Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-03-10
Page range: 8-28
Abstract views: 618
PDF downloaded: 387

Spiny Tails and Clades: A Fully Sampled Phylogeny of Hoplocercine Lizards (Iguanidae/ Hoplocercinae) and its Taxonomic and Nomenclatural Implications

Museo de Zoología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, Apartado 17-01-2184, Quito-Ecuador, 2Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, MRC 162, Washington, DC 20560, USA
Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, MRC 162, Washington, DC 20560, USA
Enyalioides Hoplocercus Morunasaurus Neotropics PhyloCode species tree Squamata

Abstract

Hoplocercine lizards (Enyalioides, Morunasaurus, and Hoplocercus) form a clade of ca. 20 currently recognized species. The phylogenetic relationships among hoplocercine lizards, whose members exhibit striking differences in morphology (e.g., spiny vs. non-spiny tails), have not been clearly resolved by previous molecular phylogenetic studies. We generated a considerably larger dataset including 130 new DNA sequences from one mitochondrial and four nuclear loci for all named and two unnamed species of Hoplocercinae. We analyzed the data under concatenated maximum likelihood (RAxML) and Bayesian (MrBayes) as well as summary coalescent (ASTRAL) approaches. While our phylogenetic hypotheses strongly supported the monophyly of Hoplocercinae, neither Enyalioides nor Morunasaurus was supported as monophyletic. Instead, M. groi was inferred with strong support to form a clade with E. heterolepis and E. laticeps. This clade was in turn the sister taxon to other species of Morunasaurus (M. annularis, M. peruvianus). The remaining species of Enyalioides formed a separate clade with a basal split between western (3 species) and eastern (13 species) subclades. Tree topology tests rejected the monophyly of Enyalioides but failed to reject monophyly of Morunasaurus, suggesting that further study is needed to resolve its taxonomic status. Based on our results, we establish the converted clade names Hoplocercinae, Hoplocercus, Enyalioides, and Morunasaurus, as well as the new clade name Zimiamviasaurus.

 

