Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-27
Page range: 349–365
Abstract views: 64
PDF downloaded: 64

The fate of the Xigaze forearc basin after Late Cretaceous filling (South Tibet)

State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Laboratory for Provenance Studies, Department of Earth and Environmental Sciences, Università di Milano-Bicocca, Milano 20126, Italy
Department of Earth Sciences, University College London, London WC1H0BT, UK
State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
South Tibet Xigaze forearc basin depositional environment microfacies analysis biostratigraphy

Abstract

The Xigaze forearc basin is a key region to understand the evolution of active continental margins related to Neo-Tethyan oceanic subduction. Most studies have focused on the sedimentary evolution during filling of the marine basin, but we here provide a detailed sedimentological and biostratigraphic analysis of the last, uppermost Cretaceous to Paleogene phases of forearc sedimentation documented by the shallow marine to deltaic to fluvial Qubeiya, Quxia, and Jialazi formations exposed in the Cuojiangding area. By comparing these sequences with regional tectonic and global climate events and sea-level curves, a reconstruction of the environmental evolution during this final filling stage is proposed, placing emphasis on the eustatic control of carbonate deposition in the Qubeiya and Jialazi formations. These transgressive intervals are separated by two regressive episodes unrelated to global sea-level trends that led to the demise of the carbonate platform. The first episode, documented by fan-delta deposits of the Quxia Formation, occurred at the time of initial India-Asia collision. The second episode, documented in the central part of the Jialazi Formation, occurred during the Paleocene-Eocene Thermal Maximum, likely driven by an intensified hydrological cycle. These results provide new insight into the palaeo-tectonic and palaeo-environmental evolution during the closure of the Neotethys seaway between India and Asia.

References

  1. An, W., Hu, X., Garzanti, E., BouDagher-Fadel, M.K., Wang, J. & Sun, G. (2014) Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geological Society of America Bulletin, 126 (11-12), 1595–1613. https://doi.org/10.1130/B31020.1
  2. An, W., Hu, X., Garzanti, E., Wang, J.G. & Liu, Q. (2021) New precise dating of the India‐Asia collision in the Tibetan Himalaya at 61 Ma. Geophysical Research Letters, 48 (3), e2020GL090641. https://doi.org/10.1029/2020GL090641
  3. Baumgartner-Mora, C. & Baumgartner, P.O. (2016) Paleocene-earliest Eocene larger benthic foraminifera and Ranikothalia-bearing carbonate paleo-environments of Costa Rica (South Central America). Micropaleontology, 62 (6), 453–508.
  4. Beavington-Penney, S.J. & Racey, A. (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeo-environmental analysis. Earth-Science Reviews, 67, 219–265. https://doi.org/10.1016/j.earscirev.2004.02.005
  5. BouDagher-Fadel, M.K. (2018) Evolution and geological significance of larger benthic foraminifera. Second ed. UCL Press, London, 689 pp.
  6. BouDagher-Fadel, M.K. & Price, G. (2013) The phylogenetic and palaeogeographic evolution of the miogypsinid larger benthic foraminifera. Journal of the Geological Society, 170 (1), 185–208. https://doi.org/10.1144/jgs2011-149
  7. BouDagher-Fadel, M.K., Price, G.D., Hu, X. & Li, J. (2015) Late cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme. Stratigraphy, 12, 67–91. https://doi.org/10.29041/strat.12.1.05
  8. Cawood, P.A. (2005) Terra Australis orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69, 249–279. https://doi.org/10.1016/j.earscirev.2004.09.001
  9. DeCelles, P.G., Kapp, P., Gehrels, G.E. & Ding, L. (2014) Paleocene Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics, 33 (5), 824–849. https://doi.org/10.1002/2014TC003522
  10. DeGraaff-Surpless, K., Graham, S.A., Wooden, J.L. & McWilliams, M.O. (2002) Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc-forearc system: Geological Society of America Bulletin, 114 (12), 1564–1580. https://doi.org/10.1130/0016-7606(2002)114<1564:DZPAOT>2.0.CO;2
  11. Dickinson, W.R. (1995) Forearc basins. In: Busby, C.J. & Ingersoll, R.V. (Eds), Tectonics of sedimentary basins. Blackwell Science, Cambridge, Massachusetts, pp. 211–261.
