Skip to main content Skip to main navigation menu Skip to site footer
Type: Correspondence
Published: 2024-06-24
Page range: 121–124
Abstract views: 30
PDF downloaded: 8

Pristification: Defining the convergent evolution of saws in sharks and rays (Chondrichthyes, Neoselachii)

414 Oakwood Drive, Webster City, IA 50595, USA
Chondrichthyes Neoselachii


Convergent evolution is the development of analogous structures or bauplans in at least two independent lineages of organisms. Convergence is driven by the occupation of similar ecological niches and by various physical and phylogenetic constraints (McGhee, 2011). Despite the wide recognition of this phenomenon in evolutionary biology, formal terms and definitions for specific examples are rare. The most notable is carcinisation, which refers to the appearances of a crab-like bauplan among crustaceans (Keiler et al., 2017). Here the term ‘pristification’ is proposed for the convergence of saws in sharks and rays. It was coined previously in a preliminary publication (Greenfield, 2021a) but is formally defined for the first time. Not only does it highlight a remarkable convergent structure, but it also serves as a template for future terminology.


  1. Arambourg, C. (1940) Le groupe des Ganopristinés. Bulletin de la Société géologique de France, 5e Série, 10, 127–147.
  2. Burke, P.J. & Williamson, J.E. (2021) Using cone beam CT scans to reveal headfirst ingestion and possible prey manipulation tactics in sawsharks. Journal of Fish Biology, 99 (1), 271–274.
  3. Cappetta, H. (1974) Sclerorhynchidae nov. fam., Pristidae et Pristiophoridae: un exemple de parallélisme chez les Sélaciens. Comptes rendus hebdomadaires des Séances de l’Académie des Sciences, Série D: Sciences naturelles, 278 (1), 225–228.
  4. Cappetta, H. (1980a) Les Sélaciens du Crétacé supérieur du Liban. II: Batoïdes. Palaeontographica, Abteilung A, 168 (5-6), 149–229.
  5. Cappetta, H. (1980b) Les Sélaciens du Crétacé supérieur du Liban. I: Requins. Palaeontographica, Abteilung A, 168 (1-4), 69–148.
  6. Cappetta, H. (2012) Handbook of paleoichthyology. Volume 3E. Chondrichthyes. Mesozoic and Cenozoic Elasmobranchii: Teeth. Verlag Dr. Friedrich Pfeil, Munich, 512 pp.
  7. Compagno, L.J.V. (1984) FAO species catalogue. Vol. 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Part 1. Hexanchiformes to Lamniformes. Food and Agriculture Organization of the United Nations, Rome, 249 pp.
  8. Compagno, L.J.V. (1990) Alternative life-history styles of cartilaginous fishes in time and space. Environmental Biology of Fishes, 28, 33–75.
  9. Cuny, G., Suteethorn, V. & Khansubha, S. (2015) A sclerorhynchoid (Chondrichthyes: Batomorphii) in the Lower Cretaceous of Thailand? New Mexico Museum of Natural History and Science Bulletin, 67, 15–17.
  10. Ebert, D.A. & Stehmann, M.F.W. (2013) FAO species catalogue for fishery purposes. No. 7. Sharks, batoids and chimaeras of the North Atlantic. Food and Agriculture Organization of the United Nations, Rome, 523 pp.
  11. Farrés, F. & Fierstine, H.L. (2009) First record of the extinct sawfish Propristis schweinfurthi Dames, 1883 (Batoidea: Pristiformes: Pristidae) from the middle Eocene of Spain. Paläontologische Zeitschrift, 83 (4), 459–466.
  12. Greenfield, T. (2021a) Sawskates (Rajiformes, Sclerorhynchoidei) and the concept of pristification. In: Vlachos, E., Cruzado-Caballero, P., Crespo, V.D., Ríos Ibañez, M., Arnal, F.A.M., Herraiz, J.L., Gascó-Lluna, F., Guerrero-Arenas, R. & Ferrón, H.G. (Eds), Book of abstracts of the 3rd Palaeontological Virtual Congress. Palaeontological Virtual Congress, 203.
  13. Greenfield, T. (2021b) Corrections to the nomenclature of sawskates (Rajiformes, Sclerorhynchoidei). Bionomina, 22 (1), 39–41.
  14. IUCN (2024) The IUCN Red List of Threatened Species. Version 2023-1. Available from: (accessed June 12, 2024).
  15. Kaddumi, H.F. (2009) A new genus and species of sawfishes (Chondrichthyes: Batoidea) from the late Maastrichtian sediments of Harrana. In: Kaddumi, H.F. (Ed.), Fossils of the Harrana fauna and the adjacent areas. Eternal River Museum of Natural History, Amman, 178–187.