References

  1. Alifanov, V. R. 1996. Lizard families Priscagamidae and Hoplocercidae (Sauria, Iguania): Phylogenetic position and new representatives from the Late Cretaceous of Mongolia. Paleontological Journal 30:466–483 [Paleontologicheskii Zhurnal 3:100–118].
  2. Arbour, V. M., and L. E. Zanno. 2018. The evolution of tail weaponization in amniotes. Proceedings of the Royal Society B 285:20172299. https://doi.org/10.1098/rspb.2017.2299
  3. Avila-Pires, T. C. S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen 299:1–706.
  4. Bocourt, M. F. 1874. Deux notes sur quelques sauriens de l’Amerique tropicale. Annales des Sciences Naturelles. Zoologie et Biologie Animale 19:1–5.
  5. Boulenger, G. A. 1881. Description of a new species of Enyalius in the Brussels Museum. Proceedings of the Zoological Society of London 1881:246–247. [https://biostor.org/reference/70291]
  6. Boulenger, G. A. 1883. Description of a new species of lizard of the genus Enyalius. Proceedings of the Zoological Society of London 1883:46. https://doi.org/10.1111/j.1469-7998.1883.tb06642.x
  7. Boulenger, G. A. 1885. Catalogue of the Lizards in the British Museum (Natural History), II. Taylor and Francis, London.
  8. Brown, R. W. 1954. Composition of Scientific Words, a Manual of Methods and a Lexicon of Materials for the Practice of Logotechnics. R. W. Brown, Washington, D.C.
  9. Burt, C. E., and M. D. Burt. 1933. A preliminary check list of the lizards of South America. Transactions of the Academy of Science of St. Louis 28:1–104. [https://biostor.org/reference/132199]
  10. Cantino, P. D., and K. de Queiroz. 2020. International Code of Phylogenetic Nomenclature (PhyloCode). CRC Press - Taylor & Francis Group, Boca Raton, Florida.
  11. Cooper, W. Jr., J. H. van Wyk, P. Le F. N. Mouton, A. M. Al-Johany, J. A. Lemos-Espinal, M. A. Paulissen, and M. Flowers. 2000. Lizard antipredatory behaviors preventing extraction from crevices. Herpetologica 56:394–401. [https://www.jstor.org/stable/3893416]
  12. Cope, E. D. 1876. Report on the reptiles brought by professor James Orton from the middle and upper Amazon, and western Peru. Journal of the Academy of Natural Sciences of Philadelphia 8:159–183. [https://biostor.org/reference/48994]
  13. de Queiroz, K. 1998. The general lineage concept of species, species criteria, and the process of speciation. Pp. 57–75 in Endless Forms: Species and Speciation (D. J. Howard, and S. H. Berlocher, eds.). Oxford University Press, Oxford.
  14. de Queiroz, K. 2007. Species concepts and species delimitation. Systematic Biology 56:879–886. https://doi.org/10.1080/10635150701701083
  15. Drummond, A. J., A. Rambaut, and M. A. Suchard. 2019. TreeAnnotator, version 1.10.5. Available at: http://beast.bio.ed.ac.uk
  16. Duméril, A. 1854. Essai d’application à la classe des reptiles d’une distribution par séries parallèles et description d’un saurien type d’un genre nouveau dans la famille des Iguaniens (le Pachycerque). Revue et Magasin de Zoologie Pure et Appliquée 6:544–562.
  17. Dunn, E. R. 1933. Amphibians and reptiles from El Valle de Anton, Panama. Occasional Papers of the Boston Society of Natural History 8:65–79.
  18. Eddison, E. R. 1922. The Worm Ouroboros. Jonathan Cape, London.
  19. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797. https://doi.org/10.1093/nar/gkh340
  20. Estes, R., and L. I. Price. 1973. Iguanid lizard from the Upper Cretaceous of Brazil. Science 180:748–751. https://doi.org/10.1126/science.180.4087.748
  21. Etheridge, R. 1969. A review of the iguanid lizard genus Enyalius. Bulletin of the British Museum (Natural History), Zoology 18:233–260. https://doi.org/10.5962/bhl.part.18421
  22. Etheridge, R., and K. de Queiroz. 1988. A phylogeny of Iguanidae. Pp. 283–367 in Phylogenetic Relationships of the Lizard Families (R. Estes, and G. Pregill, eds.). Stanford University Press, Stanford, California.
  23. Fitzinger, L. 1843. Systema Reptilium. Fasciculus Primus. Amblyglossae. Braumüller et Seidel, Vindobonae. https://doi.org/10.5962/bhl.title.4694
  24. Frost, D. R., and R. Etheridge. 1989. A phylogenetic analysis and taxonomy of iguanian lizards (Reptilia: Squamata). Miscellaneous Publications University of Kansas Museum of Natural History 81:1–65. https://doi.org/10.5962/bhl.title.16288
  25. Frost, D. R., R. Etheridge, D. Janies, and T. A. Titus. 2001. Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). American Museum Novitates 3343:1–38. https://doi.org/10.1206/0003-0082(2001)343%3C0001:TESAEO%3E2.0.CO;2
  26. Greene, H.W. 1977. Lizards of the genus Uracentron (Iguanidae) in east-central Colombia. Herpetologica 33:256–260. https://www.jstor.org/stable/3891504
