Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-27
Page range: 315–330
Abstract views: 114
PDF downloaded: 89

Late Cretaceous rapid exhumation of the Central Tibetan Plateau: Insights from low-temperature thermochronology

College of Oceanography, Hohai University, Nanjing 210024, China
College of Oceanography, Hohai University, Nanjing 210024, China
College of Oceanography, Hohai University, Nanjing 210024, China
School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China
Bange pluton Low-Temperature Thermochronology Uplift History Tibetan Plateau

Abstract

The uplift history of the Tibetan Plateau is a hot topic for the geological study. The Lhasa terrane, situated on the southern edge of Eurasian plate, records the tectonic evolution of the Tibetan Plateau preceding the collision between the Indian and Eurasian continental plates. This paper employs low-temperature thermochronological methods, including zircon and apatite (U-Th)/He dating, as well as apatite fission track (AFT) analysis, to investigate the Bange pluton in the northern Lhasa terrane. The research results indicate that the zircon and apatite helium (ZHe and AHe) ages from the plutons range from 90 to 78 Ma and 83 to 63 Ma, respectively, while the AFT ages span from 65 to 46 Ma. Thermal history reveals that the Bange pluton experienced a rapid cooling phase during the Late Cretaceous (from ~94 to 70 Ma), with a cooling rate of ~4.2 °C/Ma, subsequently followed by a slow cooling rate with ~1.1 °C/Ma. These results suggest that the Bange pluton has underwent rapid uplift during the Late Cretaceous to Paleocene. This Late Cretaceous rapid cooling event is also observed in other regions of the Lhasa terrane, indicating a widespread period of rapid cooling and exhumation. Since the Cenozoic, the cooling rate of the Bange pluton has significantly decreased, which would suggest that the tectonic uplift of the central Tibetan Plateau may not be related to the India-Asia continental collision. Considering the regional tectonic context, the collision between the Lhasa terrane and the Qiangtang terrane during the Late Jurassic to Early Cretaceous may have initiated the exhumation of the Lhasa terrane in the Late Cretaceous.

References

  1. An, W., Hu, X.M., Garzanti, E., BouDagher-Fadel, M.K., Wang, J.G. & Sun, G.Y. (2014) Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geological Society of America Bulletin, 126 (11‒12), 1595‒1613. https://doi.org/10.1130/B31020.1
  2. Bi, W.J., Han, Z.P., Li, Y.L., Li, C.M., Wang, C.S., Zhang, J.W., Han, J.Y., He, H.Y., Qian, X.Y., Xu, T.K. & Ma, Z.N. (2021) Deformation and cooling history of the Central Qiangtang terrane, Tibetan Plateau and its tectonic implications. International Geology Review, 63 (15), 1821‒1837. https://doi.org/10.1080/00206814.2020.1795733
  3. Dai, J.G., Wang, C.S., Hourigan, J. & Santosh, M. (2013) Insights into the early Tibetan Plateau from (U-Th)/He thermochronology. Journal of the Geological Society, 170 (6), 917‒927. https://doi.org/10.1144/jgs2012-076
  4. Dai, J.G., Fox, M., Shuster, D.L., Hourigan, J., Han, X., Li, Y.L. & Wang, C.S. (2020) Burial and exhumation of the Hoh Xil Basin, northern Tibetan Plateau: Constraints from detrital (U-Th)/He ages. Basin Research, 32 (5), 894‒915. https://doi.org/10.1111/bre.12405
  5. Ding, L. & Lai, Q.Z. (2003) New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision. Chinese Science Bulletin, 49, 1604 ‒1610. https://doi.org/10.1007/BF03183969
  6. Ding, L., Kapp P., Cai F., Garzione C.N., Xiong Z., Wang H. & Wang C. (2022) Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews earth & environment, 3, 652–667. https://doi.org/10.1038/s43017-022-00318-4
