Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-06-30
Page range: 265–283
Abstract views: 627
PDF downloaded: 504

Cell wall polymers in the Phaeoceros placenta reflect developmental and functional differences across generations

Department of Biology, One University Plaza, MS 6200, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
Vicinale Cupa Parisi 2L, 84133 Salerno, Italy
4358 River Road South, Salem OR 97302 USA
Department of Plant Biology, MC:6509, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
Department of Plant Biology, MC:6509, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
AGPs bryophytes hemicelluloses immunocytochemistry pectins transfer cells wall ingrowths


The placenta of hornworts is unique among bryophytes in the restriction of transfer cells that are characterized by elaborate wall labyrinths to the gametophyte generation. During development, cells around the periphery of the sporophyte foot elongate, forming smooth-walled haustorial cells that interdigitate with gametophyte cells. Using immunogold labeling with 22 antibodies to diverse cell wall polymers, we examined compositional differences in the developmentally and morphologically distinct cell walls of gametophyte transfer cells and sporophyte haustorial cells in the placenta of Phaeoceros. As detected by Calcofluor White fluorescence, cellulose forms the cell wall scaffolding in cells on both sides of the placenta. Homogalacturonan (HG) and rhamnogalacturonan I (RG-I) pectins are abundant in both cell types, and haustorial cells are further enriched in methyl-esterified HGs. The abundance of pectins in placental cell walls is consistent with the postulated roles of these polymers in cell wall porosity and in maintaining an acidic apoplastic pH favorable to solute transport. Xyloglucan hemicellulose, but not mannans or glucuronoxylans, are present in cell walls at the interface between the two generations with a lower density in gametophytic wall ingrowths. Arabinogalactan proteins (AGPs) are diverse along the plasmalemma of placental cells and are absent in surrounding cells in both generations. AGPs in placental cell walls may play a role in calcium binding and release associated with signal transduction as has been speculated for these glycoproteins in other plants. Callose is restricted to thin areas in cell walls of gametophyte transfer cells. In contrast to studies of transfer cells in other systems, no reaction to the JIM12 antibody against extensin was observed in Phaeoceros.


Download data is not yet available.


  1. Bascom, C.S., Winship, L.J. & Bezanilla, M. (2018) Simultaneous imaging and functional studies reveal a tight correlation between calcium and actin networks. Proceedings of the National Academy of Science of the USA 115: 2869–2878.
    Berry, E.A., Tran, M.L., Dimos, C.S., Budziszek, Jr. M.J., Scavuzzo-Duggan, T.R. & Roberts, A.W. (2016) Immuno and affinity cytochemical analysis of cell wall composition in the moss Physcomitrella patens. Frontiers in Plant Science 7: 248.
    Bisang, I, Lüth, M. & Hofmann, H (2010) Phaeoceros laevis subsp. carolinianus (Michx.) Prosk. In: Swiss bryophytes Working Group (Hrsg.) Moosflora der Schweiz. Available from
    Bopp, M., Quader, H., Thoni, C., Sawidis, T. & Schnepf, E. (1991) Filament disruption in Funaria protonemata: formation and disintegration of tmema cells. Journal of Plant Physiology 137: 273–284.
    Brongniart, A. (1821) Description d’un nouveau genre de Fougere, nomme Ceratopteris. Bulletin de la Socieìteì philomathique de Paris 3: 184–187.
    Browning, A. & Gunning, B. (1979) Structure and function of transfer cells in the sporophyte haustorium of Funaria hygrometrica Hedw: II. Kinetics of uptake of labelled sugars and localization of absorbed products by freeze-substitution and autoradiography. Journal of Experimental Botany 30: 1247–1264.
    Broxterman, S.E. & Schols, H.A. (2018) Interactions between pectin and cellulose in primary plant cell walls. Carbohydrate Polymers 192: 263–272.
    Caffall, K.H., Kerry, H. & Mohnen, D. (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research 344: 1879–1900.
    Cao, J.G., Dai, X.L., Zou, H.M. & Wang, Q.X. (2014) Formation and development of rhizoids of the liverwort Marchantia polymorpha. Journal of the Torrey Botanical Society 1: 126–134.
    Chanliaud, E., Burrows, K.M., Jeronimidis, G. & Gidley, M.J. (2002) Mechanical properties of primary plant cell wall analogues. Planta 215: 989-996.
    Clausen, M.H., Willats, W.G. & Knox, J.P. (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydrate Research 338: 1797–1800.
