Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-12-23
Page range: 459-468
Abstract views: 806
PDF downloaded: 226

Mandibular biomechanics of Acheroraptor temertyorum (Theropoda: Dromaeosauridae) with implications for the feeding ecology and behaviour

Independent Researcher, Incheon 21974, Republic of Korea
Dinosauria Theropoda Dromaeosauridae Saurornitholestinae Velociraptorinae Beam theory Mandible

Abstract

Acheroraptor temertyorum is a dromaeosaurid theropod, probably a saurornitholestine, found in the upper Maastrichtian Hell Creek Formation of Montana. This enigmatic dromaeosaurid is known from only a partial maxilla and dentary, as well as referred isolated teeth, making even the general aspects of its palaeobiology largely elusive. In this work, beam theory is applied to the lower jaw of Acheroraptor temertyorum to document the biomechanical properties of the mandible of this taxon and to infer the feeding mechanism of this dinosaur. This work suggests the lower jaw of Acheroraptor temertyorum is mainly adapted to produce rapid, slashing bites, as previously inferred for other dromaeosaurids. Intriguingly, despite having a closer phylogenetic affinity with Saurornitholestes langstoni, overall biomechanical properties of the lower jaw of Acheroraptor temertyorum are found to be weaker than the former taxon, but rather comparable to Asian velociraptorines. Such results may indicate Acheroraptor temertyorum preyed on smaller animals compared to other saurornitholestines, and suggest diets or predation methods of saurornitholestine dromaeosaurids might have been more diverse than previously assumed.

