Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-12-30
Page range: 176–187
Abstract views: 498
PDF downloaded: 1

Agricultural management, bedrock, and vulnerability of sexual reproduction to climate change affect the occurrence of a European near-endemic moss

Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
Agriculture Drepanocladus lycopodioides Distribution Frequency changes Sporophyte frequency Weather

Abstract

We investigated whether the European near-endemic moss Drepanocladus lycopodioides has declined in its core distribution area in the southern Baltic Sea region and explored potential explanations for this. First, we re-visited sites with documented records from 1854 to 1957 in the Stockholm archipelago and nearby mainland in southern Sweden. Second, we compared the numbers and distributions of Swedish occurrences, their habitats, and substrates up to 1950 (289 herbarium records), and from 1951 onwards (347) using different map layers. Third, we explored whether inter-annual variation in reproductive performance was related to moisture conditions at five sites on an island in the Stockholm archipelago during nine years. We estimated moisture conditions based on precipitation data and dry days during the time when fertilization occurs in the year prior to sporophyte maturation. Drepanocladus lycopodioides has strongly decreased in intensively managed agricultural landscapes but remains frequent in natural or semi-natural habitats on limestone. Sporophyte development varied between years and depended on the weather condition during the fertilization period. Climate forecasts for the study area predict longer dry spells during late spring to late summer, which coincides with the timing of sexual branch initiation and fertilization in the species. We expect that sporophyte production will likely decrease in the future, which will affect the species’ abilities to re-colonize spots where it vanishes during years with poor growth conditions.

Downloads

Download data is not yet available.

References

  1. Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molecular Ecology. 17: 5177–5188.  https://doi.org/10.1111/j.1365-294X.2008.03971.x

  2. Antonsson, H. & Jansson, U. (Eds.) (2011) Jordbruk och skogsbruk i Sverige sedan år 1900 - studier av de areella näringarnas geografi och historia. Kungl. Skogs- och Lantbruksakademien, Stockholm, 512 pp.

  3. Arnell, H.W. (1875) De skandinaviska löfmossornas kalendarium. Uppsala Universitets Årsskrift, Matematik och Naturvetenskap IV 1875: 1–129. https://doi.org/10.5962/bhl.title.63760

  4. Balint, M., Domisch, S., Engelhardt, C.H.M., Haase, P., Lehrian, S., Sauer, J., Theissinger, K., Pauls, S.U. & Nowak, C. (2011) Cryptic biodiversity loss linked to global climate change. Nature Climate Change 1: 313–318.  https://doi.org/10.1038/nclimate1191

  5. Berglöv, G., Asp, M., Berggreen-Clausen, S., Björck, E., Axén Mårtensson, J., Nylén, L., Ohlsson, A., Persson, H. & Sjökvist, E. (2015) Framtidsklimat i Västra Götalands län - enligt RCP-scenarier. Klimatologi 24: 1–68.

  6. Bisang, I., Ehrlén, J. & Hedenäs, L. (2004) Mate limited reproductive success in two dioicous mosses. Oikos 104: 291–298.  https://doi.org/10.1111/j.0030-1299.2004.12853.x

  7. Bisang, I., Ehrlén, J. & Hedenäs, L. (2020) Sex expression and genotypic sex ratio vary with region and environment in the wetland moss Drepanocladus lycopodioides. Botanical Journal of the Linnean Society 192: 421–434.  https://doi.org/10.1093/botlinnean/boz063

  8. Bisang, I., Ehrlén, J., Persson, C. & Hedenäs, L. (2014) Family affiliation, sex ratio and sporophyte frequency in unisexual mosses. Botanical Journal of the Linnean Society 174: 163–172.  https://doi.org/10.1111/boj.12135

  9. Bisang, I. & Hedenäs, L. (2013) Males are not shy in the wetland moss Drepanocladus lycopodioides. International Journal of Plant Science 174: 733–739.  https://doi.org/10.1086/670154

