Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-27
Page range: 366–378
Abstract views: 148
PDF downloaded: 93

A review of the radiolarian faunas in the Bangong-Nujiang Suture Zone: Implications for the tectonic evolution of the Mesotethys Ocean

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing College, Nanjing 210049, China
Bangong-Nujiang Suture Zone Mesotethys Ocean radiolarian

Abstract

The Bangong-Nujiang Suture Zone in the Qinghai-Tibet Plateau marks the evolution of the Mesotethys Ocean, which has been the subject of considerable debate regarding its opening time, evolutionary pattern, and closing process. This suture zone consists of three ophiolitic mélange zones, with their evolution and relationships far from being fully understood. As an important microfossil in deep-sea sedimentation, radiolarian plays an irreplaceable role in revealing the development timeline of oceanic basins and palaeogeographic reconstructions. This paper is designed to review the existing radiolarian records in the Bangong-Nujiang Suture Zone with the purpose of constraining the evolution of the Mesotethys Ocean. The radiolarian faunas in the Bangong-Nujiang Suture Zone suggest that the Mesotethys Ocean must have opened before the Middle Triassic according to the record of Anisian radiolarians. At the same time, the Beila-Nagqu Ocean, a branch of the Mesotethys Ocean, should have already opened. The presence of diverse Jurassic and Cretaceous radiolarians in the Shiquanhe-Namtso mélange zone confirms that the Mesotethys Ocean was still a broad oceanic basin during the Early Cretaceous. Many similar radiolarian assemblages were found in the western section of the Bangong-Nujiang Suture Zone and the Yarlung-Tsangpo Suture Zone, suggesting a connection between the Mesotethys and Neotethys oceans during that time.

References

  1. Bao, P.S., Xiao, X.C., Su, L. & Wang, J. (2007) Geochemical characteristics and isotopic dating for the Dong Co ophiolite, Tibet Plateau. Science China Earth Sciences (D), 50 (5), 660–671. [In Chinese with English abstract] https://doi.org/10.1007/s11430‐007‐0045‐5
  2. Baxter, A.T., Aitchison, J.C. & Zyabrev, S.V. (2009) Radiolarian age constraints on Mesotethyan Ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet. Journal of the Geological Society, 166, 689–694. https://doi.org/10.1144/0016-76492008-128
  3. Boltovskoy, D., Anderson, O.R. & Correa, N.M. (2017) Radiolaria and Phaeodaria. In: Archibald, J. (Ed.), Handbook of the protists. Springer, 1–33. https://doi.org/10.1007/978-3-319-32669-6_19-2
  4. Bragina, L.G. & Bragin, N.Y. (2013) New data on the Albian–Cenomanian radiolarians from the Karai Formation (South India). Stratigraphy and Geological Correlation, 21 (5), 515–530. https://doi.org/10.1134/S086959381305002X
  5. Brock, P., Rieber, H., Nicora, A. & Mundil, R. (2005) The Global Boundary Stratotype Section and Ppoint (GSSP) of the Ladinian Stage (MiddleTriassic) at Bagolino (Southern Alps, Northern Italy) and its implication for the Triassic time scale. Epsiodes, 28, 233–244. https://doi.org/10.18814/epiiugs/2005/v28i4/001
  6. Chen, D.S., Luo, H., Wang, X.H., Xu, B. & Matsuoka, A. (2019) Late Anisian radiolarian assemblages from the Yarlug-Zangbo Suture Zone in the Jinlu area, Zedong, southern Tibet: implications for the evolution of Neotethys. Island Arc, 28 (4), 1–10. https://doi.org/10.1111/iar.12302
  7. Cui, X.H., Luo, H., Aitchison, J.C., Li, X. & Fang, P.Y. (2021) Early Cretaceous radiolarians and chert geochemistry from western Yarlung Tsangpo suture zone in Jiangyema section, Purang county, SW Tibet. Cretaceous Research, 125, 104840. https://doi.org/10.1016/j.cretres.2021.104840