    Cornuault, V., Buffetto, F., Rydahl, M.G., Marcus, S.E., Torode, T.A., Xue, J. & Ralet, M.C. (2015) Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls. Planta 242: 1321–1334.
    Cornuault, V., Pose, S. & Knox, J.P. (2018) Extraction, texture analysis and polysaccharide epitope mapping data of sequential extracts of strawberry, apple, tomato and aubergine fruit parenchyma. Data in Brief 17: 314–320.
    Cosgrove, D.J. (2005) Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6: 850–862.
    Dahiya P. & Brewin N.J. (2000) Immunogold localization of callose and other cell wall components in pea nodule transfer cells. Protoplasma 214:210–218.
    Dehors, J., Mareck, A., Kiefer-Meyer, M.C., Menu-Bouaouiche, L., Lehner, A. & Mollet, J.C. (2019) Evolution of cell wall polymers in tip-growing land plant gametophytes: composition, distribution, functional aspects and their remodeling. Frontiers in Plant Science 10: 44–469.
    Diet, A., Link, B., Seifert, G.J., Schellenberg, B., Wagner, U., Pauly, M. & Ringli, C. (2006) The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhamnose synthase. The Plant Cell 18: 1630–164.
    Duff, R.J., Villarreal, J.C., Cargill, D.C. & Renzaglia, K.S. (2007) Progress and challenges toward developing a phylogeny and classification of the hornworts. The Bryologist 110: 214–243.[214:PACTDA]2.0.CO;2
    Frangedakis, E., Shimamura, M., Villarreal, J. C., Li, F. W., Tomaselli, M., Waller, M., Sakakibara, K., Renzaglia, K.S. & Szövényi, P. (2021). The Hornworts: Morphology, evolution and development. New Phytologist 29: 735–754.
    Gambardella, R. & Ligrone, R. (1987) The development of the placenta in the anthocerote Phaeoceros laevis (L.) Prosk. Planta 172: 439–447.
    Happ, K. & Classen, B. (2019) Arabinogalactan-Proteins from the Liverwort Marchantia polymorpha L., a Member of a Basal Land Plant Lineage, Are Structurally Different to Those of Angiosperms. Plants 8: 460.
    Henry, J., Lopez, R.A. & Renzaglia, K.S. (2020) Differential localization of cell wall polymers across generations in the placenta of Marchantia polymorpha. Journal of Plant Research 133: 911–924.
    Heynhold, G. 1842. Flora von Sachsen, erster Band, Phanerogamie. Verlag J. Naumann, Dresden.
    Humphrey, T.V., Bonetta, D.T. & Goring, D.R. (2007) Sentinels at the wall: cell wall receptors and sensors. New Phytologist 176: 7–21.
    Johnson, G.P. (2008) Early Embryology of Ceratopteris Richardii and immunocytochemistry of placental transfer cell wall ingrowths. Thesis, Southern Illinois University Carbondale, Carbondale, Illinois.
    Jones, L., Seymour, G.B. & Knox, J.P. (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1−4)-β-D-galactan. Plant Physiology 113: 1405–1412.
    Knox, J.P., Linstead, P.J., King, J., Cooper, C. & Roberts, K. (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181: 512–521.
    Kobayashi, Y., Motose, H., Iwamoto, K. & Fukuda, H. (2011) Expression and genome-wide analysis of the xylogen-type gene family. Plant Cell Physiology 52: 1095–1106.
    Lamport, D.T. & Várnai, P. (2013) Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytologist 197: 58–64.
    Lamport, D.T., Varnai, P. & Seal, C.E. (2014) Back to the future with the AGP–Ca2+ flux capacitor. Annals of Botany 114: 1069–1085.
    Lamport, D.T.A. & Kieliszewski, M.J. (2005). Stress upregulates periplasmic arabinogalactan-proteins. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 139: 60–64.
    Lee, K.J., Sakata, Y., Mau, S.L., Pettolino, F., Bacic, A., Quatrano, R.S. & Knox, J.P. (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17: 3051–3065.
    Ligrone, R. & Gambardella, R. (1988). The ultrastructure of the sporophyte-gametophyte junction and its relationship to bryophyte evolution. Journal of the Hattori Botanical Laboratory 64: 187–196.
    Ligrone, R. & Renzaglia, K.S. (1990) The sporophyte–gametophyte junction in the hornwort, Dendroceros tubercularis Hatt (Anthocerotophyta). New Phytologist 114: 497–505.