  10. Bisang, I., Lienhard, L. & Bergamini, A. (2021) Three decades of field surveys reveal a decline of the arable bryophyte flora in the Swiss lowlands despite agri-environment schemes. Agriculture, Ecosystems & Environment 313: 107325.  https://doi.org/10.1016/j.agee.2021.107325

  11. Calleja, J.A., Domènech, G., Sáez, L., Lara, F., Garilleti, R. & Albertos, B. (2022) Extinction risk of threatened and non-threatened mosses: Reproductive and ecological patterns. Global Ecology and Conservation 38: e02254.  https://doi.org/10.1016/j.gecco.2022.e02254

  12. Caspari, S., Dürhammer, O., Sauer, M. & Schmidt, C. (2018) Rote Liste und Gesamtartenliste der Moose (Anthocerotophyta, Marchantiophyta und Bryophyta) Deutschlands. Naturschutz und Biologische Vielfalt 70: 361–489.

  13. Ceballos, G., Ehrlich, P.R. & Dirzo, R. (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences 114: E6089–E6096.  https://doi.org/10.1073/pnas.1704949114

  14. Chopra, R.N. (1984) Environmental factors affecting gametangial induction in bryophytes. Journal of the Hattori Botanical Laboratory 55: 99–104.  https://doi.org/10.1111/j.1469-8137.1981.tb02325.x

  15. Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L.G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L.A., Ghazoul, J., Grab, H., Jonsson, M., Karp, D.S., Kennedy, C.M., Kleijn, D., Kremen, C., Landis, D.A., Letourneau, D.K., Marini, L., Poveda, K., Rader, R., Smith, H.G., Tscharntke, T., Andersson, G.K.S., Badenhausser, I., Baensch, S., Bezerra, A.D.M., Bianchi, F.J.J.A.., Boreux, V., Bretagnolle, V., Caballero-Lopez, B., Cavigliasso, P., Ćetković, A., Chacoff, N.P., Classen, A., Cusser, S., da Silva e Silva, F.D., de Groot, G.A., Dudenhöffer, J.H., Ekroos, J., Fijen, T., Franck, P., Freitas, B.M., Garratt, M.P.D., Gratton, C., Hipólito, J., Holzschuh, A., Hunt, L., Iverson, A.L., Jha, S., Keasar, T., Kim, T.N., Kishinevsky, M., Klatt, B.K., Klein, A.-M., Krewenka, K.M., Krishnan, S., Larsen, A.E., Lavigne, C., Liere, H., Maas, B., Mallinger, R.E., Pachon, E.M., Martínez-Salinas, A., Meehan, T.D., Mitchell, M.G.E., Molina, G.A.R., Nesper, M., Nilsson, L., O’Rourke, M.E., Peters, M.K., Plećaš, M., Potts, S.G., Ramos, D. de L., Rosenheim, J.A., Rundlöf, M., Rusch, A., Sáez, A., Scheper, J., Schleuning, M., Schmack, J.M., Sciligo, A.R., Seymour, C., Stanley, D.A., Stewart, R., Stout, J.C., Sutter, L., Takada, M.B., Taki, H., Tamburini, G., Tschumi, M., Viana, B.F., Westphal, C., Willcox, B.K., Wratten, S.D., Yoshioka, A., Zaragoza-Trello, C., Zhang, W., Zou, Y. & Steffan-Dewenter, I. (2019) A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances. 5: eaax0121.  https://doi.org/10.1126/sciadv.aax0121

  16. Ellis, E.C. (2019) Evolution: Biodiversity in the Anthropocene. Current Biology 29: R831–R833.  https://doi.org/10.1016/j.cub.2019.07.073

  17. Emmerson, M., Morales, M.B., Oñate, J.J., Batáry, P., Berendse, F., Liira, J., Aavik, T., Guerrero, I., Bommarco, R., Eggers, S., Pärt, T., Tscharntke, T., Weisser, W. Clement, L. & Bengtsson, J. (2016) How agricultural intensification affects biodiversity and ecosystem services. Advances in Ecological Research 55: 43–97.  https://doi.org/10.1016/bs.aecr.2016.08.005

  18. Fréville, H., McConway, K., Dodd, M. & Silvertown, J. (2007) Prediction of extinction in plants: interaction of extrinsic threats and life history traits. Ecology 88: 2662–2672.  https://doi.org/10.1890/06-1453.1

  19. Goffinet, B. & Shaw, A.J. (Eds.) (2009) Bryophyte biology. Second Edition. (2 ed.). Cambridge University Press, New York, 565 pp.