  8. De Wever, P., Grissac, C.B. & Bechennec, F. (1990) Permian to Cretaceous radiolarian biostratigraphic data from the Hawasina Complex, Oman Mountains. Geological Society of London, Special Publication, 49, 225–238. https://doi.org/10.1144/GSL.SP.1992.049.01.15
  9. Ding, L., Kapp, P., Cai, F.L., Garzione, C.N., Xiong, Z.Y., Wang, H.Q. & Wang, C. (2022) Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3, 652–667. https://doi.org/10.1038/s43017-022-00318-4
  10. Fan, J.J., Li, C., Xie, C.M. & Wang, M. (2014) Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys. International Geology Review, 56 (12), 1504–1520. https://doi.org/10.1080/00206814.2014.947639
  11. Fan, J.J., Li, C., Wang, M. & Xie, C.M. (2018) Reconstructing in space and time the closure of the middle and western segments of the Bangong‐Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107 (1), 231–249. https://doi.org/10.1007/s00531‐017‐1487‐4
  12. Fan, J.J., Zhang, B.C., Niu, Y., Luo, A.B. & Hao, Y.J. (2023) Resolving the nature and evolution of the Bangong-Nujiang Tethyan Ocean: New perspectives from the intraplate oceanic-island fragments preserved in Northern Tibet. GSA Bulletin, 136, 1379–1394. https://doi.org/10.1130/b37044.1
  13. Fan, J.J., Zhang, B.C., Niu, Y., Luo, A.B. & Hao, Y.J. (2024) Tracing the sedimentary response to the rifting and opening of the Meso-Tethys Ocean. Sedimentology, 71 (1), 5–26. https://doi.org/10.1111/sed.13126
  14. Feng, Q.L., Yang, Z.J., Li, X.Y. & Crasquin, S. (2009) Middle and Late Triassic radiolarians from northern Tibet: implication for the Bayan Har Basin evolution. Geobios, 42 (5), 581–601. https://doi.org/10.1016/j.geobios.2009.02.002
  15. Girardeau, J., Marcoux, J., Allegre C.J., Bassoullet, J.P., Tang, Y.K., Xiao, X.C., Zao, Y.G. & Wang, X.B. (1984) Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307 (5), 27–31. https://doi.org/10.1038/307027a0
  16. Goričan, S. & Buser, S. (1990) Middle Triassic radiolarians from Slovenia (Yugooslavia). Geologija, 31-32, 133–197.
  17. Hu, X.M., Garzanti, E., Moore, T. & Raffi, I. (2015) Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology, 43 (10), 859–862. https://doi.org/10.1130/g36872.1
  18. Hu, X.M., Ma, A.L., Xue, W.W., Garzanti, E., Cao, Y., Li, S.M., Sun, G.Y. & Lai, W. (2022) Exploring a lost ocean in the Tibetan Plateau: birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 229, 104031. https://doi.org/10.1016/j.earscirev.2022.104031
  19. Jasin, B. (1992) Significance of radiolarian cherts from the Chert-Spilite Formation, Telupid, Sabah. Bulletin of the Geological Society of Malaysia, 31, 67–83. https://doi.org/10.7186/bgsm31199205
  20. Jasin, B. (2018) Radiolarian biostratigraphy of Malaysia. Bulletin of the Geological Society of Malaysia, 65, 45–58. https://doi.org/10.7186/bgsm65201805
  21. Ju, Q., Zhang, Y.C., Qiao, F. & Xu, H.P. (2022) First discovery of Wuchiapingian (Late Permian) foraminiferal fauna from the Zhari Namco area, central Lhasa Block, Tibet, and their palaeogeographic implications. Geological Journal, 57 (7), 2564–2580. https://doi.org/10.1002/gj.4428
  22. Ju, Q., Zhang, Y.C., Xu, H.P., Zhang, H., Zheng, Q.F., Luo, M., Qie, W.K., Liu, J.J. & Shen, S.Z. (2024) A new foraminiferal fauna from the Tangra Yumco area, central Lhasa Block, Tibet and its palaeobiogeographic implications. Palaeoworld, 33 (3), 724–743. https://doi.org/10.1016/j.palwor.2023.06.005
  23. Kapp, P. & DeCelles, P.G. (2019) Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319, 159–254. https://doi.org/10.2475/03.2019.01
  24. Kozur, H. (1996) Radiolarians and facies of the Middle Triassic Loibl Formation, South Alpine Karawanken Mountains (Carinthia, Austria). Geologische Palaontologische Mitteilungen Innsbruck, Sonderband, 4, 195–269.