References

  1. Bishop, P.J. (2019) Testing the function of dromaeosaurid (Dinosauria, Theropoda) ‘sickle claws’ through musculoskeletal modelling and optimization. PeerJ, 7, e7577. https://doi.org/10.7717/peerj.7577
  2. Currie, P.J. & Evans, D.C. (2020) Cranial anatomy of new specimens of Saurornitholestes langstoni (Dinosauria, Theropoda, Dromaeosauridae) from the Dinosaur Park Formation (Campanian) of Alberta. The Anatomical Record, 303, 691–715. https://doi.org/10.1002/ar.24241
  3. Erickson, G.M., Gignac, P.M., Steppan, S.J., Lappin, A.K., Vliet, K.A., Brueggen, J.D., Inouye, B.D., Kledzik, D. & Webb, G.J.W. (2012) Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation. PLoS ONE, 7, e31781. https://doi.org/10.1371/journal.pone.0031781
  4. Erickson, G.M., Lappin, A.K. & Vliet, K.A. (2003) The ontogeny of bite-force performance in American alligator (Alligator mississippiensis). Journal of Zoology, 260, 317–327. https://doi.org/10.1017/S0952836903003819
  5. Erickson, G.M., Lappin, A.K., Parker, T. & Vliet, K.A. (2004) Comparison of bite-force performance between long-term captive and wild American alligators (Alligator missippiensis). Journal of Zoology, 262, 21–28. https://doi.org/10.1017/S0952836903004400
  6. Evans, D.C., Larson, D.W. & Currie, P.J. (2013) A new dromaeosaurid (Dinosauria: Theropoda) with Asian affinities from the latest Cretaceous of North America. Naturwissenschaften, 100, 1041–1049. https://doi.org/10.1007/s00114-013-1107-5.
  7. Fowler, D.W., Freedman, E.A., Scannella, J.B. & Kambic, R.E. (2011) The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds. PLoS ONE, 6, e28964. https://doi.org/10.1371/journal.pone.0028964
  8. Gianechini, F.A., Ercoli, M.D. & Díaz-MartDínez, I. (2020) Differential locomotor and predatory strategies of Gondwanan and derived Laurasian dromaeosaurids (Dinosauria, Theropoda, Paraves): inferences from morphometric and comparative anatomical studies. Journal of Anatomy, 236, 772–797. https://doi.org/10.1111/joa.13153
  9. Gignac, P.M. & Erickson, G.M. (2015) Ontogenetic changes in dental form and tooth pressures facilitate developmental niche shifts in American alligators. Journal of Zoology, 295, 132–142. https://doi.org/10.1111/jzo.12187
  10. Gignac, P.M. & Erickson, G.M. (2017) The biomechanics behind extreme osteophagy in Tyrannosaurus rex. Scientific Reports, 7, 2012. https://doi.org/10.1038/s41598-017-02161-w
  11. Henderson, D.M. (1998) Skull and tooth morphology as indicators of niche partitioning in sympatric Morrison Formation theropods. Gaia, 15, 219–226.
  12. Hendrickx, C., Mateus, O., Araújo, R. & Choiniere, J. (2019) The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends. Palaeontologia Electronica, 22, 1–110. https://doi.org/10.26879/820
  13. Holtz Jr., T.R. (2021) Theropod guild structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for predatory dinosaur macroecology and ontogeny in later Late Cretaceous Asiamerica. Canadian Journal of Earth Sciences, 58, 778–795. https://doi.org/10.1139/cjes-2020-0174
  14. Hone, D.W.E., Dececchi, T.A., Sullivan, C., Xing, X. & Larsson, H.C.E. (2023) Generalist diet of Microraptor zhaoianus included mammals. Journal of Vertebrate Paleontology, 42, e2144337. https://doi.org/10.1080/02724634.2022.2144337
  15. Jasinski, S.E. (2011) Biomechanical modeling of Coelophysis bauri: possible feeding methods and behavior of a Late Triassic theropod. New Mexico Museum of Natural History and Science Bulletin, 53, 195–201.
  16. Jasinski, S.E. (2015) A new dromaeosaurid (Theropoda, Dromaeosauridae) from the Late Cretaceous of New Mexico. New Mexico Museum of Natural History and Science Bulletin, 67, 79–87.
  17. Jasinski, S.E., Sullivan, R.M., Carter, A.M., Johnson, E.H., Dalman, S.G., Zariwala, J. & Currie, P.J. (2023) Osteology and reassessment of Dineobellator notohesperus, a southern eudromaeosaur (Theropoda: Dromaeosauridae: Eudromaeosauria) from the latest Cretaceous of New Mexico. The Anatomical Record, 306, 1712–1756. https://doi.org/10.1002/ar.25103
  18. Jasinski, S.E., Sullivan, R.M. & Dodson, P. (2020) New dromaeosaurid dinosaur (Theropoda, Dromaeosauridae) from New Mexico and biodiversity of dromaeosaurids at the end of the Cretaceous. Scientific Reports, 10, 5105. https://doi.org/10.1038/s41598-020-61480-7
  19. Juarez, K.M. & Marinho-Filho, J. (2002) Diet, habitat use, and home ranges of sympatric canids in central Brazil. Journal of Mammalogy, 83, 925–933. https://doi.org/10.1644/1545-1542(2002)083<0925:DHUAHR>2.0.CO;2
  20. King, J.L., Sipla, J.S., Georgi, J.A., Balanoff, A.M. & Neenan, J.M. (2020) The endocranium and trophic ecology of Velociraptor mongoliensis. Journal of Anatomy, 237, 861–869. https://doi.org/10.1111/joa.13253