  7. Farley, K.A., Wolf, R.A. & Silver, L.T. (1996) The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica Et Cosmochimica Acta, 60 (21), 4223‒4229. https://doi.org/10.1016/S0016-7037(96)00193-7
  8. Fang, X.M., Dupont-nivet, G., Wang, C.S., Song, C.H., Meng, Q.Q., Zhang, W.L., Nie, J.S., Zhang, T., Mao, Z.Q. & Chen, Y. (2020) Revised chronology of central Tibet uplift (Lunpola Basin). Science Advances, 6 (50), eaba7298. https://doi.org/10.1126/sciadv.aba7298
  9. Haider, V.L., Dunkl, I., Eynatten, H., Ding, L., Frei, D. & Zhang, L.Y. (2013) Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences, 70-71, 79‒98. https://doi.org/10.1016/j.jseaes.2013.03.005
  10. Han, Z.P., Sinclair, H.D., Li, Y.L., Wang, C.S., Tao, Z., Qian, X.Y., Ning, Z.J., Zhang, J.W., Wen, Y.X., Lin, J., Zhang, B.S., Xu, M., Dai, J.G., Zhou, A., Liang, H.M. & Cao, S. (2019) Internal drainage has sustained low-relief Tibetan Landscapes Since the early Miocene. Geophysical Research Letters, 46 (15), 8741‒8752. https://doi.org/10.1029/2019GL083019
  11. He, S.L., Ding, L., Xiong, Z.Y., Spicer, R.A., Farnsworth, A., Valdes, P.J., Wang, C., Cai, F.L., Wang, H.Q., Sun, Y., Zeng, D., Xie, J., Yue, Y.H., Zhao, C.Y., Song, P.P. & Wu, C. (2022) A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet. Science Bulletin, 67 (21), 2245‒2258. https://doi.org/10.1016/j.scib.2022.10.006
  12. Hetzel, R., Dunkl, I., Haider, V., Strobl, M., Eynatten, H., Ding, L. & Frei, D. (2011) Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39 (10), 983‒986. https://doi.org/10.1130/G32069.1
  13. Hetzel, R. (2013) Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides. Tectonophysics, 582 (2013), 1‒24. https://doi.org/10.1016/j.tecto.2012.10.027
  14. Hinsbergen, D.J., Steinberger, B., Doubrovine, P.V. & Gassmöller, R. (2011) Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. Journal of Geophysical Research-Solid Earth, 116 (B6). https://doi.org/10.1029/2010JB008051
  15. Hu, D.G., Wu, Z.H., Jiang, W., Shi, Y., Ye, P.S. & Liu, Q.S. (2005) SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet. Science in China Series D: Earth Sciences, 48 (9), 1377‒1386. https://doi.org/10.1360/04yd0183
  16. Hu, F.Y., Wu, F.Y., Chapman, J.B., Ducea, M.N., Ji, W.Q. & Liu, S.W. (2020) Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: Insights from whole-rock Sr/Y and La/Yb ratios. Geophysical Research Letters, 47 (15). https://doi.org/10.1029/2020GL089202
  17. Hu, X.M., Ma, A.L., Xue, W.W., Garzanti, E., Cao, Y., Li, S.M., Sun, G.Y. & Lai, W. (2022) Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 229, 104031. https://doi.org/10.1016/j.earscirev.2022.104031
  18. Jackson, S.E., Pearson, N.J., Griffin, W.L. & Belousova, E.A. (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211 (1-2), 47‒69. https://doi.org/10.1016/j.chemgeo.2004.06.017
  19. Kapp, P., Yin, A., Harrison, T.M. & Ding, L. (2005) Cretaceous-Tertiary shortening, basin development and volcanism in central Tibet. Geological Society of America Bulletin, 117, 865‒878. https://doi.org/10.1130/B25595.1
  20. Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M. & Lin, D. (2007) Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bulletin, 119 (7-8), 917‒933. https://doi.org/10.1130/B26033.1
  21. Kapp, P. & Decelles, P.G. (2019) Mesozoic-Cenozoic geological evolution of The Himalayan-Tibetan orogen and working tectonic Hypotheses. American Journal of Science, 319 (3), 159‒254. https://doi.org/10.2475/03.2019.01
  22. Ketcham, R.A. (2005) Forward and inverse modelling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58 (1), 275‒314. https://doi.org/10.2138/rmg.2005.58.11
