Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-30
Page range: 379–388
Abstract views: 54
PDF downloaded: 43

Palaeoenvironmental analysis of the Langshan Formation in the Xiongba area

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Lhasa block Langshan Formation carbonate microfacies mid-Cretaceous palaeogeography

Abstract

The mid-Cretaceous Langshan Formation is a massive limestone unit, outcropping typically in the northern Lhasa block. A Xiongba section, measured near the type section of the Langshan Formation, is here described. The succession consists of orbitolinids limestone, where eight microfacies have been recognized. The lower part of the Langshan Formation consists of discoidal orbitolinids with other heterotrophic associations, including echinoderms, sponge spicules, and bivalves. In contrast, the upper part of the Langshan Formation features conical orbitolinids with an abundance of green algae and small benthic foraminifers. We interpret the morphological changes in orbitolinids as being influenced by bathymetry. Consequently, the microfacies variations in the Langshan Formation in the Xiongba section represent a shallowing upward sequence.

References

  1. Banner, F.T. & Simmons, M.D. (1994) Calcareous algae and foraminifera as water-depth indicators: an example from the Early Cretaceous carbonates of northeast Arabia. In: Simmons, M.D., (Eds), Micropalaeontology and Hydrocarbon Exploration in the Middle East: British Micropalaeontological Society Publications Series, 243–252.
  2. Bian, W., Yang, T., Jiang, Z., Jin, J., Gao, F., Wang, S. & Deng, C. (2020) Paleomagnetism of the Late Cretaceous red beds from the far western Lhasa terrane: Inclination discrepancy and tectonic implications. Tectonics, 39 (8), e2020TC006280. https://doi.org/10.1029/2020TC006280
  3. BouDagher-Fadel, M.K., Hu, X.M., Price, G.D., Sun, G.Y., Wang, J.G. & An, W. (2017) Foraminiferal biostratigraphy and palaeoenvironmental analysis of the Mid-Cretaceous limestones in the southern Tibetan Plateau. Journal of Foraminiferal Research, 47 (2), 188–207. https://doi.org/10.2113/gsjfr.47.2.188.
  4. Davies, R.B., Casey, D.M., Horbury, A.D., Sharland, P.R. & Simmons, M.D. (2002) Early to mid-Cretaceous mixed carbonate-clastic shelfal systems: examples, issues and models from the Arabian Plate. GeoArabia, 7 (3), 541–598. https://doi.org/10.2113/geoarabia0703541
  5. Dewey, J.F., Shackleton, R.M., Chang, C.F. & Sun, Y.Y. (1988) The tectonic evolution of the Tibetan Plateau. Royal Society of London Philosophical Transactions, ser. A: Mathematical and Physical Sciences, 327, 379–413. https://doi.org/10.1098/rsta.1988.0135
  6. Di Lucia, M., Trecalli, A., Mutti, M. & Parente, M. (2012) Bio-chemostratigraphy of the Barremian-Aptian shallow-water carbonates of the southern Apennines (Italy): pinpointing the OAE1a in a Tethyan carbonate platform. Solid Earth, 3 (1), 1–28. https://doi.org/10.5194/se-3-1-2012
  7. Douglass, R.C. (1960) The Foraminiferal Genus Orbitolina in North America: A Study of the Genus Orbitolina, Its Type Species, Morphology, and Stratigraphic and Geographic Distribution in North America (Vol. 333). US Government Printing Office, 52 pp. https://doi.org/10.3133/pp333
  8. Dunham, R.J. (1962) Classification of carbonate rocks according to depositional textures. In: Ham, W.E. (Ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir, 1, 108–121. https://doi.org/10.1306/M1357
  9. Fan, J.J., Li, C., Xie, C.M. & Wang, M. (2014) Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys. International Geology Review, 56 (12), 1504–1520. https://doi.org/10.1080/00206814.2014.947639
  10. Flügel, E. (2010) Microfacies of carbonate rocks: Analysis, interpretation and application (2nd ed.). Springer-Verlag, Berlin, 924 pp. https://doi.org/10.1007/978-3-642-03796-2.
  11. Halfar, J., Godinez-Orta, L., Mutti, M., Valdez-Holguín, J.E. & Borges, J.M. (2004) Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology, 32 (3), 213–216. https://doi.org/10.1130/G20298.1
  12. Hu, X., Ma, A., Xue, W., Garzanti, E., Cao, Y., Li, S., Sun, G. & Lai, W. (2022) Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 229, 104031. https://doi.org/10.1016/j.earscirev.2022.104031
  13. James, N.P. & Jones, B. (2015) Origin of carbonate sedimentary rocks. John Wiley & Sons, 464 pp.
  14. Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M. & Ding, L. (2007) Geological records of the LhasaQiangtang and Indo­Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119, 917–933. https://doi.org/10.1130/B26033.1
  15. Kapp, P. & DeCelles, P.G. (2019) Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319 (3), 159–254. https://doi.org/10.2475/03.2019.01
  16. Lai, W., Hu, X., Garzanti, E., Xu, Y., Ma, A. & Li, W. (2019a) Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Research, 73, 136–152. https://doi.org/10.1016/j.gr.2019.03.016
  17. Lai, W., Hu, X., Garzanti, E., Sun, G., Garzione, C.N., Fadel, M.B. & Ma, A. (2019b) Initial growth of the northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). Geological Society of America Bulletin, 131, 1823–1836. https://doi.org/10.1130/B35124.1
