Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-12-30
Page range: 119–132
Abstract views: 180
PDF downloaded: 1

Genetic population structure of Cheilolejeunea rigidula (Lejeuneaceae) in the Amazon region

Universidad de La Salle, Cra. 2 # 10-70, bloque A, piso 5, Bogotá D.C., Colombia
Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, Netherlands
Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, Netherlands
Universidad de La Salle, Cra. 2 # 10-70, bloque A, piso 5, Bogotá D.C., Colombia
Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, Netherlands
Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Cra. 30 # 45-03, edificio 425, Bogotá D.C., Colombia
Amazon bryophytes epiphytes genetic structure

Abstract

We studied the community structure and diversity of epiphytic bryophytes in a vertical gradient from tree base to canopy in four lowland rain forest sites of the Colombian Amazon (Amazonas, Caquetá, Putumayo, and Vaupés). Each of the 64 sampled phorophytes was divided into six height zones from the base (Z1) to the outer canopy (Z6). As a subproject, we carried out a genetic population study using the liverwort Cheilolejeunea rigidula (Lejeuneaceae) as our model species, which occurred in all six height zones. In addition to 65 successfully sequenced samples from the study sites, we included individuals of C. rigidula from Guiana and Brazil (Manaus and Tapajos) to investigate the connectivity and genetic structure of this species across the Amazon region and to evaluate the genetic structure based on phorophyte height zones. Each site in Colombia, Brazil and Guiana was considered a subpopulation. The sequenced chloroplast markers (partial atpB gene, partial psbA gene/psbA-trnH spacer) showed little variation across the Amazon and the height zones on the trees. The nuclear marker (ITS) showed a spatial structure indicating genetic differentiation of subpopulations across the Amazon, but little genetic differentiation of C. rigidula along the height of the trees. The gradient across the Amazon shows a relationship between genetic distance and geographic distance, indicating dispersal limitations (P<0.001). At local and regional scales, our results suggest that dispersal can have a dominant effect on populations and communities, increasing connectivity.

Downloads

Download data is not yet available.

References

  1. Bastos, C.J. (2012) Taxonomia e distribuição de Cheilolejeunea aneogyna (Spruce) A. Evans (Lejeuneaceae, Marchantiophyta). Acta Botanica Brasilica 26 (3): 709–713.  https://doi.org/10.1590/S0102-33062012000300021

  2. Bastos, C.J. & Gradstein, S.R. (2020) The genus Cheilolejeunea (Marchantiophyta: Lejeuneaceae) in tropical America. Nova Hedwigia 111 (3–4): 287–335.  https://doi.org/10.1127/nova_hedwigia/2020/0596

  3. Burns, K.C. & Zotz, G. (2010) A hierarchical framework for investigating epiphyte assemblages: networks, metacommunities and scale. Ecology 91: 377–385.  https://doi.org/10.1890/08-2004.1

  4. Campos, L.V., ter Steege, H. & Uribe, J. (2015) The epiphytic bryophyte flora of the Colombian Amazon. Caldasia 37 (1): 47–59. https://doi.org/10.15446/caldasia.v37n1.50980

  5. Campos, L.V., Mota de Oliveira, S., Benavides, J.C., Uribe-M., J. & ter Steege, H. (2019) Vertical distribution and diversity of epiphytic bryophytes in the Colombian Amazon. Journal of Bryology 41 (3): 1–13.  https://doi.org/10.1080/03736687.2019.1641898

  6. Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9 (10): 1657–1659.  https://doi.org/10.1046/j.1365-294x.2000.01020.x

  7. Darriba, D., Taboada, G.L., Doallo, R. & Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.  https://doi.org/10.1038/nmeth.2109

  8. Debinski, D.M. & Holt, R.D. (2000) A survey and overview of habitat fragmentation experiments. Conservation Biology 14 (2): 342–355.  https://doi.org/10.1046/j.1523-1739.2000.98081.x

  9. Evans, A.W. (1906) Hepaticae of Puerto Rico VI. Cheilolejeunea, Rectolejeunea, Ceratolejeunea, and Pycnolejeunea. Bulletin of the Torrey Botanical Club 33 (1): 1–25. https://doi.org/10.2307/2478618

  10. Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10 (3): 564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x

  11. Forrest, L.L. & Crandall-Stotler, B.J. (2004) A Phylogeny of the simple thalloid liverworts (Jungermanniopsida, Metzgeriidae) as inferred from five chloroplast genes. Molecular systematics of bryophytes. Monographs in Systematic Botany from the Missouri Botanical Garden 98: 119–140.