  23. Lai, W., Hu, X.M., Garzanti, E., Sun, G.Y., Garzione, C.N., Fadel, M.B. & Ma, A.L. (2019) Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). Geological Society of America Bulletin, 131 (11-12), 1823‒1836. https://doi.org/10.1130/B35124.1
  24. Lal, D., Harris, N.B.W., Sharma, K.K., Gu, Z.Y., Ding, L., Liu, T.S., Dong, W.Q., Caffee, M.W. & Jull, A.J.T. (2004) Erosion history of the Tibetan Plateau since the last interglacial: Constraints from the first studies of cosmogenic 10Be from Tibetan bedrock. Earth and Planetary Science Letters, 217 (1-2), 33‒42. https://doi.org/10.1016/S0012-821X(03)00600-9
  25. Laskowski, A.K., Orme, D.A., Cai, F.L. & Ding, L. (2019) The Ancestral Lhasa River: A Late Cretaceous trans-arc river that drained the proto-Tibetan Plateau. Geology, 47 (11), 1029‒1033. https://doi.org/10.1130/G46823.1
  26. Li, C., Zhao, Z.B., Lu, H.J. & Li, H.B. (2022) Late Mesozoic-Cenozoic multistage exhumation of the central Bangong-Nujiang Suture, Central Tibet. Tectonophysics, 827, 229268. https://doi.org/10.1016/j.tecto.2022.229268
  27. Li, G.W., Kohn, B., Sandiford, M., Ma, Z.L. & Xu, Z.Q. (2018) Post-collisional exhumation of the Indus-Yarlung suture zone and northern Tethyan Himalaya, Saga, SW Tibet. Gondwana Research, 64, 1‒10. https://doi.org/10.1016/j.gr.2018.06.006
  28. Li, G.W., Kohn, B., Sandiford, M., Xu, Z.Q. & Wei, L.J. (2015) Constraining the age of Liuqu Conglomerate, southern Tibet: Implications for evolution of the India-Asia collision zone. Earth and Planetary Science Letters, 426, 259‒266. https://doi.org/10.1016/j.epsl.2015.06.010
  29. Li, H.A., Dai, J.G., Xu, S.Y., Liu, B.R., Han, X., Wang, Y.N. & Wang, C.S. (2019) The formation and expansion of the eastern Proto-Tibetan Plateau: Insights from low-temperature thermochronology. Journal of Asian Earth Sciences, 183, 103975. https://doi.org/10.1016/j.jseaes.2019.103975
  30. Li, Y.L., He, J., Wang, C.S., Santosh, M., Dai, J.G., Zhang, Y.X., Wei, Y.S. & Wang, J.G. (2013) Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau? Lithos, 160-161, 1‒13. https://doi.org/10.1016/j.lithos.2012.11.019
  31. Li, Y.L., Wang, C.S., Dai, J.G., Xu, G.Q., Hou, Y.L. & Li, X.H. (2015) Propagation of the deformation and growth of the Tibetan‒Himalayan orogen: A review. Earth-Science Reviews, 143, 36‒61. https://doi.org/10.1016/j.earscirev.2015.01.001
  32. Liu, Z., Tapponnier, P., Gaudemer, Y. & Ding, L. (2008) Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. Journal of Geophysical Research-Earth Surface, 113 (F4). https://doi.org/10.1029/2007JF000897
  33. Lu, L., Zhao, Z., Wu, Z.H., Qian, C. & Ye, P.S. (2015) Fission track thermochronology evidence for the Cretaceous and Paleogene tectonic event of Nyainrong microcontinent, Tibet. Acta Geologica Sinica-English Edition, 89 (1), 133‒144. https://doi.org/10.1111/1755-6724.12400
  34. Metcalf, K. & Kapp, P. (2017) The Yarlung suture melange, Lopu Range, southern Tibet: Provenance of sandstone blocks and transition from oceanic subduction to continental collision. Gondwana Research, 48, 15‒33. https://doi.org/10.1016/j.gr.2017.03.002
  35. Murphy, M.A., Yin, A., Harrison, T.M., Dürr, S.B., Chen, Z., Ryerson, F.J., Kidd, W.S.F., Wang, X. & Zhou, X. (1997) Did the Indo-Asian collision alone create the Tibetan plateau? Geology, 25 (8), 719‒722. https://doi.org/10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
  36. Orme, D.A., Carrapa, B. & Kapp, P. (2015) Sedimentology, provenance and geochronology of the upper Cretaceous-lower Eocene western Xigaze forearc basin, southern Tibet. Basin Research, 27 (4), 387‒411. https://doi.org/10.1111/bre.12080
  37. Pan, G.T., Mo, X.X., Hou, Z.Q., Zhu, D.C., Wang, L.Q., Li, G.M., Zhao, Z.D., Geng, Q.R. & Liao, Z.L. (2006) Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22 (3), 521‒533.