  20. Gunnarsson, U. & Löfroth, M. (2009) Våtmarksinventeringen – resultat från 25 års inventeringar. Naturvårdsverket Rapport 5925: 1-119.

  21. Habel, J.C., Gossner, M.M. & Schmitt, T. (2020) What makes a species a priority for nature conservation? Animal Conservation 23: 28–35.  https://doi.org/10.1111/acv.12512

  22. Habel, J.C., Rasche, L., Schneider, U.A., Engler, J.O., Schmid, E., Rödder, D., Meyer, S.T., Trapp, N., Sos del Diego, R., Eggermont, H., Lens, L. & Stork, N.E. (2019) Final countdown for biodiversity hotspots. Conservation Letters 12: e12668.  https://doi.org/10.1111/conl.12668

  23. Habel, J.C. & Schmitt, T. (2018) Vanishing of the common species: Empty habitats and the role of genetic diversity. Biological Conservation 218: 211–216.  https://doi.org/10.1016/j.biocon.2017.12.018

  24. Habel, J.C., Ulrich, W., Biburger, N., Seibold, S. & Schmitt, T. (2019) Agricultural intensification drives butterfly decline. Insect Conservation and Diversity 12: 289–295.  https://doi.org/10.1111/icad.12343

  25. Hedenäs, L. (1992) The genus Pseudocalliergon in northern Europe. Lindbergia 16: 80–99.

  26. Hedenäs, L. (2019) On the frequency of northern and mountain genetic variants of widespread species: essential biodiversity information in a warmer world. Botanical Journal of the Linnean Society 191: 440–474.  https://doi.org/10.1093/botlinnean/boz061

  27. Hedenäs, L. & Bisang, I. (2015) Infraspecific diversity in a spore-dispersed species with limited distribution range. Systematics and Biodiversity 13: 17–27.  https://doi.org/10.1080/14772000.2014.968234

  28. Hedenäs, L. & Bisang, I. (2019) Episodic but ample sporophyte production in the moss Drepanocladus turgescens (Bryophyta: Amblystegiaceae) in SE Sweden. Acta Musei Silesiae, Scientiae Naturales 68: 83–94.  https://doi.org/10.2478/cszma-2019-0009

  29. Hedenäs, L., Bisang, I. & Schnyder, N. (2003) The distribution of bryophytes in Switzerland and in Liechtenstein IV. Hamatocaulis and Pseudocalliergon. Botanica Helvetica 113: 111–123.  https://doi.org/10.1007/S00035-003-0677-9

  30. Hodgetts, N., Blockeel, T., Konstantinova, N., Lönnell, N., Papp, B., Schnyder, N., Schröck, C., Untereiner, A. & Vanderpoorten, A. (2019a) Drepanocladus lycopodioides. The IUCN Red List of Threatened Species. Available from: https://www.iucnredlist.org/species/88278428/88382536 (accessed 25 August 2022)