    Ligrone, R., Duckett, J.G. & Renzaglia, K.S. (1993) The gametophyte-sporophyte junction in land plants. Advances in Botanical Research 19: 231–318.
    Ligrone, R., Vaughn, K.C. & Rascio, N. (2011) A cytochemical and immunocytochemical analysis of the wall labyrinth apparatus in leaf transfer cells in Elodea canadensis. Annals of Botany 107: 717–722.
    Ligrone, R., Vaughn, K.C., Renzaglia, K.S., Knox, J.P. & Duckett, J.G. (2002) Diversity in the distribution of polysaccharide and glycoprotein epitopes in the cell walls of bryophytes: new evidence for multiple evolution of water-conducting cells. New Phytologist 156: 491–508.
    Liners, F., Letesson, J.J., Didembourg, C. & Van Cutsem, P. (1989) Monoclonal antibodies against pectin: recognition of a conformation induced by calcium. Plant Physiology 91: 1419–1424.
    Linnaeus, C. (1753) Species Plantarum, vol. 2. Imprensis Laurentii Salvii, Holmiae, pp. 561–1200.
    Lopez, R.A. & Renzaglia, K.S. (2014) Multiflagellated sperm cells of Ceratopteris richardii are bathed in arabinogalactan proteins throughout development. American Journal of Botany 101: 2052–2061.
    Lopez, R.A. & Renzaglia, K.S. (2016) Arabinogalactan proteins and arabinan pectins abound in the specialized matrices surrounding female gametes of the fern Ceratopteris richardii. Planta 243: 947–957.
    Lopez, R.A., Mansouri, K., Henry, J.S., Flowers, N.D., Vaughn, K.C. & Renzaglia, K.S. (2017) Immunogold localization of molecular constituents associated with basal bodies, flagella, and extracellular matrices in male gametes of land plants. Bio-Protocol 7: e2599.
    Lopez-Swalls, R.A. (2016) The special walls around gametes in Ceratopteris richardii and Aulacomnium palustre: using immunocytochemistry to expose structure, function, and development. Dissertation, Southern Illinois University Carbondale, Carbondale, Illinois.
    Mansouri, K. (2012). Comparative ultrastructure of apical cells and derivatives in bryophytes, with special reference to plasmodesmata. Dissertation, Southern Illinois University Carbondale, Carbondale, Illinois.
    Marcus, S.E., Blake, A.W., Benians, T.A., Lee, K.J., Poyser, C., Donaldson, L. & Gilbert, H.J. (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. The Plant Journal 64:191–203.
    Marcus, S.E., Verhertbruggen, Y., Hervé, C., Ordaz-Ortiz, J.J., Farkas, V., Pedersen, H.L & Knox, J.P. (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology Journal 8:60.
    McCartney, L., Steele‐King, C.G., Jordan, E. & Knox, J.P. (2003) Cell wall pectic (1→ 4)‐β‐d‐galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem. The Plant Journal 33: 447–454.
    Meikle, P.J., Bonig, I., Hoogenraad, N.J., Clarke, A.E. & Stone, B.A. (1991) The location of (1→ 3)-β-glucans in the walls of pollen tubes of Nicotiana alata using a (1→ 3)-β-glucan-specific monoclonal antibody. Planta 185:1–8.
    Meikle, P.J., Hoogenraad, N.J., Bonig, I., Clarke, A.E. & Stone, B.A. (1994) A (1→ 3, 1→ 4)‐β‐glucan‐specific monoclonal antibody and its use in the quantitation and immunocytochemical location of (1→ 3, 1→ 4)‐β‐glucans. The Plant Journal 5: 1–9.
    Michaux, A. (1803a) Flora Boreali-Americana: sistens caracteres plantarum quas in America septentrionali collegit et detexit Andreas Michaux, tomus secundus. Parisiis et Argentorati: apud fratres Levrault, 340 pp.
    Michaux, A. (1803b) Flora Boreali-Americana: sistens caracteres plantarum quas in America septentrionali collegit et detexit Andreas Michaux, tomus primus. Parisiis et Argentorati: apud fratres Levrault, 330 pp.
    Mitten, W. (1851) A list of all the mosses and hepaticae hitherto observed in Sussex. The Annals and Magazine of Natural History, ser. 2(8): 362–370.