  38. Qian, X.Y., Li, Y.L, Dai, J.G., Wang, C.S., Han, Z.P., Zhang, J.W. & Li, H. (2021) Apatite and zircon (U-Th)/He thermochronological evidence for Mesozoic exhumation of the Central Tibetan Mountain Range. Geological Journal, 56 (1), 599‒611. https://doi.org/10.1002/gj.3979
  39. Reiners, P.W. (2005) Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58 (1), 151‒179. https://doi.org/10.2138/rmg.2005.58.6
  40. Royden, L.H., Burchfiel, B.C. & Van Der Hilst, R.D. (2008) The Geological Evolution of the Tibetan Plateau. Science, 321, 1054–1058. https://doi.org/10.1126/science.1155371
  41. Rohrmann, A., Kapp, P., Carrapa, B., Reiners, P.W., Guynn, J., Ding, L. & Heizler, M. (2012) Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40 (2), 187‒190. https://doi.org/10.1130/G32530.1
  42. Shi, Y.F., Li, J.J., Li, B.Y., Yao, T.D., Wang, S.M., Li, S.J., Cui, Z.J., Wang, F.B., Pan, B.T., Fang, X.M. & Zhang, Q.S. (1999) Uplift of The Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during Late Cenozoic. Acta Geographica Sinica, 54 (1), 10‒20. https://doi.org/10.11821/xb199901002
  43. Staisch, L.M., Niemi, N.A., Clark, M.K. & Chang, H. (2016) Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau. Tectonics, 35, 862‒895. https://doi.org/10.1002/2015TC003972
  44. Strobl, M., Hetzel, R., Ding, L., Zhang, L.Y. & Hampel, A. (2010) Preservation of a large-scale bedrock peneplain suggests long-term landscape stability in southern Tibet. Zeitschrift für Geomorphologie, 54 (10), 453‒466. https://doi.org/10.1127/0372-8854/2010/0054-0023
  45. Sun, G.Y., Hu, X.M., Sinclair, H.D., BouDagher-Fadel, M.K. & Wang, J.G. (2015a) Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau. Geological Society of America Bulletin, 127 (7-8), 1001‒1020. https://doi.org/10.1130/B31137.1
  46. Sun, G.Y., Hu, X.M., Zhu, D.C., Hong, W.T., Wang, J.G. & Wang, Q. (2015b) Thickened juvenile lower crust-derived ~90Ma adakitic rocks in the central Lhasa terrane, Tibet. Lithos, 225‒239. https://doi.org/10.1016/j.lithos.2015.03.010
  47. Sun, G.Y., Sinclair, H.D., Persano, C., Stuart, F.M. & Hu, X.M. (2024) Late Cretaceous-Eocene exhumation of the northern Lhasa terrane and topographic implications for the Central Tibet. Lithos, 470‒471. https://doi.org/10.1016/j.lithos.2024.107528
  48. Sun, G.Y. (2015) Sedimentary Evolution of the Cretaceous Coqen Basin (Southern Tibet)and Implications for Early Topographic Growth on the Lhasa Terrane. PhD thesis, Nanjing University, Nanjing. 161 pp.