  12. Ding, L., Kapp, P. & Wan, X. (2005) Paleocene Eocene record of ophiolite obduction and initial India-Asia collision, south Central Tibet. Tectonics, 24, 1–18. https://doi.org/10.1029/2004TC001729
  13. Ding, L., Qasim, M., Jadoon, I., Khan, M., Xu, Q., Cai, F., Wang, H., Baral, U., Yue, Y. (2016) The India-Asia collision in north Pakistan: Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin. Earth and Planetary Science Letter, 455, 49–61. https://doi.org/10.1016/j.epsl.2016.09.003
  14. Dunham, R.J. (1962) Classification of carbonate rocks according to deposition texture. In: Ham, W.E. (Ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists, 1, 108–121. https://doi.org/10.1306/M1357
  15. Dürr, S.B. (1996) Provenance of Xigaze forearc basin clastic rocks (Cretaceous, south Tibet). Geological Society of America Bulletin, 108 (6), 669–684. https://doi.org/10.1130/0016-7606(1996)108<0669:POXFAB>2.3.CO;2
  16. Einsele, G., Liu, B., Dürr, S., Frisch, W., Liu, G., Luterbacher, H.P., Ratschbacher, L., Ricken, W., Wendt, J., Wetzel, A., Yu, G. & Zheng, H. (1994) The Xigaze forearc basin: evolution and facies architecture (Cretaceous, Tibet). Sedimentary Geology, 90 (1-2), 1–32. https://doi.org/10.1016/0037-0738(94)90014-0
  17. Embry, A.F. & Klovan, J.E. (1971) A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian Petroleum Geology, 19 (4), 730–781. https://doi.org/10.35767/gscpgbull.19.4.730
  18. Flügel, E. (2010) Microfacies of carbonate rocks: Analysis, interpretation and application. Springer-Verlag, Berlin Heidelberg, New York, 976 pp. https://doi.org/10.1007/978-3-642-03796-2
  19. Garzanti, E., Baud, A. & Mascle, G. (1987) Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta, 1, 297–312. https://doi.org/10.1080/09853111.1987.11105147
  20. Garzanti, E. & Van Haver, T. (1988) The Indus clastics: forearc basin sedimentation in the Ladakh Himalaya (India). Sedimentary Geology, 59 (3-4), 237–249. https://doi.org/10.1016/0037-0738(88)90078-4
  21. Geel, T. (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155, 211–238. https://doi.org/10.1016/S0031-0182(99)00117-0
  22. Haq, B.U., Hardenbol, J.A.N. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235 (4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156
  23. Hottinger, L. (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bulletin de la Société géologique de France, 168 (4), 491–505.