    Möller, I., Sørensen, I., Bernal, A.J., Blaukopf, C., Lee, K. & Øbro, J. (2007) High-through put mapping of cell-wall polymers within and between plants using novel microarrays. The Plant Journal 50: 1118–1128.
    Offler, C.E., McCurdy, D.W., Patrick, J.W. & Talbot, M.J. 2002. Transfer cells: cells specialized for a special purpose. Annual Review of Plant Biology 54: 431–454.
    Offler, C.E. & Patrick, J.W. (2020) Transfer cells: What regulates the development of their intricate wall labyrinths? .New Phytologist 228: 427–444.
    O’Neill, M.A. & York, W.S. (2018). The composition and structure of plant primary cell walls. Annual Plant Reviews Online 8: 1–54.
    Pate, J.S., Gunning, B.E.S. 1972. Transfer cells. Annual Review of Plant Physiology 23: 173–196.
    Pattathil, S., Avci, U., Baldwin, D., Swennes, A. G., McGill, J. A., Popper, Z. & Dong, R. (2010) A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiology 153: 514–525.
    Pedersen, H.L., Fangel, J.U., McCleary, B., Ruzanski, C., Rydahl, M.G., Ralet, M.C. & Field, R. (2012) Versatile high-resolution oligosaccharide microarrays for plant glycobiology and cell wall research. Journal of Biological Chemistry 287: 39429–39438.
    Peña, M.J., Darvill, A.G., Eberhard, S., York, W.S. & O’Neill, M.A. (2008) Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants. Glycobiology 18: 891–904.
    Pennell, R.I., Janniche, L., Kjellbom. P., Scofield, G.N., Peart, J.M. & Roberts, K. (1991) Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 3: 1317–1326.
    Popper, Z.A. & Fry, S.C. (2003) Primary Cell Wall Composition of Bryophytes and Charophytes. Annals of Botany 91: 1–12.
    Proskauer, J. (1951) Studies on Anthocerotales. III. Bulletin of the Torrey Botanical Club 78: 331–349.
    Regmi, K.C., Li, L. & Gaxiola, R.A. (2017) Alternate modes of photosynthate transport in the alternating generations of Physcomitrella patens. Frontiers in Plant Science 8:1956.
    Renault, S., Bonnemain, J.L., Faye, L. & Gaudillere, J.P. (1992) Physiological aspects of sugar exchange between the gametophyte and the sporophyte of Polytrichum formosum. Plant Physiology 100: 1815–1822.
    Renzaglia, K.S. (1978) Comparative morphology and developmental anatomy of the Anthocerotophyta. Journal of the Hattori Botanical Laboratory 44: 31–90.
    Renzaglia, K.S. & Garbary, D.J. (2001) Motile male gametes of land plants: diversity, development, and evolution. Critical Reviews in Plant Sciences 20: 107–213.
    Renzaglia, K.S., Lopez, R.A. & Johnson, E.E. (2015) Callose is integral to the development of permanent tetrads in the liverwort Sphaerocarpos. Planta 241: 615–627.
    Renzaglia, K.S., Lopez, R.A., Henry, J.S., Flowers, N.D. & Vaughn, K.C. (2017) Transmission electron microscopy of centrioles, basal bodies and flagella in motile male gametes of land plants. Bio-Protocols 7.
    Renzaglia, K.S., Villarreal, J.C. & Duff, R.J. (2009) New insights into morphology, anatomy, and systematics of hornworts. In: Goffinet, B. & Shaw, A.J. (ed.) Bryophyte Biology, 2nd ed. Cambridge University Press, pp. 139–171.
    Ringli, C. (2010) Monitoring the outside: cell wall-sensing mechanisms. Plant Physiology 153: 1445–1452.
    Roberts, A.W., Roberts, E.M. & Haigler, C.H. (2012) Moss cell walls: structure and biosynthesis. Frontiers in Plant Science 3: 166–173.
    Samuels, A.L., Giddings, T.H. & Staehelin, L.A. (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. Journal of Cell Biology 130: 1345–1357.
    Sarkar, P., Bosneaga, E. & Auer, M. (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. Journal of Experimental Botany 60: 3615–3635.
    Schuette, S., Wood, A.J., Geisler, M., Geisler-Lee, J., Ligrone, R. & Renzaglia, K.S. (2009) Novel localization of callose in the spores of Physcomitrella patens and phylogenomics of the callose synthase gene family. Annals of Botany 103: 749–756.