  12. Frey, W. & Kürschner, H. (2011) Asexual reproduction, habitat colonization and habitat maintenance in bryophytes. Flora 206: 173–184.  https://doi.org/10.1016/j.flora.2010.04.020

  13. Gradstein, S.R. (1994) Lejeuneaceae: Ptychantheae, Brachiolejeuneae. Flora Neotropica 62: 1–216.

  14. Gradstein, S.R. (2013) A classification of Lejeuneaceae (Marchantiophyta) based on molecular and morphological evidence. Phytotaxa 100 (1): 6–20.  https://doi.org/10.11646/phytotaxa.100.1.2

  15. Gradstein, S.R. (2002) Investigaciones sobre la biodiversidad de las selvas tropicales a través de las briofitas. Série Ciências Ambientais, Universidade de São Paulo, Instituto de Estudos Avançados 21: 11–25.

  16. Gradstein, S.R. & da Costa, D.P. (2003) The Hepaticae and Anthocerotae of Brazil. Memoirs of the New York Botanical Garden 87: 1–318.

  17. Grolle, R., Zhu, R.-L. & Gradstein, S.R. (2001) On Cyrtolejeunea A. Evans (Lejeuneaceae, Hepaticae). Taxon 50: 1067–1074.  https://doi.org/10.2307/1224721

  18. Hartmann, F.A., Wilson, R., Gradstein, S.R., Schneider, H. & Heinrichs, J. (2006) Testing hypotheses on species delimitations and disjunctions in the liverwort Bryopteris (Jungermanniopsida: Lejeuneaceae). International Journal of Plant Sciences 167 (6): 1205–1214. https://doi.org/10.1086/508023

  19. Hamilton, M. (2011) Population genetics. John Wiley & Sons, 424 pp.

  20. Hooper, E.J. (2008) Ecological genetics of the moss Physcomitrella patens. Doctoral dissertation, The University of Leeds.

  21. Heinrichs, J., Dong, S., Schäfer-Verwimp, A., Pócs, T., Feldberg, K., Czumaj, A., Schmidt, A.R., Reitner, J., Renner, M.A.M., Hentschel, J., Stech, M. & Schneider, H. (2013) Molecular Phylogeny of the Leafy Liverwort Lejeunea (Porellales): Evidence for a Neotropical Origin, Uneven Distribution of Sexual Systems and Insufficient Taxonomy. PLoS ONE 8 (12): e82547.  https://doi.org/10.1371/journal.pone.0082547

  22. Heinrichs, J., Hentschel, J., Feldeberg, K., Bombosch, A. & Schneider, H. (2009) Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. Journal of Systematics and Evolution 47 (5): 497 –508.  https://doi.org/10.1111/j.1759-6831.2009.00028.x

  23. Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754 –755. https://doi.org/10.1093/bioinformatics/17.8.754

  24. Laenen, B., Désamoré, A., Devos, N., Shaw, A.J., González-Mancebo, J.M., Carine, M.A. & Vanderpoorten, A. (2011) Macaronesia: a source of hidden genetic diversity for post-glacial recolonization of western Europe in the leafy liverwort Radula lindenbergiana. Journal of Biogeography 38: 631 –639.  https://doi.org/10.1111/j.1365-2699.2010.02440.x

  25. Ledent, A., Gauthier, J., Pereira, M., Overson, R., Laenen, B., Mardulyn, P., Gradstein, S., de Haan, M., Ballings, P., Van der Beeten, I., Zartman, C. & Vanderpoorten, A. (2020) What do tropical cryptogams reveal? Strong genetic structure in Amazonian bryophytes. New Phytologist 228 (2): 640–650.  https://doi.org/10.1111/nph.16720

  26. Leigh, J.W. & Bryant, D. (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116.

  27. Löbel, S., Snäll, T. & Rydin, H. (2006) Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented forest landscapes. Journal of Ecology 94: 856–868.  https://doi.org/10.1111/j.1365-2745.2006.01114.x

  28. Löbel, S. & Rydin, H. (2009) Dispersal and life history strategies in epiphyte metacommunities: alternative solutions to survival in patchy, dynamic landscapes. Oecologia 161: 569–579.  https://doi.org/10.1007/s00442-009-1402-1

  29. Longton, R.E. (2006) Reproductive ecology of bryophytes: What does it tell us about the significance of sexual reproduction? Lindbergia 31 (1/2): 16–23.

  30. Lönnell, N., Hylander, K., Jonsson, B.G. & Sundberg, S. (2012) The Fate of the Missing Spores — Patterns of Realized Dispersal beyond the Closest Vicinity of a Sporulating Moss. PLoS ONE 7 (7): e41987.  https://doi.org/10.1371/journal.pone.0041987

  31. Lönnell, N., Jonsson, B.G. & Hylander, K. (2014) Production of diaspores at the landscape level regulates local colonization: an experiment with a spore-dispersed moss. Ecography 37: 591–598.  https://doi.org/10.1111/j.1600-0587.2013.00530.x

  32. Maciel-Silva, A. & Calvacanti, K. (2014) Reproduction in bryophytes. In: Ramawat, K.G., Merillon, J.M. & Shivanna, K.R. (Eds.) Reproductive biology of plants. CRC Press, Boca Raton, pp. 57–84.

