Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-03-28
Page range: 21-32
Abstract views: 34
PDF downloaded: 11

Mesofossils of an unrevealed affinity from the Jurassic of siberia

A.A. Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, Moscow 117647, Russia
Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, St. Petersburg 197376, Russia
Sorosaccus ginkgoalean pollen cone lacustrine deposits scanning electron microscopy transmission electron microscopy

Abstract

Enigmatic mesofossils were obtained via maceration of a microsporangium detached from a ginkgoalean pollen cone of Sorosaccus sibiricus Prynada from the Aalenian Ust’-Baley locality in Irkutsk Coal Basin, Siberia. The organic-walled remains were constituted by rounded oval bodies of sporopollenin-like colour, overlapped with their margins and arranged in several layers. The bodies had jointed continuous walls of variable thickness, which bifurcated, fused and formed inseparable structures. LM, SEM and TEM observations showed that the find cannot be in situ ginkgoalean pollen or other remains of a ginkgoalean plant. The further comparison also excluded the possibility that these mesofossils were alien pollen or spores, trapped in an open sporangium or fossilized in its close vicinity. Some slight ultrastructural similarities were only revealed to cryptospores, which led the search to algae and bryophytes. However, although fresh-water colonial algae and bryophytes theoretically could have been present in these lacustrine deposits, they differ from the mesofossils by smaller cells, which are grouped differently and show dissimilar outlines and wall ultrastructure. There is a possibility that the find represents wall fragments of some resting stage of an unknown organism. So far, no close analogues to these mesofossils have been found.

