sequence of Gondwana break-up. Taxon 50: 1025–1041.  https://doi.org/10.2307/1224719

  82. Swofford, D.L. (2001) PAUP*: phylogenetic analysis using parsimony, version 4.0. Smithsonian Institution, Washington, D.C.

  83. Truswell, E. M. & Macphail, M. K. (2009) Polar forests on the edge of extinction: what does the fossil pollen and spore evidence from East Antarctica say? Australian Systematic Botany 22: 57–106. https://doi.org/10.1071/SB08046

  84. Vanderpoorten, A., Gradstein., S.R., Carine, M.A. & Devos, N. (2010) The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biological Reviews of the Cambridge Philosophical Society 85: 471–487.  https://doi.org/10.1111/j.1469-185X.2009.00111.x

  85. Vanderpoorten, A., Devos, N., Goffinet, B., Hardy, O.J. & Shaw, A.J. (2008) The barriers to oceanic island radiation in bryophytes: insights from the phylogeography of the moss Grimmia montana. Journal of Biogeography 35: 654–663.  https://doi.org/10.1111/j.1365-2699.2007.01802.x

  86. Váňa, J. & Engel, J. (2013) The liverworts and hornworts of the Tristan da Cunha group of islands in the South Atlantic Ocean. Memoirs of The New York Botanical Garden 105: i–x, 1–137.

  87. Vasconcelos, T.N.C., Proença, C.E.B., Ahmad, B., Aguilar, D.S., Aguilar, R., Amorim, B.S., Campbell, K., Costa, I.R., De-Carvalho, P.S., Faria, J.E.Q., Giaretta, A., Kooij, P.W., Lima, D.F., Mazine, F.F., Peguero, B., Prenner, G., Santos, M.F., Soewarto, J., Wingler, A. & Lucas, E.J. (2017) Myrteae phylogeny, calibration, biogeography and diversification patterns: increased understanding in the most species rich tribe of Myrtaceae. Molecular Phylogenetic and Evolution 109:113–137.  https://doi.org/10.1016/j.ympev.2017.01.002

  88. Villarreal, J.C. & Renzaglia, K.S. (2006) Sporophyte structure in the neotropical hornwort Phaeomegaceros fimbriatus: implications for phylogeny, taxonomy and character evolution. International Journal of Plant Sciences 167: 413–427.  https://doi.org/10.1086/500995

  89. Villarreal, J.C., Cargill, D.C., Hagborg, A., Söderström, L., & Renzaglia, K.S. (2010a) A synthesis of hornwort diversity: Patterns, causes and future work. Phytotaxa 9: 150–166.  https://doi.org/10.11646/phytotaxa.9.1.8

  90. Villarreal, J.C., Cargill, D.C. & Goffinet, B. (2010b) Phaeomegaceros squamuliger subspecies hasselii (Dendrocerotaceae, Anthocerotophyta), a new taxon from the Southern Hemisphere. Nova Hedwigia 91: 349–360.  https://doi.org/10.1127/0029-5035/2010/0091-0349

  91. Villarreal, J.C., Goffinet, B., Duff, R.J. & Cargill, D.C. (2010c) Phylogenetic delineation of the genera Nothoceros and Megaceros. The Bryologist 113: 106–113.  https://doi.org/10.1639/0007-2745-113.1.106

  92. Villarreal, J.C. & Renner, S.S. (2013) Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evolutionary Biology 13: 239.  https://doi.org/10.1186/1471-2148-13-239

  93. Villarreal, J.C. & Renner, S.S. (2014) A review of molecular clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros. Molecular Phylogenetics and Evolution 78: 25–35.  https://doi.org/10.1016/j.ympev.2014.04.014

  94. Villarreal, J.C., Cusimano, N. & Renner, S.S. (2015) Biogeography and diversification rates in hornworts: the limitations of diversification modelling. Taxon 64: 229–238.  https://doi.org/10.12705/642.7

  95. Villarreal, J.C., Duckett, J.G. & Pressel, S. (2017) Morphology, ultrastructure and phylogenetic affinities of the single-island endemic Anthoceros cristatus Steph. (Ascension Island). Journal of Bryology 39: 226–234.  https://doi.org/10.1080/03736687.2017.1302153

  96. Warnock, R.C.M., Yang, Z.H. & Donoghue, P.C.J. (2012) Exploring uncertainty in the calibration of the molecular clock. Biology Letters 8: 156–159.  https://doi.org/10.1098/rsbl.2011.0710

  97. Yu, Y., Harris, A.J., Blair, C. & He, X.J. (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87: 46–49.  https://doi.org/10.1016/j.ympev.2015.03.008

  98. Zapata, A., Rivera-Rondón, C.A., Valoyes, D., Muñoz-López, C.L., Mejía-Rocha, M., Catalan, J., 2021. Páramo lakes of Colombia: An overview of their geographical distribution and physicochemical characteristics. Water 13: 1–16.  https://doi.org/10.3390/w13162175