  24. Hu, X., Garzanti, E., Moore, T. & Raffi, I. (2015) Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology, 43, 859–862. https://doi.org/10.1130/G36872.1
  25. Hu, X., Garzanti, E., Wang, J., Huang, W., An, W. & Webb, A. (2016a) The timing of India-Asia collision onset–Facts, theories, controversies. Earth-Science Reviews, 160, 264–299. https://doi.org/10.1016/j.earscirev.2016.07.014
  26. Hu, X., Wang, J., BouDagher-Fadel, M., Garzanti, E. & An, W. (2016b) New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Research, 32, 76–92. https://doi.org/10.1016/j.gr.2015.02.007
  27. Ingalls, M. (2019) Reconstructing carbonate alteration histories in orogenic sedimentary basins: Xigaze forearc, southern Tibet. Geochimica et Cosmochimica Acta, 251, 284–300. https://doi.org/10.1016/j.gca.2019.02.005
  28. Ingersoll, R.V. (1979) Evolution of the Late Cretaceous forearc basin, northern and central California. Geological Society of America Bulletin, 90 (9), 813–826. https://doi.org/10.1130/0016-7606(1979)90<813:EOTLCF>2.0.CO;2
  29. Jiang, J., Hu, X., Li, J., BouDagher-Fadel, M. & Garzanti, E. (2021) Discovery of the Paleocene-Eocene Thermal Maximum in shallow-marine sediments of the Xigaze forearc basin, Tibet: A record of enhanced extreme precipitation and siliciclastic sediment flux. Palaeogeography, Palaeoclimatology, Palaeoecology, 562, 110095. https://doi.org/10.1016/j.palaeo.2020.110095
  30. Kahsnitz, M.M., Willems, H., Luo, H. & Zhou, Z.C. (2017) Paleocene and lower Eocene shallow-water limestones of Tibet: Microfacies analysis and correlation of the eastern Neo-Tethyan Ocean. Palaeoworld, 27, 226–246. https://doi.org/10.1016/j.palwor.2017.12.002
  31. Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S. & Scotese, C.R. (2008) Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Research, 20 (2), 211–226. https://doi.org/10.1111/j.1365-2117.2008.00354.x
  32. Li, J., Batten, D.J. & Zhang, Y. (2008) Late Cretaceous palynofloras from the southern Laurasian margin in the Xigaze region, Xizang (Tibet). Cretaceous Research, 29, 294–300. https://doi.org/10.1016/j.cretres.2007.05.002
  33. Liu, C., Yin, J., Sun, X. & Sun, Y. (1988) Marine Late Cretaceous–early Tertiary sequence-the non-flysch deposits of the Xigaze forearc basin in South Xizang. Journal of Institute Geology Chinese Academy Sciences, 3, 130–157. [In Chinese with English abstract]
  34. Malarkodi, N., Özcan, E., Venkataraman, D., Somappa, S.C., Gowda, S., Nagaraja, P.K.T. & Yücel, A.O. (2017) Lepidorbitoides (foraminifera) from the lower Maastrichtian Kallankuruchchi Formation, Cauvery Basin, India: morphometry and paleobiogeography. Cretaceous Research, 77, 143–157. https://doi.org/10.1016/j.cretres.2017.05.009
  35. McPherson, J.G., Shanmugam, G. & Moiola, R.J. (1987) Fan-deltas and braid deltas: varieties of coarse-grained deltas. Geological Society of America Bulletin, 99 (3), 331–340. https://doi.org/10.1130/0016-7606(1987)99<331:FABDVO>2.0.CO;2
  36. Miall, A.D. (2013) The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology. Springer, Berlin, 581 pp.
  37. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer B.S., Christie-blick, N. & Pekar, S.F. (2005) The Phanerozoic record of global sea-level change. Science, 310 (5752), 1293–1298. https://doi.org/10.1126/science.1116412
  38. Mount, J. (1985) Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology, 32, 435–442. https://doi.org/10.1111/j.1365-3091.1985.tb00522.x
  39. Nemec, W. & Steel, R.J. (1988) What is a fan delta and how do we recognize it? Fan Deltas: sedimentology and tectonic settings, 3, 231–248.
