Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-26
Page range: 264-275
Abstract views: 149
PDF downloaded: 82

New zircon U-Pb age of the top Duoni Formation, Basu County: constraits on the collision between Qiangtang and Lhasa blocks in Eastern Tibet

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
School of Earth Sciences, East China University of Technology, Nanchang, Jiangxi 330013, China
School of Resources and Environment, Xichang University, Xichang 615000, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
Early Cretaceous Aptain–Albian Bangong-Nujiang belt Zircon U-Pb

Abstract

The Duoni Formation is widely distributed along the Bangong-Nujiang suture belt and surrounding blocks in Tibet, serving as a key sedimentary record of the collision between the Qiangtang and Lhasa blocks. The upper sections of the formation typically contain andesite, volcanic rocks and tuff offering potential for precise stratigraphic correlations across the suture belt. The Duoni Formation in the central and western belt has been well-constrained geochronologically through zircon U-Pb dating; however, the insufficient age constraints on Duoni Formation in eastern Tibet hinder effective stratigraphic correlation and limit the understanding of the timing of this collision. Building on prior stratigraphic and paleontological studies, we collected three tuff samples from the upper Duoni Formation at the Wada coal mine section in Basu County, eastern Tibet. Zircon U-Pb dating was used to determine the age of the Duoni Formation, yielding results of 112.8 ± 1.0 Ma for sample XZ01, 111.48 ± 0.37 Ma for sample XZ03, and 110.95 ± 0.41 Ma for sample XZ05. These absolute ages correspond with early Albian and are generally consistent with those absolute ages from the central and western suture belt. Our study therefore suggests the similar timing for the Qiangtang-Lhasa collision across the whole Bangong-Nujiang belt.

