Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-26
Page range: 288-297
Abstract views: 202
PDF downloaded: 115

First fruit record of Pterocarya (Juglandaceae) from the upper Eocene of the central Qinghai-Tibetan Plateau, China

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
Juglandaceae Pterocarya fossil winged fruit Eocene Tibet

Abstract

The Juglandaceae family experienced significant diversification during the early Tertiary, as evidenced by fossil records showing a broad expansion of both extant and extinct taxa. The genus Pterocarya is characterized by its distinctive fruit with butterfly-shaped wings and a small nutlet. Macrofossil records suggest that this genus was distributed widely in the Northern Hemisphere. However, the fossil record of Pterocarya in China is limited. In this study, we describe a well-preserved Pterocarya fossil winged fruit from the middle-upper member of the Niubao Formation (the upper Eocene) of the central Qinghai-Tibetan Plateau, China. The winged fruit is identified as Pterocarya liae sp. nov. based on detailed morphological comparison, representing the earliest known record of Pterocarya winged fruit in Asia. The new finding extends the paleobiogeographic distribution of Pterocarya during the Eocene and provides new insights into the early stage of the diversification of this genus.

References

  1. Buechler, W.K., Dunn, M.T. & Rember, W.C. (2007) Late Miocene Pickett Creek flora of Owyhee County, Idaho. Contrib Mus Paleontol Univ Michigan, 31 (12), 305–362.
  2. Cai, C.Y., Huang, D.Y., Wu, F.X., Zhao, M. & Wang, N. (2019) Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. Journal of Asian Earth Sciences, 175, 121–127. https://doi.org/10.1016/j.jseaes.2017.12.014
  3. Chaney, R.W., Condit, C. & Axebrod, D. (1944) Pliocene floras of California and Oregon. Carnegie Institution. https://doi.org/10.1086/395459
  4. Cheng, Y.M., Wang, Y.F., Li, C.S. & Wang, Y. (2014) Late Miocene wood flora associated with the Yuanmou hominoid fauna from Yunnan, southwestern China and its palaeoenvironmental implication. Journal of Palaeogeography, 3 (3), 323–330. https://doi.org/10.3724/SP.J.1261.2014.00059
  5. Czeczott, H. & Skirgiełło, A. (1961) Dicotyledones-Juglandaceae, Lorantaceae, Aceraceae. In: H. Czeczott (Ed.), Flora kopalna Turowa koło Bogatyni [The fossil flora of Turów near Bogatynia]. Wydawnictwa Geologiczne, pp.51–81.
  6. DeCelles, P.G., Kapp, P.A., Ding, L. & Gehrels, G.E. (2007) Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geological Society of America Bulletin, 119, 654–680. https://doi.org/10.1130/B26074.1
  7. Del Rio, C., Wang, T.X., Liu, J., Liang, S.Q., Spicer, R.A., Wu, F.X., Zhou, Z.K. & Su, T. (2020) Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the early Eocene of central Qinghai‐Tibetan Plateau, and its biogeographic implications. American Journal of Botany, 107 (1), 126–138. https://doi.org/10.1002/ajb2.1418
  8. Deng, T. & Ding, L. (2015) Paleoaltimetry reconstructions of the Tibetan Plateau: progress and contradictions. National Science Review, 2 (4), 417–437. https://doi.org/10.1093/nsr/nwv062
  9. Denk, T., Sami, M., Teodoridis, V. & Martinetto, E. (2022) The late early Pleistocene flora of Oriolo, Faenza (Italy): assembly of the modern forest biome. Fossil Imprint, 78, 217–262. https://doi.org/10.37520/fi.2022.009
  10. Dorofeev, P.I. (1963) Tretichnye flory zapadnoi Sibiri. Izvestiya Akademii Nauk Moscow, 345 pp.
  11. Follieri, M., Magri, D. & Sadori, L. (1986) Late Pleistocene Zelkova Extinction in Central Italy. New Phytologist, 103 (1), 269–273. https://doi.org/10.1111/j.1469-8137.1986.tb00613.x
  12. Gregor, H.J. (1978) Die miozänen Frucht-und Samen-Floren der Oberpfälzer Braunkohle. I. Funde aus den sandigen Zwischenmitteln. Palaeontographica Abteilung B, 167, 8–103.
  13. Hu, H.H. & Chaney, R.W. (1938) A Miocene flora from Shantung province, China (No. 507). Carnegie Institution of Washington. pp. 1–82. https://doi.org/10.1086/625047