  40. Orme, D.A., Carrapa, B. & Kapp, P. (2015) Sedimentology, provenance and geochronology of the upper Cretaceous–lower Eocene western Xigaze forearc basin, southern Tibet. Basin Research, 27 (4), 387–411. https://doi.org/10.1111/bre.12080
  41. Qian, D., Zhang, S. & Gu, Q. (1982) Some new data on the age of the Ngamring formation of the Xigaze Group in southern Xizang (Tibet). China. Scientia Geologica Sinica, 3, 329–332. [In Chinese with English abstract]
  42. Robles-Salcedo, R., Rivas, G., Vicedo, V. & Caus, E. (2013) Paleoenvironmental distribution of larger foraminifera in Upper Cretaceous siliciclastic-carbonate deposits (Arén Sandstone Formation, South Pyrenees, northeastern Spain). Palaios, 28 (9), 637–648. https://doi.org/10.2110/palo.2012.p12-125r
  43. Sarkar, S. (2018) The enigmatic Palaeocene-Eocene coralline Distichoplax: Approaching the structural complexities, ecological affinities and extinction hypotheses. Marine Micropaleontology, 139, 72–83. https://doi.org/10.1016/j.marmicro.2017.12.001
  44. Scholle, P.A. & Ulmer-Scholle, D.S. (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. American Association of Petroleum Geologists, Tulsa, AAPG Memoir, 77, 474 pp. https://doi.org/10.1306/M77973
  45. Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A.K., Less, G., Pavlovec, R., Pignatti, J., Samso, M.J., Schaub, H., Sirel, E., Strougo, A., Tambaregu, Y., Tosquella, J. & Zakrevskaya, E. (1998) Larger foraminifera biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société géologique de France, 169, 281–299.
  46. Sun, Y.Y. & Wang, Y.G. (2001) Late Campanian to early Maastrichtian ammonoid fauna of Late Cretaceous in Xizang the youngest ammonoid fauna in China. Acta Palaeontologica Sinica, 40, 20–30. [In Chinese with English abstract]
  47. Tcherepanov, E.N., Droxler, A.W., Lapointe, P., Dickens, G.R., Bentley, S.J., Beaufort, L., Peterson, L.C., Daniell, J. & Opdyke, B.N. (2008) Neogene evolution of the mixed carbonate-siliciclastic system in the Gulf of Papua, Papua New Guinea. Journal of Geophysical Research: Earth Surface, 113 (F1). https://doi.org/10.1029/2006JF000684
  48. Wan, X., Ding, L., Li, J. & Cai, H. (2001) Latest Cretaceous to early Eocene marine strata in the Zhongba region, Tibet. Journal of Stratigraphy 25, 267–272. [In Chinese with English abstract]
  49. Wan, X., Jansa, L. F., & Sarti, M. (2002) Cretaceous and Paleogene boundary strata in southern Tibet and their implication for the Indi-Eurasia collision. Lethaia, 35 (2), 131–146. https://doi.org/10.1111/j.1502-3931.2002.tb00074.x
  50. Wan, X., Luo, W., Wang, C.S. & Luba, J.S. (1998) Discovery and significance of Cretaceous fossils from the Xigaze forearc basin, Tibet. Journal of Asian Earth Sciences, 16, 217–223. https://doi.org/10.1016/S0743-9547(98)00012-9
  51. Wang, C., Liu, Z., Li, X. & Wan, X. (1999) Xigaze forearc basin and Tsangpo Suture Zone, Tibet. Geological Publishing House, Beijing, 237 pp. [In Chinese]
  52. Wang, C., Li, X., Liu, Z., Li, Y., Jansa, L., Dai, J. & Wei, Y. (2012) Revision of the Cretaceous–Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Research, 22 (2), 415–433. https://doi.org/10.1016/j.gr.2011.09.014
  53. Wang, J., Hu, X., Garzanti, E., An, W. & Liu, X.C. (2017) The birth of the Xigaze forearc basin in southern Tibet. Earth and Planetary Science Letter, 465, 38–47. https://doi.org/10.1016/j.epsl.2017.02.036
  54. Wilson, M.E. & Lokier, S.W. (2002) Siliciclastic and volcaniclastic influences on equatorial carbonates: insights from the Neogene of Indonesia. Sedimentology, 49 (3), 583–601. https://doi.org/10.1046/j.1365-3091.2002.00463.x
  55. Wu, F.Y., Ji, W.Q., Liu, C.Z. & Chung, S.L. (2010) Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271 (1-2), 13–25. https://doi.org/10.1016/j.chemgeo.2009.12.007