  25. Kozur, H. & Mostler, H. (1994) Anisian to Middle Carnian radiolarian zonation and description of some stratigraphically important radiolarians. Geologische Palaontologische Mitteilungen Innsbruck, Sonderband, 3, 39–255.
  26. Li, C., Xie, C.M., Wang, M., Wu, Y.W., Hu, P.Y., Zhang, X.Z., Xu, F., Fan, J.J., Wu, H., Liu, Y.M., Peng, H., Jiang, Q.Y., Chen, J.W., Xu, J.X., Zhai, Q.G., Dong, Y.S., Zhang, T.Y. & Huang, X.P. (2016) Qiangtang Geology. Geological Publishing House Society, Beijing, 681pp. [In Chinese]
  27. Li, H.S. (1986) Upper Jurassic (early Tithonian) radiolarians from southern Bangong Lake, Xizang. Acta Micropaleontologica Sinica, 3 (3), 297–316. [In Chinese with English abstract]
  28. Li, H.S. (1988) Early Jurassic (late Pliensbachian) radiolaria from the Dengqen area, Xizang (Tibet). Acta Micropalaeontologica Sinica, 5 (3), 323–330. [In Chinese with English abstract]
  29. Li, S., Guilmette, C., Yin, C., Ding, L., Zhang, J., Wang, H. & Baral, U. (2019) Timing and mechanism of Bangong-Nujiang ophiolite emplacement in the Gerze area of central Tibet. Gondwana Research, 71, 179–193. https://doi.org/10.1016/j.gr.2019.01.019
  30. Li, X., Li, Y.L., Wang, C.S. & Matsuoka, A. (2013) Late Jurassic radiolarians from the Zhongba melange in the Yarlung-Tsangpo suture zone, southern Tibet. Science reports of Niigata University (Geology), 28, 23–30.
  31. Li, X., Matsuoka, A., Li, Y.L., Wei, Y.S. & Wang, C.S. (2019) Radiolarian-based study on the fabric and the formation process of the Early Cretaceous mélange near Zhongba, Yarlung-Tsangpo Suture Zone, southern Tibet. Island Arc, 28 (1), e12282. https://doi.org/10.1111/iar.12282
  32. Li, X., Hu. X.M., An, W., Liu, Q., Garzanti, E. & Meng, J. (2023) From Neo-Tethyan convergence to India-Asia collision: radiolarian biostratigraphy of the Cretaceous to Paleocene deep-water Tethys Himalaya. Newsletters on Stratigraphy, 56, 33–52. https://doi.org/10.1127/nos/2022/0707
  33. Li, X., Suzuki, N., Zhang, Y.C., Zhang, H., Luo, M., Yuan, D.X., Zheng, Q.F., Qie, W.K., Ju, Q., Qiao, F., Xu, H.P. & Cui, X.H. (2024) The central Qiangtang Metamorphic Belt in northern Tibet is an in-situ Paleo-Tethys Ocean: Evidence from newly discovered Late Devonian radiolarians. Gondwana Research, 125, 49–58. https://doi.org/10.1016/j.gr.2023.08.005
  34. Liang, K., Zhang, Y.C., Chen, J.T., Luo, M., Guo, W. & Qie, W.K. (2024) Middle Devonian (Givetian) coral-stromatoporoid patch reefs from the Lazhuglung Formation, Xizang (Tibet) and their palaeoecological and palaeogeographical implications. Palaeoworld, 33 (3), 612–623. https://doi.org/10.1016/j.palwor.2023.02.005
  35. Liang, X., Wang, G.H., Yuan, G.L. & Liu, Y. (2012) Structural sequence and geochronology of the Qomo Ri accretionary complex, Central Qiangtang, Tibet: Implications for the Late Triassic subduction of the Paleo-Tethys Ocean. Gondwana Research, 22 (2), 470–481. https://doi.org/10.1016/j.gr.2011.11.012
  36. Liu, T., Zhai, Q.G., Wang, J., Bao, P.S., Qiangba, Z., Tang, S.H. & Tang, Y. (2016) Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan plateau: evidence from zircon dating, petrological, geochemical and Sr-Nd-Hf isotopic characterization. Journal of Asian Earth Sciences, 116, 139–154. https://doi.org/10.1016/j.jseaes.2015.11.014
