Abstract
The complete chloroplast genome sequence of Marchantia emarginata subsp. cuneiloba (Marchantiaceae) was determined. The chloroplast genome was 122,531 bp in length and displayed a typical circular structure composed of a large single-copy region, a small single-copy region, and a pair of inverted repeats. It contains 128 genes, namely 89 protein-coding genes, 35 tRNA genes, and four rRNA genes. Both substitution-based and indel-based phylogenetic trees support the sister relationship of M. emarginata subsp. cuneiloba with M. inflexa. Comparative analysis of chloroplast genome also reveals the usefulness of simple sequence repeat (SSR) patterns for classification in the genus Marchantia.
Downloads
Download data is not yet available.
References
- Adachi, J. & Hasegawa, M. (1996) MOLPHY version 2.3: programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs, No. 28. The Institute of Statistical Mathematics, Tokyo, 150 pp.
- Bertoloni, A. (1817) Fine delle osservazioni botaniche. Opuscoli Scientifici 1: 229–243.
- Bischler, H. (1982) Marchantia L.: morphologie sporale, germination et rang taxonomique des sections Marchantia et Chlamidium (Corda) Nees. Cryptogamie, Bryologie, Lichénologie 3: 351–364.
- Bischler, H. (1989) Marchantia L.: Subg. Chlamidium (Nees) Bischl. sect. Papillatae Bischl. sect. nov. en Asie et en Océanie. Cryptogamie, Bryologie, Lichénologie 10: 61–79.
- Bischler-Causse, H. (1989) Marchantia L. The Asiatic and Oceanic taxa. Bryophytorum Bibliotheca 38: 1–207.
- Bischler-Causse, H. & Boisselier-Dubayle, M.C. (1991) Lectotypification of Marchantia polymorpha L. Journal of Bryology 16: 361–365.
- https://doi.org/10.1179/jbr.1991.16.3.361
- Bonner, C.E.B. (1953) De Hepaticis II. An unpublished section of volume 6 of Stephani’s Species Hepaticarum: The genus Marchantia. Candollea 14: 101–112.
- Chen, S., Zhou, Y., Chen, Y. & Gu, J. (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884–i890. https://doi.org/10.1093/bioinformatics/bty560
- Corda, A.J.C. (1829) Genera Hepaticarum. In: Opiz, P.M. (Eds.) Beiträge zur Naturgeschichte als Fortsetzung des Naturalientausches No. 12. C.W. Enders, Praha, pp. 643–655.
- Dong, S., Zhang, S., Zhang, L., Wu, H., Goffinet, B. & Liu, Y. (2021) Plastid genomes and phylogenomics of liverworts (Marchantiophyta): conserved genome structure but highest relative plastid substitution rate in land plants. Molecular Phylogenetics and Evolution 161: 107–171.
- https://doi.org/10.1016/j.ympev.2021.107171
- Du, L., Zhang, C., Liu, Q., Zhang, X. & Yue, B. (2018) Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 34: 681–683.
- https://doi.org/10.1093/bioinformatics/btx665
- Dumortier, B.C.J. (1822) Commentationes botanicae. Ch. Casterman-Dien, Tournay, 118 pp.
- Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M. & Dubchak, I. (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Research 32 (suppl_2): W273–W279.
- https://doi.org/10.1093/nar/gkh458
- Greiner, S., Lehwark, P. & Bock, R. (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47: W59–W64. https://doi.org/10.1093/nar/gkz238
- Grolle, R. (1966) Die Lebermoose Nepals. Khumbu Himal, Ergebnisse des Forschungsun-ternehmens Nepal Himalaya 1: 262–298.
- https://doi.org/10.1007/978-3-642-92914-4_5
- Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522.
- https://doi.org/10.1093/molbev/msx281
- Hoffmann, G.F. (1795) Deutschlands Flora. Cryptogamie. Johan Jakob Palm, Erlangen, 200 pp.
- Inoue, H. (1989) Taxonomic miscellany on hepatics (6). The Journal of Japanese Botany 64: 193–198.
- Jin, J.-J., Yu, W.-B., Yang, J.-B. & Song, Y. (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21: 241. https://doi.org/10.1186/s13059-020-02154-5
- Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.
- https://doi.org/10.1038/nmeth.4285
- Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054
- Lehmann, J.G.C. (1832) Novarum et Minus Cognitarum Stirpium Pugillus Quartus. Meissner, Hamburg, 64 pp.
- Lehmann, J.G.C. (1834) Novarum et Minus Cognitarum Stirpium Pugillus Sextus. Meissner, Hamburg, 72 pp.