References

  1. Chen, F. & Yang, G. (1982) Lower Cretaceous plants from Pingquan, Hebei Province and Beijing, China. Acta Botanica Sinica, 24, 575–580.
  2. Chen, J., Cao, M., Lin, Q. & Liu, X. (1983) The Jingxing fossil fauna was discovered in eastern Tibet. Chinese Science Bulletin, 19, 1187–1190. https://doi.org/10.1360/csb1983-28-19-1187
  3. Chen, Y., Ding, L., Li, Z., Laskowski, A.K., Li, J., Baral, U., Qasim, M. & Yue, Y. (2020) Provenance analysis of Cretaceous peripheral foreland basin in central Tibet: implications to precise timing on the initial Lhasa-Qiangtang collision. Tectonophysics, 775, 228311. https://doi.org/10.1016/j.tecto.2019.228311
  4. Fan, J., Li, C., Xie, C., Wang, M. & Chen, J. (2015) The evolution of the Bangong-Nujiang Neo-Tethys ocean: evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites. Tectonophysics, 655, 27–40. https://doi.org/10.1016/j.tecto.2015.04.019
  5. Fan, S.Y., Ding, L., Murphy, M.A., Yao, W. & Yin, A. (2017) Late Paleozoic and Mesozoic evolution of the Lhasa Terrane in the Xainza area of southern Tibet. Tectonophysics, 721, 415–434. https://doi.org/10.1016/j.tecto.2017.10.022
  6. Girardeau, J., Marcoux, J., Allegre, C.J., Bassoullet, J.P., Tang, Y.K., Xiao, X.C., Zao, Y.G. & Wang, X.B. (1984) Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307, 27–31. https://doi.org/10.1038/307027a0
  7. Hu, X., Ma, A., Xue, W., Garzanti, E., Cao, Y., Li, S.M., Sun, G. & Lai, W. (2022) Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 229, 104031. https://doi.org/10.1016/j.earscirev.2022.104031
  8. Kapp, P., Yin, A., Harrison, T.M. & Ding, L. (2005) Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117. https://doi.org/10.1130/b25595.1
  9. Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M. & Ding, L. (2007) Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119, 917–933. https://doi.org/10.1130/b26033.1
  10. Kong, C., Zhang, Z., Wu, Y., Jiao, S., Cao, Y., Duan, K. & Zhi, S. (2019) Geochemical characteristics, chronology and geological significance of volcanic rocks in Duoni Formation in the north of Wuma Township,Gaize County,Tibet. Mineral Exploration, 6, 1304–1315. https://doi.org/CNKI:SUN:YSJS.0.2019-06-017
  11. Košler, J. (2007) Laser ablation ICP-MS—a new dating tool in Earth science. Proceedings of the Geologists’ Association, 118, 19–24. https://doi.org/10.1016/S0016-7878(07)80043-5
  12. Lai, W., Hu, X., Garzanti, E., Xu, Y., Ma, A. & Li, W. (2019) Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Research, 73, 136–152. https://doi.org/10.1016/j.gr.2019.03.016
  13. Li, P. (1982) Preliminary study of early Cretaceous plant fossils from the Duoni Formation in eastern Tibet. Stratigraphy and Paleontology of the Eastern Tibetan Plateau and Western Sichuan, 71–105.
  14. Li, S., Yin, C., Ding, L., Guilmette, C., Zhang, J., Yue, Y. & Baral, U. (2020) Provenance of Lower Cretaceous sedimentary rocks in the northern margin of the Lhasa terrane, Tibet: implications for the timing of the Lhasa-Qiangtang collision. Journal of Asian Earth Sciences, 190. https://doi.org/10.1016/j.jseaes.2019.104162
  15. Ma, A., Hu, X., Garzanti, E., Boudagher-Fadel, M., Xue, W., Han, Z. & Wang, P. (2023) Paleogeographic and tectonic evolution of Mesozoic Qiangtang basins (Tibet). Tectonophysics, 862. https://doi.org/10.1016/j.tecto.2023.229957
  16. Sun, G., Hu, X. & Sinclair, H.D. (2017) Early Cretaceous palaeogeographic evolution of the Coqen basin in the Lhasa Terrane, southern Tibetan plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 101–118. https://doi.org/10.1016/j.palaeo.2017.06.006
  17. Taylor, M., Yin, A., Ryerson, F.J., Kapp, P. & Ding, L. (2003) Conjugate strike‐slip faulting along the Bangong‐Nujiang suture zone accommodates coeval east‐west extension and north‐south shortening in the interior of the Tibetan Plateau. Tectonics, 22. https://doi.org/10.1029/2002TC001383
  18. Wang, B., Wang, L., Chung, S., Chen, J., Yin, F., Liu, H., Li, X. & Chen, L. (2016) Evolution of the Bangong–Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245, 18–33. https://doi.org/10.1016/j.lithos.2015.07.016
  19. Wu, Y. (1985) The early Cretaceous Coal-bearing strata and flora in Xizang. Contribution to the geology of the Qinghai-Xizang (Tibet) Plateau.
  20. Yang, S. & Chen, J. (1983) The Age of the Doni Formation from the Bivalve Fossils. Journal of Stratigraphy, 7, 285–288.
  21. Yang, D., Hu, B., Dong, Q. & Wang, T. (2009) Lithostratigraphy and sedimentary environment in Lower Cretaceous Duoni Formation in Baga area of Jiali,Tibet. Global Geology, 28, 280–283. https://doi.org/10.1042/BSR20080061
  22. Yin, Z., Ding, L., Li, J., He, Z., Wang, H., Wang, C., Wang, L., Zhao, C., Deng, G., Yue, Y., Xie, J. & Cai, F. (2024) The Cretaceous suturing process of the eastern Bangong-Nujiang Ocean, Basu area. Palaeogeography, Palaeoclimatology, Palaeoecology, 642. https://doi.org/10.1016/j.palaeo.2024.112154
  23. Zhang, Q., Ding, L., Cai, F., Xu, X., Zhang, L., Xu, Q. & Willems, H. (2011) Early Cretaceous Gangdese retroarc foreland basin evolution in the Selin Co basin, central Tibet: evidence from sedimentology and detrital zircon geochronology. Geological Society, London, Special Publications, 353, 27–44. https://doi.org/10.1144/SP353.3
  24. Zhang, Z., Luo, X., Liu, B., Wu, X. & Dai, R. (2019) Stratigraphic characteristics, formation age and sedimentary environment of the Duoni formation in Wuma Township, Gaize county, Tibet. Mineral Exploration, 10, 1316–1326. https://doi.org/10.1016/j.palaeo.2017.06.006
  25. Zheng, C., Qu, Y., Zhang, S., Liu, G. & Feng, D. (2003) On the Lithostratigraphy and Sedimentary Environment of the Lower Cretaceous Duoni Formation in the Xungmai and Qusongbo Areas, Northern Xizang. Geological Review, 49, 638–645. https://doi.org/10.1016/S0955-2219(02)00073-0
  26. Zhou, M., Min, N. & Wang, S. (2000) Stratigraphy of China. 2482.
  27. Zhu, D., Li, S., Cawood, P.A., Wang, Q., Zhao, Z., Liu, S. & Wang, L. (2016) Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245, 7–17. https://doi.org/10.1016/j.lithos.2015.06.023
  28. Zhu, Z., Zhai, Q., Hu, P., Chung, S., Tang, Y., Wang, H., Wu, H., Wang, W., Huang, Z. & Lee, H. (2019) Closure of the Bangong-Nujiang Tethyan Ocean in the central Tibet: Results from the provenance of the Duoni Formation. Journal of Sedimentary Research, 89, 1039–1054. https://doi.org/10.2110/jsr.2019.55
  29. Zhu, Z., Zhai, Q., Hu, P., Tang, Y., Wang, H., Wang, W., Wu, H. & Huang, Z.Q. (2020) Timing of the Lhasa-Qiangtang Collision: Constraints from the sedimentary records of the Duoni Formation from the middle segment of the Bangong⁃Nujiang suture zone. Acta Sedimentologica Sinica, 38, 712–726. https://doi.org/10.14027/j.issn.1000-0550.2019.081
  30. Zhu, Z., Zhai, Q., Hu, P., Tang, Y., Wang, H., Wang, W. & Wu, H. (2022) Resolving the timing of Lhasa-Qiangtang block collision: Evidence from the Lower Cretaceous Duoni Formation in the Baingoin foreland basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 595. https://doi.org/10.1016/j.palaeo.2022.110956