  49. Sun, G.Y., Hu, X.M. & Sinclair, H.D. (2017) Early Cretaceous palaeogeographic evolution of the Coqen Basin in the Lhasa Terrane, southern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 101‒118. https://doi.org/10.1016/j.palaeo.2017.06.006
  50. Tong, K., Li, Z.W., Zhu, L.D., Xu, G.Q., Zhang, Y.X., Kamp, P.J., Tao, G., Yang, W.G., Li, J.X., Wang, Z.J., Jiang, X. & Zhang, H.S. (2022) Thermochronology constraints on the Cretaceous-Cenozoic thermo-tectonic evolution in the Gaize region, central-western Tibetan Plateau: Implications for the westward extension of the proto-Tibetan Plateau. Journal of Asian Earth Sciences, 240, 105419. https://doi.org/10.1016/j.jseaes.2022.105419
  51. Wang, C.S., Dai, J.G., Zhao, X.X., Li, Y.L., Graham, S.A., He, D.F., Ran, B. & Meng, J. (2014) Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621, 1‒43. https://doi.org/10.1016/j.tecto.2014.01.036
  52. Wang, L.C., Wang, C.S., Li, Y.L., Zhu, L.D. & Wei, Y.S. (2011a) Sedimentary and organic geochemical investigation of tertiary lacustrine oil shale in the central Tibetan plateau: Palaeolimnological and palaeoclimatic significances. International Journal of Coal Geology, 86 (2-3), 254‒65. https://doi.org/10.1016/j.coal.2011.02.011
  53. Wang, L.C., Wang, C.S., Li, Y.L. & Zhu, L.D. (2011b) Organic geochemistry of potential source rocks in the Tertiary Dingqinghu Formation, Nima Basin, Central Tibet. Journal of Petroleum Geology, 34 (1), 67‒85. https://doi.org/10.1111/j.1747-5457.2011.00494.x
  54. Wang, L.C. & Wei, Y.S. (2013) Apatite fission track thermochronology evidence for the Mid-Cretaceous tectonic event in the Qiangtang Basin, Tibet. Acta Petrologica Sinica, 29 (3), 1039‒1047.
  55. Wang, Q., Zhu, D.C., Zhao, Z.D., Liu, S.A., Chung, S.L., Li, S.M., Liu, D., Dai, J.G., Wang, L.Q. & Mo, X.X. (2014) Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos, 198-199, 24‒37. https://doi.org/10.1016/j.lithos.2014.03.019
  56. Wang, Y., Zhang, X.M., Sun, L.X. & Wan, J.L. (2007) Cooling history and tectonic exhumation stages of the south-central Tibetan Plateau (China): Constrained by 40Ar/39Ar and apatite fission track thermochronology. Journal of Asian Earth Sciences, 29 (2), 266‒282. https://doi.org/10.1016/j.jseaes.2005.11.001
  57. Wu, F.Y., Huang, B.C., Ye, K. & Fang, A.M. (2008) Collapsed Himalayan‒Tibetan orogen and the rising Tibetan Plateau. Acta Petrologica Sinica, 24 (1), 1‒30.