References

  1. Akulov, N.I., Frolov, A.O., Mashchuk, I.M. & Akulova, V.V. (2015) Jurassic deposits of the southern part of the Irkutsk sedimentary basin. Stratigraphy and Geological Correlation, 23 (4), 387–409. https://doi.org/10.1134/S0869593815040036
  2. Batten, D.J. (1996) Colonial chlorococcales. In: Jansonius, J. & McGregor, D.C. (Eds), Palynology: principles and applications. AASP Foundation, Dallas, Texas, U.S.A., pp.191–203.
  3. Collinson, M.E. (1980) A new multiple-floated Azolla from the Eocene of Britain with a brief review of the genus. Paleontology, 23, 213–229.
  4. Collinson, M.E., Smith, S.Y., van Konijnenburg-van Cittert, J.H., Batten, D.J., van der Burgh, J., Barke, J. & Marone, F. (2013) New observations and synthesis of Paleogene heterosporous water ferns. International Journal of Plant Sciences, 174 (3), 350–363. https://doi.org/10.1086/668249
  5. El Atfy, H., Bomfleur, B. & Kerp, H. (2024) Botryococcus: exceptionally well-preserved fossil examples of a tiny colonial green alga. Paläontologische Zeitschrift, 98 (3), 391–393. https://doi.org/10.1007/s12542-024-00701-0
  6. Freudenstein, J.V. & Rasmussen, F.N. (1997) Sectile pollinia and relationships in the Orchidaceae. Plant Systematics and Evolution, 205, 125–146. https://doi.org/10.1007/BF01464400
  7. Graham, L.E., Arancibia‐Avila, P., Taylor, W.A., Strother, P.K. & Cook, M.E. (2012) Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. American Journal of Botany, 99 (1), 130–144. https://doi.org/10.3732/ajb.1100245
  8. Guy-Ohlson, D. (1992) Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Review of Palaeobotany and Palynology, 71 (1-4), 1–15. https://doi.org/10.1016/0034-6667(92)90155-A
  9. Guy-Ohlson, D. (1998) The use of the microalga Botryococcus in the interpretation of lacustrine environments at the Jurassic–Cretaceous transition in Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 140 (1-4), 347–356. https://doi.org/10.1016/S0031-0182(98)00019-4
  10. Hall, J.W. (1975) Ariadnaesporites and Glomerisporites in the Late Cretaceous: ancestral Salviniaceae. American Journal of Botany, 62 (4), 359–369. https://doi.org/10.1002/j.1537-2197.1975.tb14058.x
  11. Ignatov, M.S., Spirulina, U.N., Voronkova, T.V. & Polevova, S.V. (2024a) On the moss genus Gomankovia from the Upper Permian of the Russian Platform. Arctoa, 33, 71–79. https://doi.org/10.15298/arctoa.33.09
  12. Ignatov, M.S., Voronkova, T.V., Spirina, U.N. & Polevova, S.V. (2023) Arvildia, an Upper Permian moss and its possible relationships. Arctoa, 32 (2), 243–260. https://doi.org/10.15298/arctoa.32.23
  13. Ignatov, M.S., Voronkova, T.V., Spirina, U.N. & Polevova, S.V. (2024b) How to recognize mosses from extant groups among Paleozoic and Mesozoic fossils. Diversity, 16 (10), 622, 1–29. https://doi.org/10.3390/d16100622
  14. Kiritchkova, A.I., Kostina, E.I. & Nosova, N.V. (2017) Continental Jurassic deposits in stratoregion of Irkutsk Coal Basin. Stratigraphy and Geological Correlation, 25 (5), 17–40. https://doi.org/10.1134/S0869593817050033
  15. Kiritchkova, A.I., Nosova, N.V., Kostina, E.I. & Yaroshenko, O.P. (2020) Jurassic Continental Deposits of the Irkutsk Coal Basin. VNIGRI, St. Petersburg, 288 pp. [In Russian]
  16. Looy, C.V., Collinson, M.E., Cittert, J.H.V.K.V., Visscher, H. & Brain, A.P. (2005) The ultrastructure and botanical affinity of end-Permian spore tetrads. International Journal of Plant Sciences, 166 (5), 875–887. https://doi.org/10.1086/431802
  17. Lu, Y., Wang, L., Wang, D., Wang, Y., Zhang, M., Jin, B. & Chen, P. (2011) Male cone morphogenesis, pollen development and pollen dispersal mechanism in Ginkgo biloba L. Canadian Journal of Plant Science, 91 (6), 971–981. https://doi.org/10.4141/cjps2011-036
  18. Manum, S.B., Bose, M.N. & Sawyer, R.T. (1991) Clitellate cocoons in freshwater deposits since the Triassic. Zoologica Scripta, 20 (4), 347–366. https://doi.org/10.1111/j.1463-6409.1991.tb00300.x
  19. McLoughlin, S., Bomfleur, B., Mörs, T. & Reguero, M.A. (2016) Fossil clitellate annelid cocoons and their microbiological inclusions from the Eocene of Seymour Island, Antarctica. Palaeontologia Electronica, 19. https://doi.org/10.26879/607
  20. Mundry, M. & Stützel, T. (2004) Morphogenesis of leaves and cones of male short-shoots of Ginkgo biloba L. Flora-Morphology, Distribution, Functional Ecology of Plants, 199 (5), 437–452. https://doi.org/10.1078/0367-2530-00171
  21. Nowak, H., Kustatscher, E., Roghi, G. & Van Konijnenburg-van Cittert, J.H. (2023) In situ spores of lycophytes from the Anisian Kühwiesenkopf/Monte Prà della Vacca flora in northern Italy. Botany Letters, 170 (2), 194–207. https://doi.org/10.1080/23818107.2022.2113561
  22. Nosova, N.V., Zavialova, N.M., Kiritchkova, A.I. & Kostina, E.I. (2018) Sorosaccus sibiricus Prynada (Ginkgoales) from the Middle Jurassic deposits of the Irkutsk Coal Basin, Eastern Siberia. Palaeobotany, 9, 5–17. [In Russian] https://doi.org/10.31111/palaeobotany/2018.9.5
  23. Osborn, J.M., Taylor, T.N. & Crane, P.R. (1991) The ultrastructure of Sahnia pollen (Pentoxylales). American Journal of Botany, 78 (11), 1560–1569. https://doi.org/10.1002/j.1537-2197.1991.tb11435.x
  24. Pacini, E. & Franchi, G.G. (1999) Pollen grain sporoderm and types of dispersal units. Acta Societatis Botanicorum Poloniae, 68 (4), 299–305. https://doi.org/10.5586/asbp.1999.042
  25. Polevova, S.V. & Tekleva, M.V. (2018) Pollen spectrum composition of aments and stigmas in willow, aspen and hybrid poplar. In: Timonin, A.K. (Ed.), Collections of articles in memory of G.P. Gapochka. Moscow, Maks Press, pp.137–148. [In Russian]