- Linnaeus, C. (1753) Species Plantarum, ed. 1. Laurentii Salvii, Holmiae [Stockholm], 1200 pp.
- Long, D.G., Forrest, L.L., Villarreal, J.C. & Crandall-Stotler, B.J. (2016) Taxonomic changes in Marchantiaceae, Corsiniaceae, and Cleveaceae (Marchantiidae, Marchantiophyta). Phytotaxa 252 (1): 77–80.
- https://doi.org/10.11646/phytotaxa.252.1.9
- Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534.
- Montagne, J.F.C. (1838) Centurie de plantes cellulaires exotiques nouvelles (suite). Annales des Sciences Naturelles; Botanique (sér. 2) 9: 38–57.
- Montagne, J.F.C. (1843) Quatrième centurie de plantes cellulaires exotiques nouvelles. Annales des Sciences Naturelles Botanique, séries 2 19: 238–266.
- Raddi, G. (1818) Novarum vel rariorum ex cryptogamia stirpium in agro florentino collectarum. Opuscoli Scientifici 2: 349–361.
- Raddi, G. (1822) Crittogame brasiliane raccolte e descritte dal Signor Guiseppe Raddi. Societa Tipografica, Modena, 33 pp.
- https://doi.org/10.5962/bhl.title.65673
- Reinwardt, C.G.C., Blume, C.L. & Nees von Esenbeck, C.G. (1824) Hepaticae Iavanicae. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum 12: 181–238.
- Salinas, N.R. & Little, D.P. (2014) 2matrix: A Utility for Indel Coding and Phylogenetic Matrix Concatenation. Applications in Plant Sciences 2: 1300083.
- https://doi.org/10.3732/apps.1300083
- Schiffner, V. (1910) Studien über die Rhizoïden der Marchantiales. Annales du Jardin botanique de Buitenzorg, suppl. 3: 473–492.
- Simmons, M.P. & Ochoterena, H. (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49: 369–381.
- Stephani, F. (1894) Hepaticae Chinenses. Mémoires de la Société des Sciences Naturelles et Mathematiques de Cherbourg 29: 207–228.
- Stephani, F. (1897) Hepaticae Japonicae. Bulletin de l’Herbier Boissier 5: 76–108.
- Szweykowski, J., Buczkowska, K. & Odrzykoski, I.J. (2005) Conocephalum salebrosum (Marchantiopsida, Conocephalaceae) – a new holarctic liverwort species. Plant Systematics and Evolution 253: 133–158. https://doi.org/10.1007/s00606-005-0301-0
- Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E.S., Fischer, A., Bock, R. & Greiner, S. (2017) GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45: W6–W11. https://doi.org/10.1093/nar/gkx391
- Villarreal A.J.C., Crandall-Stotler, B.J., Hart, M.L., Long, D.G. & Forrest, L.L. (2016) Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytologist 209: 1734–1746. https://doi.org/10.1111/nph.13716
- Wick, R.R. & Holt, K.E. (2022) Polypolish: Short-read polishing of long-read bacterial genome assemblies. PLoS Computational Biology 18 (1): e1009802. https://doi.org/10.1371/journal.pcbi.1009802
- Xiang, Y.-L., Jin, X.-J., Shen, C., Cheng, X.-F., Shu, L. & Zhu, R.-L. (2022) New insights into the phylogeny of the complex thalloid liverworts (Marchantiopsida) based on chloroplast genomes. Cladistics 38: 649–662. https://doi.org/10.1111/cla.12513
- Zheng, T.-X. (2022) Studies on type material of Marchantia fallax Herz. (Marchantiaceae). Journal of Bryology 44: 156–158.
- https://doi.org/10.1080/03736687.2022.2094136
- Zheng, T.-X. & Long, D.G. (2023) A contribution to the knowledge of selected Marchantiaceae taxa in China. Journal of Bryology 45: 96–104. https://doi.org/10.1080/03736687.2023.2232668
- Zheng, T.-X. & Shimamura, M. (2020) Marchantia papillata Raddi. subsp. grossibarba (Steph.) Bischl. (Marchantiaceae, Marchantiophyta) new to Japan. Hikobia 18: 93–96.
- Zheng, T.-X. & Shimamura, M. (2022a) Taxonomic revision of the genus Marchantia (Marchantiaceae) in Japan and the redefinition of the genus. Hattoria 13: 33–77. https://doi.org/10.18968/hattoria.13.0_33
- Zheng, T.-X. & Shimamura, M. (2022b) Taxonomic reevaluation of the Japanese Marchantia taxa belonging to sect. Papillatae of subg. Chlamidium (Marchantiaceae). The Bryologist 125: 135–147. https://doi.org/10.1639/0007-2745-125.1.135