  58. Xiong, Z.Y., Liu, X.H., Ding, L., Farnsworth, A., Spicer, R.A., Xu, Q., Valdes, P., He, S.L., Zeng, D., Wang, C., Li, Z.Y., Guo, X.D., Su, T., Zhao, C.Y., Wang, H.Q. & Yue, Y.H. (2022) The rise and demise of the Paleogene Central Tibetan Valley. Science Advances, 8 (6). https://doi.org/10.1126/sciadv.abj0944
  59. Xu, Y.W., Hu, X.M., Garzanti, E., BouDagher, F., Sun, G.Y., Lai, W. & Zhang, S.J. (2022) Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): eustatic vs. tectonic control? GSA Bulletin, 134 (1-2), 389‒404. https://doi.org/10.1130/B35930.1
  60. Xue, W.W., Najman, Y., Hu, X.M., Persano, C., Stuart, F.M., Li, W., Ma, A.L. & Wang, Y. (2022) Late Cretaceous to Late Eocene Exhumation in the Nima Area, Central Tibet: Implications for Development of Low Relief Topography of the Tibetan Plateau. Tectonics, 41 (3), e2021TC006989. https://doi.org/10.1029/2021TC006989
  61. Yang, H.H., Song, Y., Dilles, J.H., Sousa, F., Danisik, M. & Yang, C. (2019) The thermal-tectonic history of the Duolong ore district: Evidence from apatite (U-Th)/He dating. Acta Petrologica Sinica, 35 (3), 867‒878. https://doi.org/10.18654/1000-0569/2019.03.15
  62. Yang, H.H., Song, Y., Tang, J.X., Wang, Q., Gao, K. & Wei, S.G. (2020) Low temperature history of the Tiegelongnan Porphyry-Epithermal Cu (Au) deposit in the Duolong Ore District of northwest Tibet, China. Resource Geology, 70 (2), 111‒124. https://doi.org/10.1111/rge.12221
  63. Zhang, B.C., Fan, J.J., Luo, A.B., Li, H., Shen, D. & Liu, H.Y. (2022) Zircon U-Pb age, petrogenesis and tectonic model of Miocene quartz monzonite in Zuozuoxiang area, Western Lhasa terrane. Geological Bulletin of China, 41 (8), 1358‒1368. https://doi.org/10.12097/j.issn.1671-2552.2022.08.004
  64. Zhang, K.J., Xia, B., Zhang, Y.X., Liu, W.L., Zeng, L., Li, J.F. & Xu, L.F. (2014) Central Tibetan Meso-Tethyan oceanic plateau. Lithos, 278‒288. https://doi.org/10.1016/j.lithos.2014.09.004
  65. Zhang, K.J., Zhang, Y.X., Tang, X.C. & Xia, B. (2012) Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Science Reviews, 114 (3-4), 236‒249. https://doi.org/10.1016/j.earscirev.2012.06.001
  66. Zhao, Z.B., Bons, P.D., Stübner, K., Wang, G.H. & Ehlers, T.A. (2017) Early Cretaceous exhumation of the Qiangtang Terrane during collision with the Lhasa Terrane, Central Tibet. Terra Nova, 29 (6), 382‒391. https://doi.org/10.1111/ter.12298
  67. Zhao, Z.B., Bons, P.D., Li, C., Wang, G.H., Ma, X.X. & Li, G.W. (2020) The Cretaceous crustal shortening and thickening of the South Qiangtang Terrane and implications for proto-Tibetan Plateau formation. Gondwana Research, 78, 141‒155. https://doi.org/10.1016/j.gr.2019.09.003
  68. Zhu, D.C., Mo, X.X., Zhao, Z.D. & Niu, Y.L. (2009) Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution: New perspective. Earth Science Frontiers, 16 (2), 1‒20.
  69. Zhu, D.C., Zhao, Z.D., Niu, Y.L., Dilek, Y., Hou, Z.Q. & Mo, X.X. (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23 (4), 1429‒1454. https://doi.org/10.1016/j.gr.2012.02.002
  70. Zhu, D.C., Zhao, Z.D., Niu, Y.L., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q. & Wu, F.Y. (2011) The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301 (1-2), 241‒255. https://doi.org/10.1016/j.epsl.2010.11.005
  71. Zhu, Z.C., Zhai, Q.G., Hu, P.Y., Tang, Y., Wang, H.T., Wang, W., Wu, H. & Huang, Z.Q. (2020) Timing of the Lhasa-Qiangtang Collision: Constraints from the sedimentary records of the Doni Formation from the middle segment of the Bangong-Nujiang suture zone. Acta Sedimentologica Sinica, 38 (4), 712‒726. http://dx.doi.org/10.14027/j.issn.1000-0550.2019.081