  33. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November, 2010, New Orleans, LA, pp. 1–8.  https://doi.org/10.1109/GCE.2010.5676129 

  34. Montagne, C. (1840) Seconde centurie de Plantes cellulaires exotiques nouvelles. Annales des Sciences Naturelles; Botanique, sér. 2 14 (6): 321–350.

  35. Mota de Oliveira, S. (2010) Diversity of epiphytic bryophytes across the amazon. Ponsen & Looijen, Utrecht, 154 pp.

  36. Mota de Oliveira, S., Temme, A., Erkens, R.H.J. & ter Steege, H. (2011) Dispersal and connectivity of populations of Cheilolejeunea rigidula (Lejeuneaceae) in Amazonian forests: a pilot study. Boletim Do Instituto de Botânica (São Paulo) 21: 133–139.

  37. Mota de Oliveira, S. & ter Steege, H. (2013) Floristic overview of the epiphytic bryophytes of terra firme forests across the Amazon basin. Acta Botanica Brasilica 27 (2): 347–363.  https://doi.org/10.1590/S0102-33062013000200010

  38. Müller, K., Müller, J., Neinhuis, C. & Quandt, D. (2006) PhyDE – Phylogenetic Data Editor, v0.995. Program distributed by the authors,

  39. Rambaut, A. (2014) FigTree v1.4.2, a graphical viewer of phylogenetic trees. [http://tree.bio.ed.ac.uk/software/figtree/]

  40. Schäfer-Verwimp, A., Lehnert, M. & Nebel, M. (2013) Contribution to the knowledge of the bryophyte flora of Ecuador. Phytotaxa 128 (1): 1–63.  https://doi.org/10.11646/phytotaxa.128.1.1

  41. Schuster, R.M. (1971) The Ecology and Distribution of Hepaticae in a Mahogany Hammock in Tropical Florida. Castanea 36 (2): 90–111.

  42. Schuster, R.M. (1983) Phytogeography of the bryophyta. In: Schuster, R.M. (Ed.) New manual of bryology, vol. 1. The Hattori Botanical Laboratory, Nichinan, pp. 463–626.

  43. Spruce, R. (1884) Hepaticae Amazonicae et Andinae, quas in itinere suo per tractus montium et fluviorum Americae Aequinoctialis, a fluminis Amazonum ostiis ad maris Pacifici litora usque, necnon a cataractis fluminis Orinoci, cis aequatorem, adusque fluvii Huallaga cataractas, lat. 6º–7º australi, Part I. Transactions and Proceedings of the Botanical Society of Edinburgh 15 (1): 1–308.

  44. Stech, M. & Quandt, D. (2010) 20,000 species and five key markers: the status of molecular bryophyte phylogenetics. Phytotaxa 9: 196–228.  https://doi.org/10.11646/phytotaxa.9.1.11

  45. Stephani, F. (1890) Hepaticae Africanae novae in insulis Bourbon, Maurice et Madagascar lectae. Botanical Gazette 15 (11): 281–292. https://doi.org/10.1086/326585

  46. Swofford, D.L. (2002) Phylogenetic analysis using parsimony. Version 4. Sinauer Associates, Sunderland, Massachusetts.

  47. Vanderpoorten, A., Patiño, J., Désamoré, A., Laenen, B., Gorski, P., Papp, B., Hola, E., Korpelainen, H. & Hardy, O.J. (2019) To what extent are bryophytes efficient dispersers? Journal of Ecology 107: 2149–2154.  https://doi.org/10.1111/1365-2745.13161

  48. Vekemans, X. & Hardy, O.J. (2004) New insights from fine‐scale spatial genetic structure analyses in plant populations. Molecular Ecology 13 (4): 921–935.  https://doi.org/10.1046/j.1365-294X.2004.02076.x

  49. Wang, J., Gradstein, S.R., Shi, X.-Q. & Zhu, R.L. (2014) Phylogenetic position of Trocholejeunea and a new infrageneric classification of Acrolejeunea (Lejeuneaceae, Marchantiophyta). Bryophyte Diversity and Evolution 36 (1): 31–44.  https://doi.org/10.11646/bde.36.1.3

  50. Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38 (6): 1358–1370.

  51. Wright, S. (1943) Isolation by distance. Genetics 28 (2): 114–138. https://doi.org/10.1093/genetics/28.2.114

  52. Ye, W., Gradstein, S.R., Shaw, A.J., Shaw, B., Ho, B.-C., Schäfer-Verwimp, A., Pócs, T., Heinrichs, J. & Zhu, R.-L. (2015) Phylogeny and classification of Lejeuneaceae subtribe Cheilolejeuneinae (Marchantiophyta) based on nuclear and plastid molecular markers. Cryptogamie, Bryologie 36 (4): 313–373.  https://doi.org/10.7872/cryb/v36.iss4.2015.313