  37. Liu, T, Liu, C.Z., Wu, F.Y., Ji, W.B., Zhang, C., Zhang, W.Q. & Zhang, Z.Y. (2023) Timing and mechanism of opening the Neo-Tethys Ocean: Constraints from mélanges in the Yarlung Zangbo suture zone. Science China Earth Sciences, 66 (12), 2807–2826. https://doi.org/10.1007/s11430-023-1175-5
  38. Liu, Y.M., Zhai, Q.G., Tang, Y., Hu, P.Y., Yang, N. & Li, J.Y. (2023) Identification of Gondwana tillite in the Bange County of Tibetan Plateau and its implications for the tectonic evolution of North Lhasa terrane—New evidence from the 1:50000 thematic geological survey. Geology in China, 50 (5), 1486–1494. [In Chinese with English abstract]
  39. Ma, A.L., Hu, X.M., Garzanti, E., Han, Z. & Lai, W. (2017) Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. Journal of Geophysical Research: Solid Earth, 122, 4790–4813. https://doi.org/10.1002/2017JB014211
  40. Ma, A.L., Hu, X.M., Li, X., Pullen, A., Garzanti, E. & Suzuki, N. (2024) Timing of rifting of the Dongkaco microcontinent (Central Tibet) and implications for Neo-Tethyan evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 638, 112054. https://doi.org/10.1016/j.palaeo.2024.112054
  41. Ma, X.D., Li, Y.L., Tian, X.D., Li, S., Li, Z.J., Zhang, J.W., Bi, W.J., Jia, Y.Y. & Yang, B. (2024) Late Triassic paleolatitude of the Southern Qiangtang terrane, central Tibet: Implications for the closure of the Longmu Co-Shuanghu Paleo-Tethyan Ocean. Journal of Asian Earth Sciences, 269, 106174. https://doi.org/10.1016/j.jseaes.2024.106174
  42. Matsuoka, A., Yang, Q., Kobayashi, K., Takei, M., Nagahashi, T., Zeng, Q.G. & Wang, Y.J. (2002) Jurassic–Cretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno-Tethys: records from the Xialu Chert in the YarlungZangbo Suture Zone, southern Tibet. Journal of Asian Earth Sciences, 20 (3), 277–287. https://doi.org/10.1016/S1367-9120(01)00044-X
  43. Metcalfe, I. (2013) Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020
  44. Metcalfe, I. (2021) Multiple Tethyan ocean basins and orogenic belts in Asia. Gondwana Research, 100, 87–130. https://doi.org/10.1016/j.gr.2021.01.012
  45. Nyima, T. & Xie, Y.W. (2005) New discoveries of Middle Triassic strata in the Nagqu area of northern Tibet and their geological significance. Geological Bulletin, 12, 1147–1149.
  46. Ozsvárt, P., Bahramnejad, E., Bagheri, S. & Sharifi, M. (2020) New Albian (Cretaceous) radiolarian age constraints for the Dumak ophiolitic mélange from the Shuruárea, Eastern Iran. Cretaceous Research, 111, 104451. https://doi.org/10.1016/j.cretres.2020.104451
  47. Pan, G.T, Zheng, H.X, Xu, Y.R, Wang, P.S. & Jiao, S.P. (1983) A preliminary study on Bangong Co-Nujiang Suture. In: Tibetan Plateau Geological Collection Editorial Committee of the Ministry of Geology and Mineral Resources (Eds), Tibetan Plateau Geological Collection, (12), 229–242. [In Chinese with English abstract]
  48. Pan, G.T., Wang, L.Q., Li, R., Yuan, S.H., Ji, W.H., Yin, F.G., Zhang, W. & Wang, B.D. (2012) Tectonic evolution of the Qinghai-Tibet plateau. Journal of Asian Earth Sciences, 53, 3–14. https://doi.org/10.1016/j.jseaes.2011.12.018
  49. Pessagno, E.A. & Newport, R.L. (1972) A technique for extracting Radiolaria from radiolarian chert. Micropaleontology, 18, 231–234. https://doi.org/10.2307/1484997
  50. Qiangba, Z.X., Xie, Y.W., Wu, Y.W., Xie, C.M., Li, Q.L. & Qiu, J.Q. (2009) Zircon SIMS U-Pb dating of cumulus gabbro in the Dengqen ophiolite in eastern Tibet and its significance. Geological Bulletin, 28, 1253–1258.
