Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-05-22
Page range: 182-192
Abstract views: 2
PDF downloaded: 1

The water absorption capacity of 21 Sphagnum species

Bryology Laboratory; School of Life Sciences; East China Normal University; Shanghai 200241; China
Bryology Laboratory; School of Life Sciences; East China Normal University; Shanghai 200241; China
School of Life Science; Guizhou Normal University; Guiyang; Guizhou 550025; China
Bryology Laboratory; School of Life Sciences; East China Normal University; Shanghai 200241; China
Bryology Laboratory; School of Life Sciences; East China Normal University; Shanghai 200241; China
Bryology Laboratory; School of Life Sciences; East China Normal University; Shanghai 200241; China
Bryology Laboratory; School of Life Sciences; East China Normal University; Shanghai 200241; China
China hyalocyst peat moss pendent branch spreading branch water absorption capacity

Abstract

Sphagnum moss (peat moss) is the dominant land plant in peatlands, and it plays an essential role in peatland ecosystems because its remarkable water-holding capacity helps to conserve water resources and maintain the anoxic environment of peatlands. Sphagnum moss exhibits a super ability to absorb water. However, the water absorption capacity of different species and different parts of the same species is not well understood. In this study, we measured the short-term and saturated water absorption of 21 Sphagnum species from China. The results showed that the water absorption capacity of the investigated peat mosses was much higher than that of other bryophytes. Sphagnum imbricatum had the highest saturated water absorption capacity (about 44 times its dry weight), while the peat moss with the lowest saturated water absorption was Sphagnum flexuosum (about 19 times its dry weight). In addition, we determined the relative volume of hyalocysts of the spreading and pendent branch leaves of 18 Sphagnum species and further measured the water absorption capacity of the pendent branch, spreading branch, and stem of six of them. The results revealed that both pendent and spreading branches had strong water absorption capacity and were the primary water-absorbing parts of peat mosses. The water-absorbing capacity of different Sphagnum species was linearly related to the volume of hyalocysts. The results provide an essential scientific basis for selecting high-quality germplasm resources of peat moss.

 

Downloads

Download data is not yet available.