  31. Hodgetts, N., Cálix, M., Englefield, E., Fettes, N., Garcia-Criado, M., Patin, L., Nieto, A., Bergamini, A., Bisang, I., Baisheva, E., Campisi, P., Cogoni, A., Hallingbäck, T., Konstantinova, N., Lockhart, N., Sabovljevic, M., Schnyder, N., Schröck, C., Sérgio, C., Sim Sim, M., Vrba, J., Ferreira, C.C.., Afonina, O., Blockeel, T., Blom, H., Caspari, S., Gabriel, R., Garcia, C., Garilleti, R., Mancebo, J.G., Goldberg, I., Hedenäs, L., Holyoak, D., Hugonnot, V., Huttunen, S., Ignatov, M., Ignatova, E., Infante, M., Juutinen, R., Kiebacher, T., Köckinger, H., Kučera, J., Lönnell, N., Lüth, M., Martins, A., Maslovsky, O., Papp, B., Porley, R., Rothero, G., Söderström, L., Ştefǎnuţ, S., Syrjänen, K., Untereiner, A., Váňa Ɨ, J., Vanderpoorten, A., Vellak, K., Aleffi, M., Bates, J., Bell, N., Brugués, M., Cronberg, N., Denyer, J., Duckett, J., During, H.J., Enroth, J., Fedosov, V., Flatberg, K.-I., Ganeva, A., Gorski, P., Gunnarsson, U., Hassel, K., Hespanhol, H., Hill, M., Hodd, R., Hylander, K., Ingerpuu, N., Laaka-Lindberg, S., Lara, F., Mazimpaka, V., Mežaka, A., Müller, F., Orgaz, J.D., Patiño, J., Pilkington, S., Puche, F., Ros, R.M., Rumsey, F., Segarra-Moragues, J.G., Seneca, A., Stebel, A., Virtanen, R., Weibull, H., Wilbraham, J. & Żarnowiec, J. (2019b) A miniature world in decline: European Red List of Mosses, Liverworts and Hornworts. International Union for Conservation of Nature (IUCN), Brussels, 86 pp. https://doi.org/10.2305/IUCN.CH.2019.ERL.2.en

  32. Hodgetts, N. & Lockhart, N. (2020) Checklist and country status of European bryophytes – update 2020. Irish Wildlife Manuals 123: 1–214.

  33. Högström, S. (1997) Habitats and increase of Sphagnum in the Baltic Sea island Gotland, Sweden. Lindbergia 22: 69–74.

  34. Humphreys, A.M., Govaerts, R., Ficinski, S.Z., Nic Lughadha, E. & Vorontsova, M.S. (2019) Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nature Ecology & Evolution 3: 1043–1047.  https://doi.org/10.1038/s41559-019-0906-2

  35. Kiebacher, T., Meier, M., Steffen, J., Bergamini, A., Schnyder, N. & Hofmann, H. (in press [2022]) Rote Liste Moose. Gefährdete Arten der Schweiz. Umwelt-Vollzug.

  36. Königsson, L.-K. (1968) The Holocene history of the Great Alvar of Öland. Acta Phytogeographica Suecica 55: 1–172. https://doi.org/10.2307/3543799

  37. Le Berre, M., Noble, V., Pires, M., Médail, F. & Diadema, K. (2019) How to hierarchise species to determine priorities for conservation action? A critical analysis. Biodiversity and Conservation 28: 3051–3071.  https://doi.org/10.1007/s10531-019-01820-w

  38. Lönnell, N. & Hylander, K. (2018) Calcicolous plants colonize limed mires after long‐distance dispersal. Journal of Biogeography 45: 885–894.  https://doi.org/10.1111/jbi.13180

  39. Lönnell, N., Jonsson, B.G. & Hylander, K. (2014) Production of diaspores at the landscape level regulates local colonization: an experiment with a spore‐dispersed moss. Ecography 37: 591-598.  https://doi.org/10.1111/j.1600-0587.2013.00530.x

  40. Maciel-Silva, A.S. & Marques Válio, I.F. (2011) Reproductive phenology of bryophytes in tropical rain forests: the sexes never sleep. Bryologist 114: 708–719.  https://doi.org/10.1639/0007-2745-114.4.708

  41. Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858.  https://doi.org/10.1038/35002501