  27. Guichenot, A. 1855. Reptiles. Pp. 1–95 in Animaux Nouveaux ou Rares Recueillis Pendant l’Expédition dans les Parties Centrales de l’Amérique du Sud, de Rio de Janeiro a Lima, et de Lima au Para; Exécutée par Ordre du Gouvernement Français Pendant les Années 1843 a 1847, sous la Direction du Comte Francis de Castelnau (F. Castelnau, ed.). T. 2, Pt. 2. Chez P. Bertrand, Libraire-Éditeur, Paris.
  28. Guindon, S., J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59:307–321. https://doi.org/10.1093/sysbio/syq010
  29. Gundy, G. C., and G. Z. Wurst. 1976. The occurrence of parietal eyes in Recent Lacertilia (Reptilia). Journal of Herpetology 10:113–121. https://doi.org/10.2307/1562791
  30. ICZN. 1999. International Code of Zoological Nomenclature. International Trust for Zoological Nomenclature. The Natural History Museum, London, U.K.
  31. iNaturalist. <https://www.inaturalist.org> Accessed February 2022.
  32. Köhler, G., R. Seipp, S. Moya, and A. Almendáriz. 1999. Zur Kenntnis von Morunasaurus annularis (O’Shaughnessyi, 1881). Salamandra 35:181–190.
  33. Köhler, G. 2003. A new species of Morunasaurus from Peru. Senckenbergiana Biologica 82:235–241.
  34. Kumazawa, Y., and M. Nishida. 1993. Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. Journal of Molecular Evolution 37:380–398. [https://link.springer.com/article/10.1007/BF00178868]
  35. Lanfear, R., B. Calcott, S. Y. W. Ho, and S. Guindon. 2012. Partition-Finder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29:1695–1701. https://doi.org/10.1093/molbev/mss020
  36. Lanfear, R., P. B. Frandsen, A. M. Wright, T. Senfeld, and B. Calcott. 2017. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34:772–773. https://doi.org/10.1093/molbev/msw260
  37. Macey, J. R., A. Larson, N. B. Ananjeva, Z. Fang, and T. J. Papenfuss. 1997a. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution 14:91–104. https://doi.org/10.1093/oxfordjournals.molbev.a025706
  38. Macey, J. R., A. Larson, N. B. Ananjeva, and T. J. Papenfuss. 1997b. Evolutionary shifts in three major structural features of the mitochondrial genome among iguanian lizards. Journal of Molecular Evolution 44:660–674. https://doi.org/10.1007/pl00006190
  39. Maddison, W. P., and D. R. Maddison. 2019. Mesquite: A modular system for evolutionary analysis, version 3.61. Available at http://mesquiteproject.org
  40. Malone, C. L., V. H. Reynoso, and L. Buckely. 2017. Never judge an iguana by its spines: Systematics of the Yucatan spiny tailed iguana, Ctenosaura defensor (Cope, 1866). Molecular Phylogenetics and Evolution 115:27–39. http://dx.doi.org/10.1016/j.ympev.2017.07.010
  41. Miller, M., W. Pfeiffer, and T. Schwartz. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments 1101 Workshop (GCE), IEEE. https://doi.org/10.1109/GCE.2010.5676129
  42. Mirarab, S., R. Reaz, M. S. Bayzid, T. Zimmermann, M. S. Swenson, and T. Warnow. 2014. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30:i541–i548. https://doi.org/10.1093/bioinformatics/btu462
  43. Nascimento, F. P., T. C. S. Ávila-Pires, and O. R. da Cunha. 1988. Répteis Squamata de Rondônia e Mato Grosso coletados através do programa Polonoroeste. Boletim do Museu Paraense Emílio Goeldi. Série Zoologia 4:21–66. https://repositorio.museu-goeldi.br/handle/mgoeldi/395
  44. Noonan, B. P., and P. T. Chippindale. 2006. Dispersal and vicariance: The complex evolutionary history of boid snakes. Molecular Phylogenetics and Evolution 40:347–358. https://doi.org/10.1016/j.ympev.2006.03.010
  45. Noonan, B. P., J. B. Pramuk, R. L. Bezy, E. A. Sinclair, K. de Queiroz, and J. W. Sites. 2013. Phylogenetic relationships within the lizard clade Xantusiidae: Using trees and divergence times to address evolutionary questions at multiple levels. Molecular Phylogenetics and Evolution 69:109–122. https://doi.org/10.1016/j.ympev.2013.05.017
  46. O’Shaughnessy, A. W. E. 1881. An account of the collection of lizards made by Mr. Buckley in Ecuador, and now in the British Museum, with descriptions of the new species. Proceedings of the Zoological Society of London 1881:227–245. [https://biostor.org/reference/69288]
  47. Peters, J. A., and R. Donoso-Barros. 1970. Catalogue of the neotropical Squamata: Part II. Lizards and amphisbaenians. United States National Museum Bulletin 297:1–293. [https://doi.org/10.5962/bhl.title.46653]
  48. Rabiee, M., E. Sayyari, and S. Mirarab. 2019. Multi-allele species reconstruction using ASTRAL. Molecular Phylogenetics and Evolution 130:286–296. https://doi.org/10.1016/j.ympev.2018.10.033
  49. Ramm, T., E. J. Roycroft, and J. Müller. 2020. Convergent evolution of tail spines in squamate reptiles driven by microhabitat use. Biology Letters 16:20190848. https://doi.org/10.1098/rsbl.2019.0848