  51. Qu, Y.G., Wang, Y.S., Duan, J.X., Zhang, S.H. & Wang, Z.H. (2003) Geological report and map of the Duoba region (1: 250,000). Geological Survey of China, Beijing, 269 pp. [In Chinese]
  52. Shen, S.Z., Zhang, Y.C., Yuan, D.X., Xu, H.P., Ju, Q., Zhang, H., Zheng, Q.F., Luo, M. & Hou, Z.S. (2024) Integrative Permian stratigraphy, biotas, paleogeographical and paleoclimatic evolutions of the Qinghai-Tibetan Plateau and its surrounding areas. Science China Earth Sciences, 67, 1107–1151. https://doi.org/10.1007/s11430-023-1126-3
  53. Shi, R.D. (2007) Constraints on the age of Bangong Lake SSZ-type ophiolite on the Ban-Nuyang time limit. Chinese Science Bulletin, 52 (2), 223–227. [In Chinese] https://doi.org/10.1007/s11434-007-0134-z
  54. Shirdashtzadeh, N., Kachovich, S., Aitchison, J.C. & Samadi, R. (2015) Mid-Cretaceous radiolarian fauna from the Ashin Ophiolite (western Central-East Iranian Microcontinent). Cretaceous Research, 56, 110–118. https://doi.org/10.1016/j.cretres.2015.04.003
  55. Sun, L.X., Bai, Z.D., Xu, D.B., Li, H.K. & Song, B. (2011) Geological characteristics and zircon U‐Pb SHRIMP dating of the plagiogranite in Amduo ophiolites, Tibet. Geological Survey and Research, 34 (1), 10–15. [In Chinese with English abstract]
  56. Tang, Y., Zhai, Q.G., Hu, P.Y., Wang, J., Xiao, X.C., Wang, H.T., Tang, S.H. & Lei, M. (2018) Rodingite from the Beila ophiolite in the Bangong-Nujiang suture zone, northern Tibet: New insights into the formation of ophiolite-related rodingite. Lithos, 316, 33–47. https://doi.org/10.1016/j.lithos.2018.07.006.
  57. Tang, Y., Zhai, Q.G., Hu, P.Y., Wang, W., Yan, Z., Wang, H.T. & Zhu, Z.C. (2021) Forearc lava stratigraphy of the Beila Ophiolite, north–central Tibetan Plateau: Magmatic response to initiation of subduction of the Bangong-Nujiang Meso-Tethys Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 582, 110663. https://doi.org/10.1016/j.palaeo.2021.110663
  58. Wang, B.D., Wang, L.Q., Chung, S.L., Chen, J.L., Yin, F.G., Liu, H., Li, X.B. & Chen, L.K. (2016) Evolution of the Bangong-Nujiang Tethyan ocean: insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245, 18–33. https://doi.org/10.1016/j.lithos.2015.07.016
  59. Wang, T.Y., Li, G.B., Aitchison, J.C., Sheng, J.N. & Ma, X.S. (2023) Lower cretaceous deep marine deposits in western Tibet: Implications for paleoceanographic evolution of the Mesotethyan Ocean. Cretaceous Research, 148, 105527. https://doi.org/10.1016/j.cretres.2023.105527
  60. Wang, Y.J., Wang, J.P. & Pei, F. (2002) A Late Triassic radiolarian fauna in the Dengqen ophiolite belt, Xizang (Tibet). Acta Micropaleontologica Sinica, 19 (4), 323–336. [In Chinese with English abstract]
  61. Wang, Y.J., Sha, J.G., Xu, B., Wu, X.J., Nima, C. & Xie, Y.W. (2021) Radiolarian fauna of middle Triassic Gajia Formation in the Nagqu area, Tibet. Acta Micropalaeontologica Sinica, 38 (1), 25–47. [In Chinese with English abstract] https://doi.org/10.16087/j.cnki.1000-0674.2021.01.003
  62. Wu, F.Y., Wan, B, Zhao, L., Xiao, W.J. & Zhu, R.X. (2020) Tethys geodynamics. Acta Petrologica Sinica, 36, 1627–1674. [In Chinese with English abstract] https://doi.org/10.18654/1000-0569/2020.06.01