  14. Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M. & Ding, L. (2007) Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119 (7-8), 917–933. https://doi.org/10.1130/b26033.1
  15. Kapp, P., Yin, A., Harrison, T.M. & Ding, L. (2005) Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117 (7-8), 865–878. https://doi.org/10.1130/B25595.1
  16. Kozlowski, G., Bétrisey, S., Song, Y.G. & Alvarado, E.V. (2018) Wingnuts (Pterocarya) & walnut family: relict trees: linking the past, present and future. Natural History Museum Fribourg, Switzerland, 127 pp.
  17. Liu, J., Su, T., Spicer, R.A., Tang, H., Deng, W.Y.D., Wu, F.X., Srivastava, G., Spicer, T., Do, T.V., Deng, T. & Zhou, Z.K. (2019) Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 524, 33–40. https://doi.org/10.1016/j.palaeo.2019.02.022
  18. Liu, Y.S., Guo, S. & Ferguson, D.K. (1996) Catalogue of Cenozoic megafossil plants in China. Palaeontographica Abteilung B, 238, 141–179.
  19. Lu, A., Stone, D. & Grauke, L. (1999) Juglandaceae. Flora of China, 4, 277–285.
  20. Lu, A.M. (1982) On the geographical distribution of the Juglandaceae. Journal of Systematics and Evolution, 20 (3), 257.
  21. Manchester, S.R. (1987) The fossil history of the Juglandaceae. Missouri Botanical Garden, 137 pp. https://doi.org/10.5962/bhl.title.154222
  22. Manchester, S.R. (1989) Early history of the Juglandaceae. Plant Systematics and Evolution, 162, 231–250. https://doi.org/10.1007/BF00936919
  23. Manchester, S.R. (1991) Cruciptera, a New Juglandaceous Winged fruit from the Eocene and Oligocene of western North America. Systematic Botany, 715–725. https://doi.org/10.2307/2418873
  24. Manchester, S.R. & Dilcher, D.L. (1982) Pterocaryoid fruits (Juglandaceae) in the Paleogene of North America and their evolutionary and biogeographic significance. American Journal of Botany, 69 (2), 275–286. https://doi.org/10.1002/j.1537-2197.1982.tb13258.x
  25. Manchester, S.R. & Dilcher, D.L. (1997) Reproductive and vegetative morphology of Polyptera (Juglandaceae) from the Paleocene of Wyoming and Montana. American Journal of Botany, 84 (5), 649–663. https://doi.org/10.2307/2445902
  26. Manchester, S.R. & O’Leary, E.L. (2010) Phylogenetic Distribution and Identification of Fin-winged Fruits. The Botanical Review, 76 (1), 1–82. https://doi.org/10.1007/s12229-010-9041-0
  27. Manning, W.E. (1940) The morphology of the flowers of the Juglandaceae. II. The pistillate flowers and fruit. American Journal of Botany, 839–852. https://doi.org/10.1002/j.1537-2197.1940.tb13945.x
  28. Manos, P.S., Soltis, P.S., Soltis, D.E., Manchester, S.R., Oh, S.H., Bell, C.D., Dilcher D.L. & Stone, D.E. (2007) Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Systematic Biology, 56 (3), 412–430. https://doi.org/10.1080/10635150701408523
  29. Martinetto, E. (2001) Studies on some exotic elements of the Pliocene floras of Italy. Palaeontographica Abteilung B Paläophytologie, 259, 149–166. https://doi.org/10.1127/palb/259/2001/149
  30. Meyer, H. (1973) The Oligocene Lyons flora of northwestern Oregon. Oregon Department of Geology and Mineral Resources, Oregon Bin, 35, 37–51.
  31. Miki, S. (1955) Nut remains of Juglandaceae in Japan. Journal of the Institute of Polytechnics, Osaka City University, Series D, 6, 131–144.
  32. Narita, A., Yabe, A., Uemura, K. & Matsumoto, M. (2020) Late middle Miocene Konan flora from northern Hokkaido, Japan. Acta Palaeobotanica, 60 (2), 259–295. https://doi.org/10.35535/acpa-2020-0012
  33. Rowley, D.B. & Currie, B.S. (2006) Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439 (7077), 677–681. https://doi.org/10.1038/nature04506
  34. Song, Y.G., Li, Y., Meng, H.H., Fragnière, Y., Ge, B.J., Sakio, H., Yousefzadeh, H., Bétrisey, S. & Kozlowski, G. (2020) Phylogeny, Taxonomy, and Biogeography of Pterocarya (Juglandaceae). Plants, 9 (11), 1524.
  35. https://doi.org/10.3390/plants9111524