  26. Prasertsin, T. & Peerapornpisal, Y. (2015) Diversity of phytoplankton and water quality in some freshwater resources in Thailand. International Journal of Applied Environmental Sciences, 10 (4), 1101–1123.
  27. Purgina, C., Grímsson, F., Weber, M. & Ulrich, S. (2024) Pollen dispersal units of selected Orchidoideae and their morphological, ultrastructural, and chemical features. Review of Palaeobotany and Palynology, 331, 105211. https://doi.org/10.1016/j.revpalbo.2024.105211
  28. Rothwell, G.W. & Stockey, R.A. (1994) The role of Hydropteris pinnata gen. et sp. nov. in reconstructing the cladistics of heterosporous ferns. American Journal of Botany, 81 (4), 479–492. https://doi.org/10.1002/j.1537-2197.1994.tb15473.x
  29. Stasiuk, L.D. (1999) Confocal laser scanning fluorescence microscopy of Botryococcus alginite from boghead oil shale, Boltysk, Ukraine: selective preservation of various micro-algal components. Organic Geochemistry, 30 (8), 1021–1026. https://doi.org/10.1016/S0146-6380(99)00046-7
  30. Steinthorsdottir, M., Tosolini, A.M.P. & Mcelwain, J.C. (2015) Evidence for insect and annelid activity across the Triassic-Jurassic transition of east Greenland. Palaios, 30 (8), 597–607. https://doi.org/10.2110/palo.2014.093
  31. Strother, P.K. & Beck, J.H. (2000) Spore-like microfossils from Middle Cambrian strata: expanding the meaning of the term cryptospore. In: Harley, M.M., Morton, C.M. & Blackmore, S. (Eds), Pollen and Spores: Morphology and Biology. Royal Botanic Gardens, Kew, 413–424.
  32. Strother, P.K., Taylor, W.A., Beck, J.H. & Vecoli, M. (2017) Ordovician spore ‘thalli’ and the evolution of the plant sporophyte. Palynology, 41 (sup. 1), 57–68. https://doi.org/10.1080/01916122.2017.1361213
  33. Taylor, T.N., Delevoryas, T. & Hope, R.C. (1987) Pollen cones from the Late Triassic of North America and implications on conifer evolution. Review of Palaeobotany and Palynology, 53 (1-2), 141–149. https://doi.org/10.1016/0034-6667(87)90010-8
  34. Taylor, W.A. (2002) Studies in cryptospore ultrastructure: variability in the tetrad genus Tetrahedraletes and type material of the dyad Dyadospora murusattenuata. Review of Palaeobotany and Palynology, 119 (3-4), 325–334. https://doi.org/10.1016/S0034-6667(01)00136-1
  35. Taylor, W.A. & Strother, P.K. (2009) Ultrastructure, morphology, and topology of Cambrian palynomorphs from the Lone Rock Formation, Wisconsin, USA. Review of Palaeobotany and Palynology, 153 (3-4), 296–309. https://doi.org/10.1016/j.revpalbo.2008.09.001
  36. Taylor, W.A., Strother, P.K. & Vecoli, M. (2017) Wall ultrastructure of the oldest embryophytic spores: implications for early land plant evolution. Revue de Micropaléontologie, 60 (3), 281–288. https://doi.org/10.1016/j.revmic.2016.12.002
  37. Tryon, A.F. & Lugardon, B. (1991) Spores of the Pteridophyta: Surface, Wall Structure, and Diversity Based on Electron Microscope Studies. Springer-Verlag. 648 pp. https://doi.org/10.1007/978-1-4613-8991-0
  38. Tryon, R.M. & Tryon, A.F. (1982) Ferns and Allied Plants: With Special Reference to Tropical America. Springer-Verlag, 857 pp. https://doi.org/10.1007/978-1-4613-8162-4
  39. Vanhoorne, R. (1992) Azolla and Salvinia species (Azollaceae and Salviniaceae, Pteridophyta), from the Caenozoic of Belgium. Bulletin de l’Institut Royal de Sciences Naturelles de Belgique, Sciences de la Terre, 62, 229–355.
  40. Wang, G.Z., Sun, F., Jin, P., Chen, Y., Chen, J., Deng, P., Yang, G. & Sun, B. (2017) A new species of Ginkgo with male cones and pollen grains in situ from the Middle Jurassic of eastern Xinjiang, China. Acta Geologica Sinica‐English Edition, 91 (1), 9–21. https://doi.org/10.1111/1755-6724.13060
  41. Walker, T.G. (1985) Spore filaments in the ant-fern Lecanopteris mirabilis—an alternative viewpoint. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 86, 111–114. https://doi.org/10.1017/S0269727000008022
  42. Wolter, M. & Schill, R. (1985) On acetolysis resistant structures in the Orchidaceae—why fossil record of orchid pollen is so rare. Grana, 24 (3), 139–143. https://doi.org/10.1080/00173138509431001
  43. Zamaloa, M.D.C. & Tell, G. (2005) The fossil record of freshwater micro-algae Pediastrum Meyen (Chlorophyceae) in southern South America. Journal of Paleolimnology, 34, 433–444. https://doi.org/10.1007/s10933-005-5804-8
  44. Zavialova, N.E. (2003) On the ultrastructure of Classopollis exine: a tetrad from the Jurassic of Siberia. Acta Palaeontologica Sinica, 42 (1), 1–7.
  45. Zavialova, N. & Nosova, N. (2023) Pollen grains associated with Karkenia irkutensis Nosova (Ginkgoales) from the Jurassic of Siberia. Review of Palaeobotany and Palynology, 316, 104938. https://doi.org/10.1016/j.revpalbo.2023.104938
  46. Zavialova, N., Nosova, N. & Bugdaeva, E. (2023) On the exine ultrastructure of fossil ginkgoaleans: In situ pollen of Sorosaccus Harris. Review of Palaeobotany and Palynology, 313, 04838. https://doi.org/10.1016/j.revpalbo.2023.104838
  47. Zavialova, N.E., Tekleva, M.V., Polevova, S.V. & Bogdanov, A.G. (2018) Electron microscopy for morphology of pollen and spores. RIPOL Classic, Moscow, 334 pp.
  48. Zavialova, N.E., Tekleva, M.V., Smirnova, S.B. & Mroueh, M. (2010) Exine ultrastructure in pollen grains of Classopollis Pflug from the Cretaceous of Lebanon. Paleontological Journal, 44 (10), 1353–1367. https://doi.org/10.1134/S0031030110100126
  49. Zavialova, N., Blomenkemper, P., Kerp, H., Hamad, A.A. & Bomfleur, B. (2021) A lyginopterid pollen organ from the upper Permian of the Dead Sea region. Grana, 60 (2), 81–96. https://doi.org/10.1080/00173134.2020.1772360