  63. Wu, G.C., Ji, Z.S., Liao, W.H. & Yao, J.X. (2019) New biostratigraphic evidence of late Permian to late Triassic deposits from Central Tibet and their paleogeographic implications. Lithosphere, 11, 683–696. https://doi.org/10.1130/L1046.1
  64. Xu, H.P., Zhang, Y.C., Qiao, F. & Shen, S.Z. (2019) A new Changhsingian brachiopod fauna from the Xiala Formation at Tsochen in the central Lhasa Block and its paleogeographical implications. Journal of Paleontology, 93 (5), 876–898. https://doi.org/10.1017/jpa.2019.28
  65. Xu, H.P., Zhang, Y.C., Yuan, D.X. & Shen, S.Z. (2022) Quantitative palaeobiogeography of the Kungurian–Roadian brachiopod faunas in the Tethys: Implications of allometric drifting of Cimmerian blocks and opening of the Meso-Tethys Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 601, 111078. https://doi.org/10.1016/j.palaeo.2022.111078
  66. Xu, M.J., Li, C., Zhang, X.Z. & Wu, Y.W. (2014) Nature and evolution of the Neo‐Tethys in Central Tibet: Synthesis of ophioliticpetrology, geochemistry, and geochronology. International Geology Review, 56 (9), 1072–1096. https://doi.org/10.1080/00206814.2014.919616
  67. Yang, Q. & Wang, Y.J. (1990) A taxonomic study of Upper Jurassic radiolarian from Rutog county, Xizang (Tibet). Acta Micropaleontologica Sinica, 7 (3), 195–218. [In Chinese with English abstract]
  68. Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28 (1), 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
  69. Yuan, D.X., Zhang, Y.C., Qiao, F., Xu, H.P., Ju, Q. & Shen, S.Z. (2022) A new late Kungurian (Cisuralian, Permian) conodont and fusuline fauna from the South Qiangtang Block in Tibet and their implications for correlation and paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 589, 110822. https://doi.org/10.1016/j.palaeo.2021.110822
  70. Zeng, M., Zhang, X., Cao, H., Ettensohn, F.R., Cheng, W.B. & Lang, X.H. (2016) Late Triassic initial subduction of the Bangong‐Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gerze, Tibet. Basin Research, 28, 147–157. https://doi.org/10.1111/bre.12105
  71. Zeng, X.W., Wang, M., Fan, J.J., Li, C., Xie, C.M., Liu, Y.M. & Zhang, T.Y. (2018) Geochemistry and geochronology of gabbros from the Asa Ophiolite, Tibet: Implications for the early Cretaceous evolution of the Meso-Tethys Ocean. Lithos, 320-321, 192–206. https://doi.org/10.1016/j.lithos.2018.09.013
  72. Zeng, Y.C., Xu, J.F., Chen, J.L., Wang, B.D., Kang, Z.Q. & Huang, F. (2018) Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe–Yunzhug–Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau. Lithos, 300-301, 250–260. https://doi.org/10.1016/j.lithos.2017.11.025
  73. Zeng, Y.C., Xu, J.F., Chen, J.L., Wang, B.D., Huang, F., Xiao, X.P. & Li, M.J. (2021) Early Cretaceous (ca.138–134 Ma) Forearc Ophiolite and Tectonomagmatic Patterns in Central Tibet: Subduction Termination and Re-initiation of Meso-Tethys Ocean Caused by Collision of an Oceanic Plateau at the Continental Margin? Tectonics, 40, e2020TC006423. https://doi.org/10.1029/2020TC006423