References

  1. Andrus, R.E. (1986) Some aspects of Sphagnum ecology. Canadian Journal of Botany 64 (2): 416–426. https://doi.org/10.1139/b86-057
  2. Beike, A.K., Spagnuolo, V., Lüth, V., Steinhart, F., Ramos-Gómez, J., Krebs, M., Adamo, P., Rey-Asensio, A.I., Fernández, J.A., Giordano, S., Decker, E.L. & Reski, R. (2015) Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and applied research. Plant Cell, Tissue and Organ Culture (PCTOC) 120: 1037–1049. https://doi.org/10.1007/s11240-014-0658-2
  3. Bengtsson, F., Granath, G. & Rydin, H. (2016) Photosynthesis, growth, and decay traits in Sphagnum – a multispecies comparison. Ecology and Evolution 6: 3325–3341. https://doi.org/10.1002/ece3.2119
  4. Bengtsson, F., Granath, G., Cronberg, N. & Rydin, H. (2020) Mechanisms behind species-specific water economy responses to water level drawdown in peat mosses. Annals of Botany 126 (2): 219–230. https://doi.org/10.1093/aob/mcaa033
  5. Braithwaite, R. (1875) On bog mosses. Monthly Microscopical Journal 13 (6): 229–232. https://doi.org/10.1111/j.1365-2818.1875.tb00877.x
  6. Bu, Z.J., Zheng, X.X., Rydin, H., Moore, T. & Ma, J. (2013) Facilitation vs. competition: Does interspecific interaction affect drought responses in Sphagnum? Basic and Applied Ecology 14 (7): 574–584. https://doi.org/10.1016/j.baae.2013.08.002
  7. Cavers, F. (1911) The inter-relationships of the Bryophyta. New Phytologist 10: 1–21.
  8. Clymo, R.S. & Duckett, J.G. (1986) Regeneration of Sphagnum. New Phytologist 102 (4): 589–614. https://doi.org/10.1111/j.1469-8137.1986.tb00834.x
  9. Clymo, R.S. & Hayward, P.M. (1982) The ecology of Sphagnum. In: Smith, A.J.E. (Eds.) Bryophyte Ecology. Springer, Dordrecht, pp. 229–289. https://doi.org/10.1007/978-94-009-5891-3_8
  10. Crum, H.A. (2000) Structural Diversity of Bryophytes. University of Michigan Herbarium, Ann Arbor, pp. 1–379.
  11. Dozy, F. & Molkenboer, J.H. (1851) Plantae cellulares. Musci frondosi et Hepaticae 2 (1): 1–116.
  12. Freeman, C., Ostle, N. & Kang, H. (2001) An enzymic 'latch' on a global carbon store. Nature 409 (6817): 149. https://doi.org/10.1038/35051650
  13. Gaudig, G., Krebs, M., Prager, A., Wichmann, S., Barney, M., Caporn, S.J.M., Emmel M., Fritz, C., Graf, M., Grobe, A., Gutierrez Pacheco, S., Hogue-Hugron, S., Holzträger, S., Irrgang, S., Kämäräinen, A., Karofeld, E., Koch, G., Koebbing, G.F., Kumar, S., Matchutadze, I., Oberpaur, C., Oestmann, J., Raabe, P., Rammes, D., Rochefort, L., Schmilewksi, G., Sendžikaitė, J., Smolders, A., St-Hilaire, B., van de Riet, B., Wright, B., Wright, N., Zoch, L. & Joosten, H. (2017) Sphagnum farming from species selection to the production of growing media: a review. Mires and Peat 20: 13.
  14. Glime, J.M. (2020) Bryophyte Ecology. Michigan Technological University,Michigan. Available from: https://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed 15 July 2020)
  15. Gorham, E. (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1 (2): 182–195. https://doi.org/10.2307/1941811
  16. Hájek, T. (2014) Physiological Ecology of Peatland Bryophytes. In: Hanson, D. & Rice, S. (Eds.) Photosynthesis in Bryophytes and Early Land Plants. Springer, Dordrecht, pp. 233–252. https://doi.org/10.1007/978-94-007-6988-5_13
  17. Hassel, K., Kyrkjeeide, M.O., Yousefi, N., Prestø, T., Stenøien, H.K., Shaw, A.J. & Flatberg, K.I. (2018) Sphagnum divinum (sp. nov.) and S. medium Limpr. and their relationship to S. magellanicum Brid. Journal of Bryology 40 (3): 197–222. https://doi.org/10.1080/03736687.2018.1474424
  18. Hayward, P.M. & Clymo, R.S. (1982) Profiles of water content and pore size in Sphagnum and peat, and their relation to peat bog ecology. Proceedings of the Royal Society of London. Series B. Biological Sciences 215 (1200): 299–325. https://doi.org/10.1098/rspb.1982.0044
  19. Hébant, C. (1977) The Conducting Tissues of Bryophytes. J. Cramer, Germany, pp. 157.