  36. Stanford, A.M., Harden, R. & Parks, C.R. (2000) Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. American Journal of Botany, 87 (6), 872–882. https://doi.org/10.2307/2656895
  37. Tanai, T. (1965) Late Tertiary floras from northeastern Hokkaido, Japan. Palaeontological Society of Japan, Special Papers, 10, 1–117.
  38. Tanai, T. & Suzuki, N. (1972) Additions to the Miocene floras of southwestern Hokkaido, Japan. Journal of the Faculty of Science, 15 (1–2), 281–359.
  39. Tan, K., Dong, S.P., Lu, T., Zhang, Y.J, Xu, T.T. & Ren, M.X. (2018) Diversity and evolution of samara in angiosperm. Chinese Journal of Plant Ecology, 42 (8), 806–817. https://doi.org/10.17521/cjpe.2018.0053
  40. Tang, H., Liu, J., Wu, F.X., Spicer, T., Spicer, R.A., Deng, W.Y.D., Xu, C.L., Zhao, F., Huang, J. & Li, S.F. (2019) Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene. Journal of Systematics and Evolution, 57 (6), 670–677. https://doi.org/10.1111/jse.12505
  41. Wang, T.X., Del Rio, C., Manchester, S.R., Liu, J., Wu, F.X., Deng, W.Y.D., Su, T. & Zhou, Z.K. (2021) Fossil fruits of Illigera (Hernandiaceae) from the Eocene of central Tibetan Plateau. Journal of Systematics and Evolution, 59 (6), 1276–1286. https://doi.org/10.1111/jse.12687
  42. Wheeler, E.F., Scott, R.A. & Barghoorn, E.S. (1978) Fossil dicotyledonous woods from Yellowstone National Park, II. Journal of the Arnold Arboretum, 59 (1), 1–31. https://doi.org/10.5962/p.185868
  43. Wolfe J.A. (1966) Tertiary plants from the Cook Inlet region, Alaska. US Geological Survey Professional Paper, 398-B, 1–32.
  44. Wolfe, J.A. (1977) Paleogene floras from the Gulf of Alaska region, U.S. Geological Survey, 997, 1–107.
  45. https://doi.org/10.3133/PP997
  46. Worobiec, G., Worobiec, E. & Kasiński, J. (2008) Plant assemblages of the drill cores from the Neogene Ruja lignite deposit near Legnica (Lower Silesia, Poland). Acta Palaeobotanica, 48 (2), 191–275.
  47. Worobiec, G., Worobiec, E. & Szynkiewicz, A. (2012) Plant assemblage from the Upper Miocene deposits of the Bełchatów Lignite Mine (Central Poland). Acta Palaeobotanica, 52 (2), 369–413.
  48. Wu, Z., Zhang, Q., Wu, Y. & Ye, P. (2016) Response of sedimentary depression to crustal thickening in the Silin Co Basin and its adjacent areas, Tibet. Acta Geologica Sinica, 90 (9), 2181–2191.
  49. Xia, K., Su, T., Liu, Y.S., Xing, Y.W., Jacques, F.M.B. & Zhou, Z.K. (2009) Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 276 (1-4), 80–86. https://doi.org/10.1016/j.palaeo.2009.02.024
  50. Xiong, Z., Liu, X., Ding, L., Farnsworth, A., Spicer, R.A., Xu, Q., Valdes, P., He, S., Zeng, D. & Wang, C. (2022) The rise and demise of the Paleogene Central Tibetan Valley. Science Advances, 8 (6), eabj0944. https://doi.org/10.1126/sciadv.abj0944
  51. Yabe, A. (2009) Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, Northeast Honshu, Japan. Bulletin of the Geological Survey of Japan, 59 (7-8), 397–413.
  52. Yan, H., Zhou, P., Wang, W., Ye, J.F., Tan, S.L., Guo, C.C., Zhang, W.G., Zhu, Z.W., Liu, Y.Z. & Xiang, X.G. (2024) Biogeographic history of Pterocarya (Juglandaceae) inferred from phylogenomic and fossil data. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13055
  53. Yang, G.L., Wang, Z.X., Chen, J.W., Yan, D.F. & Sun, B.N. (2016) Equisetum cf. oppositum (Equisetaceae) from the Paleocene-Eocene of Tibet in southwestern China and its paleoenvironmental implications. Arabian Journal of Geosciences, 9, 1–10. https://doi.org/10.1007/s12517-016-2777-z
  54. Zhang, X., Gélin, U., Spicer, R.A., Wu, F., Farnsworth, A., Chen, P., Del Rio, C., Li, S., Liu, J. & Huang, J. (2022a) Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet. Nature Communications, 13 (1), 3787. https://doi.org/10.1038/s41467-022-31512-z
  55. Zhang, Q., Ree, R.H., Salamin, N., Xing, Y., Silvestro, D. & López-Fernández, H. (2022b) Fossil-Informed Models Reveal a Boreotropical Origin and Divergent Evolutionary Trajectories in the Walnut Family (Juglandaceae). Systematic Biology, 71 (1), 242–258. https://doi.org/10.1093/sysbio/syab030