  50. Ribeiro-Júnior, M. A. 2015. Catalogue of distribution of lizards (Reptilia: Squamata) from the Brazilian Amazonia. I. Dactyloidae, Hoplocercidae, Iguanidae, Leiosauridae, Polychrotidae, Tropiduridae. Zootaxa 3983:1–110. https://doi.org/10.11646/zootaxa.3983.1.1
  51. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539–542. https://doi.org/10.1093/sysbio/sys029
  52. Sabaj, M. H. 2020. Codes for natural history collections in ichthyology and herpetology. Copeia 108:593–669. https://doi.org/10.1643/ASIHCODONS2020
  53. Sayyari, E., and S. Mirarab. 2016. Fast coalescent-based computation of local branch support from quartet frequencies. Molecular Biology and Evolution 33:1654–1668. https://doi.org/10.1093/molbev/msw079
  54. Schulte, J. A., II, J. R. Macey, A. Larson, and T. J. Papenfuss. 1998. Molecular tests of phylogenetic taxonomies: a general procedure and example using four subfamilies of the lizard family Iguanidae. Molecular Phylogenetics and Evolution 10:367–376. https://doi.org/10.1006/mpev.1998.0541
  55. Schulte, J. A. II, J. P. Valladares, and A. Larson. 2003. Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of iguanian lizards. Herpetologica 59:399–419. https://doi.org/10.1655/02-48
  56. Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16:1114–1116. https://doi.org/10.1093/oxfordjournals.molbev.a026201
  57. Shimodaira, H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51:492–508. https://doi.org/10.1080/10635150290069913
  58. Smith, H. M., G. Sinelnik, J. D. Fawcett, and R. E. Jones. 1973. A survey of the chronology of ovulation in anoline lizard genera. Transactions of the Kansas Academy of Science 75:107–120. https://doi.org/10.2307/3627160
  59. Stamatakis, A., P. Hoover, and J. Rougemont. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology 57:758–771. https://doi.org/10.1080/10635150802429642
  60. Stamatakis, A. 2014. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  61. Swofford, D. L. 2003. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4. Sinauer Associates, Sunderland, Massachusetts.
  62. Torres-Carvajal, O., and K. de Queiroz. 2009. Phylogeny of hoplocercine lizards (Squamata: Iguania) with estimates of relative divergence times. Molecular Phylogenetics and Evolution 50:31–43. https://doi.org/10.1016/j.ympev.2008.10.002
  63. Torres-Carvajal, O., R. Etheridge, and K. de Queiroz. 2011. A systematic revision of Neotropical lizards in the clade Hoplocercinae (Squamata: Iguania). Zootaxa 2752:1–44. https://doi.org/10.11646/zootaxa.2752.1.1
  64. Torres-Carvajal, O., P. J. Venegas, and K. de Queiroz. 2015. Three new species of woodlizards (Hoplocercinae, Enyalioides) from northwestern South America. ZooKeys 494:107–132. https://doi.org/10.3897/zookeys.494.8903
  65. Torres-Carvajal, O., K. de Queiroz, and J. A. Schulte II. 2020. Iguanidae T. Bell 1825 [O. Torres-Carvajal, K. de Queiroz and J. A. Schulte II], converted clade name. Pp. 1159–1164 in Phylonyms. A Companion to the Phylocode. (K. de Queiroz, P. D. Cantino, and J. A. Gauthier, eds.). CRC Press - Taylor & Francis Group, Boca Raton, Florida.
  66. Torres-Carvajal, O., G. Pazmiño-Otamendi, F. Ayala-Varela, and D. Salazar-Valenzuela. 2022. Reptiles del Ecuador. Version 2022.1. Museo de Zoología, Pontificia Universidad Católica del Ecuador. <https://bioweb.bio/faunaweb/reptiliaweb> Accessed February 2022.
  67. Townsend, T. M., R. E. Alegre, S. T. Kelley, J. J. Wiens, and T. W. Reeder. 2008. Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources: an example from squamate reptiles. Molecular Phylogenetics and Evolution 47:129–142. https://doi.org/10.1016/j.ympev.2008.01.008
  68. Vásquez-Restrepo, J. D. 2021. 35 years behind the scenes: range extension of the rare Gro’s manticore, Morunasaurus groi (Squamata, Hoplocercidae), in Colombia. Papéis Avulsos de Zoologia 61:e20216163. https://doi.org/10.11606/1807-0205/2021.61.63
  69. Venegas, P., O. Torres-Carvajal, V. Duran, and K. de Queiroz. 2013. Two sympatric new species of woodlizards (Hoplocercinae, Enyalioides) from Cordillera Azul National Park in northeastern Peru. ZooKeys 277:69–90. https://doi.org/10.3897/zookeys.277.3594
  70. Venegas, P., G. Chávez, L. A. García-Ayachi, V. Duran, and O. Torres-Carvajal. 2021. A new species of wood lizard (Hoplocercinae, Enyalioides) from the Río Huallaga Basin in Central Peru. Evolutionary Systematics 5:263–273. https://doi.org/10.3897/evolsyst.5.69227
  71. Wagler, J. 1830. Natürliches System der Amphibien, mit vorangehender Classification der Säugthiere und Vögel. Ein Beitrag zur vergleichenden Zoologie. Cotta’schen, München. https://doi.org/10.5962/bhl.title.108661
  72. Wiens, J. J., and R. Etheridge. 2003. Phylogenetic relationships of hoplocercid lizards: Coding and combining meristic, morphometric, and polymorphic data using step matrices. Herpetologica 59:375–398. [https://www.jstor.org/stable/3893614]