  20. Hoffmann, G.F. (1796) Deutschlands Flora oder Botanisches Taschenbuch für das Jahr 1795. II. Cryptogamie, Erlangen. https://doi.org/10.5962/bhl.title.126793
  21. Kremer, C., Pettolino, F., Bacic, A. & Drinnan, A. (2004) Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta 219: 1023–1035. https://doi.org/10.1007/s00425-004-1308-4
  22. Lamarck, J.B. & de Candolle A.P. de (1805) Flore Française (ed. 3) 2. xii + 600 pp. Desray, Paris.
  23. Li, Y., Glime, J.M. & Liao, C. (1992) Responses of two interacting Sphagnum species to water level. Journal of Bryology 17 (1): 59–70. https://doi.org/10.1179/jbr.1992.17.1.59
  24. Linnaeus, C. (1753) Species Plantarum 2. Impensis Laurentii Salvii, Holmiae, pp. 561–1200.
  25. Ma, X.Y., Xu, H., Cao, Z.Y., Shu, L. & Zhu, R.L. (2022) Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Global Change Biology 28 (21): 6419–6432. https://doi.org/10.1111/gcb.16354
  26. Michaelis, D. (2019) The Sphagnum Species of the World. Schweizerbart Science, Stuttgart, pp. 1–435.
  27. Mu, Y.Y., Wu, Q.M., Zhang, C.H. & Ding, H.F. (2022) Effects of morphological and structural characteristics of six species of Sphagnum on their water-holding capacity. Plant Science Journal 40 (2): 250–258.
  28. Müller, K. (1909) Untersuchungeniiber die wasseraufnamedurch moose und verschiedeneandere pflanzen und pflanzenteile. Jahrbücher Wissenshaftliche Botanik 46: 587–598.
  29. Nicholas, T.G. & Scott, J.D. (2024) Protect peatlands to achieve climate goals. Science 383 (6682): 490. https://doi.org/10.1126/science.adn4001
  30. Overbeck, F. & Happach, H. (1957) Das Wachstum und der Wasserhaushalt einiger Hochmoorsphagnen. Flora 144: 335–402. https://doi.org/10.1016/S0367-1615(17)31396-4
  31. Paul, H. (1908) Die Kalkfeindlichkeit der Sphagna und ihre Ursache, nebst einem Anhang über die Aufnehmefähigkeit der Torfmoose für Wasser. Mitteilungen der Königlich Bayerische Moorkulturanstalt 2: 63–118.
  32. Rice, S.K., Aclander, L. & Hanson, D.T. (2008) Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). American Journal of Botany 95 (11): 1366–1374. https://doi.org/10.3732/ajb.0800019
  33. Rochefort, L. (2000) Sphagnum – a keystone genus in habitat restoration. The Bryologist 103 (3): 503–508. https://doi.org/10.1639/0007-2745(2000)103[0503:SAKGIH]2.0.CO;2
  34. Russow, E.A.F. (1865) Beiträge zur Kenntniss der Torfmoose. Heinrich Laakmann, Dorpat, 82 pp.
  35. Rydin, H. & Jeglum, J.K. (2013) The Biology of Peatlands, 2nd ed. Oxford University Press, Oxford, pp. 1–382. https://doi.org/10.1093/acprof:osobl/9780199602995.003.0001
  36. Serk, H., Nilsson, M.B., Figueira, J., Wieloch, T. & Schleucher, J. (2021) CO2 fertilization of Sphagnum peat mosses is modulated by water table level and other environmental factors. Plant, Cell & Environment 44 (6): 1756–1768. https://doi.org/10.1111/pce.14043
  37. Shaw, A.J., Schmutz, J., Devos, N., Shu, S., Carrell, A.A. & Weston, D.J. (2016) The Sphagnum genome project: a new model for ecological and evolutionary genomics. Advances in Botanical Research 78: 167–187. https://doi.org/10.1016/bs.abr.2016.01.003
  38. van Breemen, N. (1995) How Sphagnum bogs down other plants. Trends in Ecology & Evolution 10 (7): 270–275. https://doi.org/10.1016/0169-5347(95)90007-1
  39. Warnstorf, C. (1884) Sphagnologische Rückblicke. Flora 67 (25): 469–483.
  40. Weber, T.K., Iden, S.C. & Durner, W. (2017) Unsaturated hydraulic properties of Sphagnum moss and peat reveal trimodal pore‐size distributions. Water Resources Research 53 (1): 415–434. https://doi.org/10.1002/2016WR019707
  41. Wilson, W. (1855) Bryologia Britannica. xx + 445 pp. Longman, Brown, Green and Longmans, London.
  42. Zhu, R.L. (2022) Peat mosses (Sphagnum): ecologically, economically, and scientifically important group of carbon sequestration plants. Chinese Bulletin of Botany 57 (5): 559–578. [in Chinese]