  42. Patiño, J., Bisang, I., Goffinet, B., Hedenäs, L., McDaniel, S., Pressel, S., Stech, M., Ah-Peng, C., Bergamini, A., Caners, R.T., Cargill, D.C., Cronberg, N., Duckett, J., Eppley, S., Fenton, N.J., Fisher, K., González-Mancebo, J., Hasebe, M., Heinrichs, J., Hylander, K., Ignatov, M.S., Martínez-Abaigar, J., Medina, N.G., Medina, R., Quandt, D., Rensing, S.A., Renzaglia, K., Renner, M., Ros, R.M., Schäfer-Verwimp, A., Villarreal, J.C. & Vanderpoorten, A. (2022) Unveiling the nature of a miniature world: a horizon scan of fundamental questions in bryology. Journal of Bryology 44: 1–34.  https://doi.org/10.1080/03736687.2022.2054615

  43. Pereira, M.R., Dambros, C.S. & Zartman, C.E. (2016) Prezygotic resource-allocation dynamics and reproductive trade-offs in Calymperaceae (Bryophyta). American Journal of Botany 103: 1838–1846.  https://doi.org/10.3732/ajb.1600240

  44. Persson, G., Asp, M., Berggreen-Clausen, S., Berglöv, G., Björck, E., Axén Mårtensson, J., Nylén, L., Ohlsson, A., Persson, H. & Sjökvist, E. (2015a) Framtidsklimat i Gotlands län - enligt RCP-scenarier. Klimatologi 31: 1–61.

  45. Persson, G., Asp, M., Berggreen-Clausen, S., Berglöv, G., Björck, E., Axén Mårtensson, J., Nylén, L., Ohlsson, A., Persson, H. & Sjökvist, E. (2015b) Framtidsklimat i Kalmar län - enligt RCP-scenarier. Klimatologi 26: 1–67.

  46. Pettersson, B. (1958) Dynamik och konstans i Gotlands flora och vegetation. Acta Phytogeographica Suecica 40: 1–288.

  47. Rydgren, K., Cronberg, N. & Økland, R.H. (2006) Factors influencing reproductive success in the clonal moss, Hylocomium splendens. Oecologia 147: 445–454.  https://doi.org/10.1007/s00442-005-0290-2

  48. Sage, R.F. (2020) Global change biology: A primer. Global Change Biology 26: 3–30.  https://doi.org/10.1111/gcb.14893

  49. Sjögren, E. (1995) Changes in the epilithic and epiphytic cover in two deciduous forest areas on the island of Öland (Sweden) - a comparison between 1958–1962 and 1988–1990. Studies in Plant Ecology 19: 1–106.

  50. Šoltés, R., Kubinská, A. & Janovicová, K. (2002) Extinction risk to the bryophytes in Slovakia, reasons and evaluation. Portugaliae Acta Biologica 20: 57–63.

  51. Stark, L.R. (2002) Phenology and its repercussions on the reproductive ecology of mosses. The Bryologist 105: 204–218.  https://doi.org/10.1639/0007-2745(2002)105[0204:PAIROT]2.0.CO;2

  52. Stark, L.R. (2005) Phenology of patch hydratation, patch temperature and sexual reproductive output over a four-year period in the desert moss Crossidium crassinerve. Journal of Bryology 27: 231–240.  https://doi.org/10.1179/174328205X69977

  53. Stark, L.R. (2001) Widespread sporophyte abortion following summer rains in Mojave desert populations of Grimmia orbicularis. Bryologist 104: 115–125.  https://doi.org/10.1639/0007-2745(2001)104[0115:WSAFSR]2.0.CO;2

  54. Stokes, L.D. (2018) Why conserving species in the wild still matters. Biodiversity and Conservation 27: 1539–1544.  https://doi.org/10.1007/s10531-018-1509-y

  55. Sundberg, S. (2002) Sporophyte production and spore dispersal phenology in Sphagnum: the importance of summer moisture and patch characteristics. Canadian Journal of Botany 80: 543–556.  https://doi.org/10.1139/b02-060

  56. TIBCO_Software_Inc. (2018) STATISTICA (data analysis software system), version 13. [https://www.tibco.com/]

  57. Tuba, Z., Slack, N.G. & Stark, L.R. (Eds.) (2011) Bryophyte Ecology and Climate Change. Cambridge University Press, Cambridge, 506 pp. https://doi.org/10.1017/CBO9780511779701