  21. Longrich, N.R. & Currie, P.J. (2009) A microraptorine (Dinosauria—Dromaeosauridae) from the Late Cretaceous of North America. Proceedings of the National Academy of Sciences, 106, 5002–5007. https://doi.org/10.1073/pnas.0811664106
  22. Monfroy, Q.T. (2017) Correlation between the size, shape and position of the teeth on the jaws and the bite force in Theropoda. Historical Biology, 29, 1089–1105. https://doi.org/10.1080/08912963.2017.1286652
  23. Norell, M.A. & Makovicky, P.J. (2004) Dromaeosauridae. In: Weishampel, D.B., Dodson, P. & Osmólska, H. (Eds), The Dinosauria: Second Edition. University of California Press, Buckley, California, 196–209. https://doi.org/10.1525/california/9780520242098.003.0012
  24. Poust, A.W., Gao, C., Varricchio, D.J., Wu, J. & Zhang, F. (2020) A new microraptorine theropod from the Jehol Biota and growth in early dromaeosaurids. The Anatomical Record, 303, 963–987. https://doi.org/10.1002/ar.24343
  25. Powers, M.J., Fabbri, M., Doschak, M.R., Bhullar, B.A.S., Evans, D.C., Norell, M.A. & Currie, P.J. (2022) A new hypothesis of eudromaeosaurian evolution: CT scans assist in testing and constructing morphological characters. Journal of Vertebrate Paleontology, 41, e2010087. https://doi.org/10.1080/02724634.2021.2010087
  26. Powers, M.J., Sullivan, C. & Currie, P.J. (2020) Re-examining ratio based premaxillary and maxillary characters in Eudromaeosauria (Dinosauria: Theropoda): Divergent trends in snout morphology between Asian and North American taxa. Palaeogeography, Palaeoclimatology, Palaeoecology, 547, 109704. https://doi.org/10.1016/j.palaeo.2020.109704
  27. Rayfield, E.J. (2004) Cranial mechanics and feeding in Tyrannosaurus rex. Proceedings of the Royal Society of London Series B, 271, 1451–1459. https://doi.org/10.1098/rspb.2004.2755
  28. Roach, B.T. & Brinkman, D.L. (2007) A reevaluation of cooperative pack hunting and gregariousness in Deinonychus antirrhopus and other nonavian theropod dinosaurs. Bulletin of the Peabody Museum of Natural History, 48, 103–138. https://doi.org/10.3374/0079-032X(2007)48[103:AROCPH]2.0.CO;2
  29. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089
  30. Segura, V., Cassini, G.H. & Prevosti, F.J. (2021) Evolution of cranial ontogeny in south American canids (carnivora: Canidae). Evolutionary Biology, 48, 170–189. https://doi.org/10.1007/s11692-020-09529-3
  31. Senter, P. (2009) Pedal function in deinonychosaurs (Dinosauria: Theropoda): a comparative study. Bulletin of the Gunma Museum of Natural History, 13, 1–14.
  32. Slater, G.J., Dumont, E.R. & Van Valkenburgh, B. (2009) Implications of predatory specialization for cranial form and function in canids. Journal of Zoology, 278, 181–188. https://doi.org/10.1111/j.1469-7998.2009.00567.x
  33. Therrien, F. (2005) Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. Journal of Zoology, 267, 249–270. https://doi.org/10.1017/S0952836905007430
  34. Therrien, F., Henderson, D. & Ruff, C.B. (2005) Bite me: biomechanical models of theropod mandibles and implications for feeding behavior. In: Carpenter, K. (Ed.), The Carnivorous Dinosaurs. Indiana University Press, Bloomington, 179−237.
  35. Therrien, F., Quinney, A., Tanaka, K. & Zelenitsky, D.K. (2016) Accuracy of mandibular force profiles for bite force estimation and feeding behavior reconstruction in extant and extinct carnivorans. The Journal of Experimental Biology, 219, 3738–3749. https://doi.org/10.1242/jeb.143339
  36. Therrien, F., Zelenitsky, D.K., Voris, J.T. & Tanaka, K. (2021) Mandibular force profiles and tooth morphology in growth series of Albertosaurus sarcophagus and Gorgosaurus libratus (Tyrannosauridae: Albertosaurinae) provide evidence for an ontogenetic dietary shift in tyrannosaurids. Canadian Journal of Earth Sciences, 58, 812–828. https://doi.org/10.1139/cjes-2020-0177
  37. Tse, Y.T., Miller, C.V. & Pittman, M. (2024) Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history. BMC Ecology and Evolution, 24, 39. https://doi.org/10.1186/s12862-024-02222-5
  38. Turner, A.H., Makovicky, P.J. & Norell, M.A. (2012) A review of dromaeosaurid systematics and paravian phylogeny. Bulletin of the American Museum of Natural History, 371, 1–206. https://doi.org/10.1206/748.1
  39. Van Valkenburgh, B. & Ruff, C.B. (1987) Canine tooth strength and killing behaviour in large carnivores. Journal of Zoology, 212, 379–397. https://doi.org/10.1111/j.1469-7998.1987.tb02910.x
  40. Yun, C.G. (2024) Mandibular force profiles of Alioramini (Theropoda: Tyrannosauridae) with implications for palaeoecology of this unique lineage of tyrannosaurid dinosaurs. Lethaia, 57, 1–12. https://doi.org/10.18261/let.57.2.6