  18. Leeder, M.R., Smith, A.B. & Jixiang, Y. (1988) Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse. Royal Society of London Philosophical Transactions, ser. A: Mathematical and Physical Sciences, 327, 107–143. https://doi.org/10.1098/rsta.1988.0123
  19. Leier, A.L., DeCelles, P.G., Kapp, P. & Gehrels, G.E. (2007) Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. Journal of Sedimentary Research, 77, 809–825. https://doi.org/10.2110/jsr.2007.078.
  20. Li, S., Yin, C., Guilmette, C., Ding, L. & Zhang, J. (2019) Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198, 102907. https://doi.org/10.1016/j.earscirev.2019.102907
  21. Ma, A.L., Hu, X.M., Garzanti, E., Han, Z. & Lai, W. (2017) Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. Journal of Geophysical Research: Solid Earth, 122, 4790–4813. https://doi.org/10.1002/2017JB014211
  22. Ma, Y., Yang, T., Bian, W., Jin, J., Wang, Q., Zhang, S. & Cao, L. (2018) A stable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa‐Qiangtang collision and the maximum width of the Neo‐Tethys. Tectonics, 37 (10), 3853–3876. https://doi.org/10.1029/2018TC005143
  23. Pan, G.T., Ding, J., Yao, D.S. & Wang, L.Q. (2004) Guide Book of 1:1,500,000 Geologic Map of the QinghaiXizang (Tibet) Plateau and Adjacent Areas. Cartographic Publishing House, Chengdu,148 pp.
  24. Pittet, B., Van Buchem, F.S.P., Hillgärtner, H., Razin, P., Grötsch, J. & Droste, H. (2002) Ecological succession, palaeoenvironmental change, and depositional sequences of Barremian–Aptian shallow-water carbonates in northern Oman. Sedimentology, 49, 555–581. https://doi.org/10.1046/j.1365-3091.2002.00460.x
  25. Rao, X., Skelton, P.W., Sha, J., Cai, H. & Iba, Y. (2015) Mid-Cretaceous rudists (Bivalvia: Hippuritida) from the Langshan Formation, Lhasa block, Tibet. Papers in Palaeontology, 1, 401–424. https://doi.org/10.1002/spp2.1019
  26. Rahiminejad, A.H. & Hassani, M.J. (2016) Paleoenvironmental distribution patterns of orbitolinids in the Lower Cretaceous deposits of eastern Rafsanjan, Central Iran. Marine Micropaleontology, 122, 53–66. https://doi.org/10.1016/j.marmicro.2015.11.006
  27. Sun, G., Hu, X., Sinclair, H.D., BouDagher-Fadel, M.K. & Wang, J. (2015) Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau. Geological Society of America Bulletin, 127, 1001–1020. https://doi.org/10.1130/B31137.1
  28. Sun, G., Hu, X. & Sinclair, H.D. (2017) Early cretaceous palaeogeographic evolution of the Coqen basin in the Lhasa Terrane, southern Tibetan plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 101–118. https://doi.org/10.1016/j.palaeo.2017.06.006
  29. Vilas, L., Masse, J.P. & Arias, C. (1995) Orbitolina episodes in carbonate platform evolution: the early Aptian model from SE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 119 (1-2), 35–45. https://doi.org/10.1016/0031-0182(95)00058-5
  30. Wilson, J.L. (1975) Carbonate facies in geologic history. Springer Science & Business Media, 471 pp. https://doi.org/10.1007/978-1-4612-6383-8
  31. Xu, Y., Hu, X., BouDagher-Fadel, M.K., Sun, G., Lai, W., Li, J. & Zhang, S. (2020) The major Late Albian transgressive event recorded in the epeiric platform of the Langshan Formation in central Tibet. In: Wagreich, M., Hart, M.B., Sames, B. & Yilmaz, I.O. (Eds), Cretaceous Climate Events and Short-Term Sea Level Changes. Geological Society, London, Special Publication, 498, 211–232. https://doi.org/10.1144/SP498-2019-8.
  32. Xu, Y., Hu, X., Garzanti, E., BouDagher-Fadel, M., Sun, G., Lai, W. & Zhang, S. (2022) Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): eustatic vs. tectonic control?. Geological Society of America Bulletin, 134 (1-2), 389–404. https://doi.org/10.1130/B35930.1
  33. Xu, Y., Hu, X., Garzanti, E., Sun, G., Jiang, J., Li, J. & Rao, X. (2023) Carbonate factories and their critical control on the geometry of carbonate platforms (mid-Cretaceous, southern Iran). Palaeogeography, Palaeoclimatology, Palaeoecology, 625, 111680. https://doi.org/10.1016/j.palaeo.2023.111680
  34. Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
  35. Zhang, K.J., Xia, B.D., Wang, G.M., Li, Y.T. & Ye, H.F. (2004) Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin, 116, 1202–1222. https://doi.org/10.1130/B25388.1
  36. Zhang, Q.H., Ding, L., Cai, F.L., Xu, X.X., Zhang, L.Y., Xu, Q. & Willems, H. (2011) Early Cretaceous Gangdese retroarc foreland basin evolution in the Selin Co basin, central Tibet: evidence from sedimentology and detrital zircon geochronology. In: Gloaguen, R. & Ratschbacher, L. (Eds), Growth and Collapse of the Tibetan Plateau. Geological Society, London, Special Publication, 353, 27–44. https://doi.org/10.1144/SP353.3
  37. Zhu, D.C., Li, S.M., Cawood, P.A., Wang, Q., Zhao, Z.D., Liu, S.A. & Wang, L.Q. (2016) Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245, 7–17. https://doi.org/10.1016/j.lithos.2015.06.023
  38. Zhu, Z., Zhai, Q., Hu, P., Tang, Y., Wang, H., Wang, W. & Wu, H. (2022) Resolving the timing of Lhasa-Qiangtang block collision: Evidence from the Lower Cretaceous Duoni Formation in the Baingoin foreland basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 595. https://doi.org/10.1016/j.palaeo.2022.110956