    Schwägrichen, C.F. (1827) Species Muscorum Frondosorum, descriptae et tabulis aeneis coloratis illustratae, opus posthumum, Supplementum Tertium, 1 (1): 201–225.
    Seifert, G.J. & Roberts, K. (2007) The biology of arabinogalactan proteins. Annual Review of Plant Biology 58: 137–161.
    Shibaya, T. & Sugawara, Y. (2007) Involvement of arabinogalactan proteins in the regeneration process of cultured protoplasts of Marchantia polymorpha. Physiologia Plantarum 130: 271–279.
    Shibaya, T. & Sugawara, Y. (2009) Induction of multinucleation by β-glucosyl Yariv reagent in regenerated cells from Marchantia polymorpha protoplasts and involvement of arabinogalactan proteins in cell plate formation. Planta 230: 581–588.
    Shibaya, T., Kaneko, Y. & Sugawara, Y. (2005) Involvement of arabinogalactan proteins in protonemata development from cultured cells of Marchantia polymorpha. Physiologia Plantarum 124: 504–514.
    Smallwood, M., Beven, A., Donovan, N., Neill, S.J., Peart, J., Roberts, K. & Knox, J.P. (1994) Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. The Plant Journal 5: 237–246.
    Smallwood, M., Yates, E.A., Willats, W.G., Martin, H. & Knox, J.P. (1996) Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198: 452–459.
    Tang, C.T.C. (2007) The wound response in Arabidopsis thaliana and Physcomitrella patens. Dissertation, Rutgers University, New Brunswick, New Jersey.
    Thomas, R.J., Stanton, D.S., Longendorfer, D.H. & Farr, M.E. (1978) Physiological evaluation of the nutritional autonomy of a hornwort sporophyte. Botanical Gazette, 139: 306–311.
    Thompson, R.D., Hueros, G., Becker, H.A. & Maitz, M. (2001) Development and functions of seed transfer cells. Plant Science 160: 775–783.
    Vaughn, K.C., & Hasegawa, J. (1993). Ultrastructural characteristics of the placental region of Folioceros and their taxonomic significance. The Bryologist 96: 112–121.
    Vaughn, K.C., Hoffman, J.C., Hahn, M.G. & Staehelin, L.A. (1996) The herbicide dichlobenil disrupts cell plate formation: immunogold characterization. Protoplasma 194: 117–132.
    Vaughn, K.C., Talbot M.J., Offler, C.E. & McCurdy, D.W. (2007) Wall ingrowths in epidermal transfer cells of Vicia faba cotyledons are modified primary walls marked by localized accumulations of arabinogalactan proteins. Plant Cell Physiology 48: 159–168.
    Velasquez, S.M., Salgado, S.J., Petersen, B.L. & Estevez, J.M. (2012) Recent advances on the posttranslational modifications of EXTs and their roles in plant cell walls. Frontiers in Plant Science 3: 93–99.
    Verhertbruggen, Y., Marcus, SE., Haeger, A., Ordaz-Ortiz, J.J. & Knox, J.P. (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydrate Research 344: 1858–1862.
    Villarreal, A.J.C. & Renzaglia, K.S. (2006) Sporophyte structure in the neotropical hornwort Phaeomegaceros fimbriatus: implications for phylogeny, taxonomy, and character evolution. International Journal of Plant Sciences 167: 413–427.
    Whitney, S.E., Wilson, E., Webster, J., Bacic, A., Reid, J.G. & Gidley, M.J. (2006) Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. American Journal of Botany 93: 1402–1414.
    Willats, W.G., Limberg, G., Buchholt, H.C., Alebeek, G.J., Benen, J., Christensen, T.M., Visser, J., Voragen, A., Mikkelsen, J.D. & Knox, J.P. (2000) Analysis of pectic epitopes recognized by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Research 327:309–320.
    Willats, W.G., Marcus, S.E. & Knox, J.P. (1998) Generation of a monoclonal antibody specific to (1,5)-α-l-arabinan. Carbohydrate Research 308: 149–152.
    Willats, W.G., McCartney, L., Mackie, W. & Knox, J.P. (2001) Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology 47: 9–27.
    Yates, E.A., Valdor, J.F., Haslam. S.M., Morris, H.R., Dell, A., Mackie, W. & Knox, J.P. (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6: 131–139.
    Yokoyama, R. (2020) A Genomic Perspective on the Evolutionary Diversity of the Plant Cell Wall. Plants 9: 1195.