  74. Zhai, Q.G., Jahn, B.M., Wang, J., Hu, P.Y., Chung, S.L., Lee, H.Y., Tang, S.H. & Tang, Y. (2016) Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128 (3-4), 355–373. https://doi.org/10.1130/b31296.1
  75. Zhai, Q.G., Jahn, B.M., Li, X.H., Zhang, R.Y., Li, Q.L., Yang, Y.N., Wang, J., Liu, T., Hu, P.Y. & Tang, S.H. (2017) Zircon U-Pb dating of eclogite from the Qiangtang terrane, north–central Tibet: a case of metamorphic zircon with magmatic geochemical features. International Journal of Earth Sciences, 106 (4), 1239–1255. https://doi.org/10.1007/s00531-016-1418-9
  76. Zhang, Y.C., Shi, G.R. & Shen, S.Z. (2013) A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai-Tibet Plateau. Gondwana Research, 24 (1), 55–76. https://doi.org/10.1016/j.gr.2012.06.010
  77. Zhang, Y.C., Zhang, Y.J., Yuan, D.X., Xu, H.P. & Qiao, F. (2019) Stratigraphic and paleontological constraints on the opening time of the Bangong-Nujiang Ocean. Acta Petrologica Sinica, 35, 3083–3096. [In Chinese with English abstract] https://doi.org/10.18654/1000-0569/2019.10.08
  78. Zhang, Y.C., Shen, S.Z., Xu, H.P., Qiao, F., Yuan, D.X. & Ju, Q. (2023) Permian strata and faunas from the Lhasa Block, Tibet. Science Press, Beijing, 394pp.
  79. Zhang, Y.J., An, X.Y., Liu, S.L. & Zhang, Y.C. (2024) The sedimentary facies and tectono-stratigraphic successions of the Carboniferous–Lower Permian deposits in western South Qiangtang Block: Implication for a rifting process on the Gondwana margin. Palaeoworld, 33 (3), 706–723. https://doi.org/10.1016/j.palwor.2023.07.002
  80. Zhong, Y., Xia, B., Liu, W.L., Yin, Z.X., Hu, X.C. & Huang, W. (2015) Geochronology, petrogenesis and tectonic implications of the Jurassic Namco–Renco ophiolites, Tibet. International Geology Review, 57 (4), 508–528. https://doi.org/10.1080/00206814.2015.1017776
  81. Zhong, Y., Liu, W.L., Xia, B., Liu, J.N., Guan, Y., Yin, Z.X. & Huang, Q.T. (2017) Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange, northern Tibet: Implications for petrogenesis and tectonic evolution. Lithos, 292, 111–131. https://doi.org/10.1016/j.lithos.2017.09.003
  82. Zhou, Y.N., Cheng, X., Yu, L., Yang, X.F., Su, H.L., Peng, X.M., Xue, Y.K., Zhang, J., Li, Y.Y. & Wu, H.N. (2016) Paleomagnetic study on the Triassic rocks from the Lhasa Terrane, Tibet, and its paleogeographic implications. Journal of Asian Earth Sciences, 121, 108–119. https://doi.org/10.1016/j.jseaes.2016.02.006
  83. Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., Hou, Z.Q. & Mo, X.X. (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23 (4), 1429–1454. https://doi.org/10.1016/j.gr.2012.02.002
  84. Zhu, D.C., Li, S.M., Cawood, P.A., Wang, Q., Zhao, Z.D., Liu, S.A., Wang, L.Q., (2016) Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245, 7–17. https://doi.org/10.1016/j.lithos.2015.06.023.
  85. Zhu R.X., Zhao, P. & Zhao, L. (2022) Evolution and dynamical processes of the Neo-Tethys Ocean. Science in China: Earth Sciences, 65 (1), 1–24. https://doi.org/10.1007/s11430-021-9845-7
  86. Ziabrev, S.V., Aitchison, J.C., Abrajevitch, A.V., Badengzhu, Davis, A.M. & Luo, H. (2003) Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet. Journal of the Geological Society, 160 (4), 591–599. https://doi.org/10.1144/0016-764902-107