  16. Keiler, J., Wirkner, C.S. & Richter, S. (2017) One hundred years of carcinization—the evolution of the crab-like habitus in Anomura (Arthropoda: Crustacea). Biological Journal of the Linnean Society, 121 (1), 200–222.
  17. Kriwet, J. (1999) Neoselachier (Pisces, Elasmobranchii) aus der Unterkreide (unteres Barremium) von Galve und Alcaine (Spanien, Provinz Teruel). Palaeo Ichthyologica, 9, 113–142.
  18. Kriwet, J. & Kussius, K. (2001) Paleobiology and paleobiogeography of sclerorhynchid sawfishes (Chondrichthyes, Batomorphii). Revista Española de Paleontología, 16 (3), 35–46.
  19. Lange, T., Brehm, J. & Moritz, T. (2015) A practical key for the identification of large fish rostra (Pisces). Spixiana, 38 (1), 145–160.
  20. McGhee, G.R., Jr. (2011) Convergent evolution: Limited forms most beautiful. MIT Press, Cambridge, 322 pp.
  21. McGhee, G.R., Jr., Hue, I., Dardaillon, J. & Pontarotti, P. (2018) A proposed terminology of convergent evolution. In: Pontarotti, P. (Ed), Origin and evolution of biodiversity. Springer, Cham, 331–340.
  22. Müller, J.P. & Henle, F.G.J. (1837) Hr. Müller las über die Gattungen der Haifische und Rochen nach einer von ihm mit Hrn. Henle unternommenen gemeinschaftlichen Arbeit über die Naturgeschichte der Knorpelfische. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Kӧnigl. Preuss. Akademie der Wissenschaften zu Berlin, 2, 111–118.
  23. Nevatte, R.J. & Williamson, J.E. (2020) The sawshark redemption: Current knowledge and future directions for sawsharks (Pristiophoridae). Fish and Fisheries, 21 (6), 1213–1237.
  24. Nevatte, R.J., Wueringer, B.E., Jacob, D.E., Park, J.M. & Williamson, J.E. (2017) First insights into the function of the sawshark rostrum through examination of rostral tooth microwear. Journal of Fish Biology, 91 (6), 1582–1602.
  25. Pavan-Kumar, A., Gireesh-Babu, P., Jaiswar, A.K., Raje, S.G., Chaudhari, A. & Krishna, G. (2020) Molecular phylogeny of elasmobranchs. In: Trivedi, S., Rehman, H., Saggu, S., Panneerselvam, C. & Ghosh, S.K. (Eds), DNA barcoding and molecular phylogeny. Second edition. Springer, Cham, 137–151.
  26. Slaughter, B.H. & Springer, S. (1968) Replacement of rostral teeth in sawfishes and sawsharks. Copeia, 1968 (3), 499–506.
  27. Smith, M.M., Riley, A., Fraser, G.J., Underwood, C.J., Welten, M., Kriwet, J., Pfaff, C. & Johanson, Z. (2015) Early development of rostrum saw-teeth in a fossil ray tests classical theories of the evolution of vertebrate dentitions. Proceedings of the Royal Society B: Biological Sciences, 282 (1816), 20151628.
  28. Stromer, E. (1917) Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. II. Wirbeltier-Reste der Baharîje-Stufe (unterstes Cenoman). 4. Die Säge des Pristiden Onchopristis numidus Haug sp. und über die Sägen der Sägehaie. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse, 18 (8), 1–28.
  29. Villalobos-Segura, E., Underwood, C.J., Ward, D.J. & Claeson, K.M. (2019) The first three-dimensional fossils of Cretaceous sclerorhynchid sawfish: Asflapristis cristadentis gen. et sp. nov., and implications for the phylogenetic relations of the Sclerorhynchoidei (Chondrichthyes). Journal of Systematic Palaeontology, 17 (21), 1847–1870.
  30. Villalobos-Segura, E., Underwood, C.J. & Ward, D.J. (2021a) The first skeletal record of the enigmatic Cretaceous sawfish genus Ptychotrygon (Chondrichthyes, Batoidea) from the Turonian of Morocco. Papers in Palaeontology, 7 (1), 353–376.
  31. Villalobos-Segura, E., Kriwet, J., Vullo, R., Stumpf, S., Ward, D.J. & Underwood, C.J. (2021b) The skeletal remains of the euryhaline sclerorhynchoid †Onchopristis (Elasmobranchii) from the ‘Mid’-Cretaceous and their palaeontological implications. Zoological Journal of the Linnean Society, 193 (2), 746–771.
  32. Welten, M., Smith, M.M., Underwood, C.J. & Johanson, Z. (2015) Evolutionary origins and development of saw-teeth on the sawfish and sawshark rostrum (Elasmobranchii; Chondrichthyes). Royal Society Open Science, 2 (9), 150189.
  33. Wueringer, B.E., Peverell, S.C., Seymour, J., Squire, L., Jr., Kajiura, S.M. & Collin, S.P. (2011) Sensory systems in sawfishes. 1. The ampullae of Lorenzini. Brain, Behavior and Evolution, 78 (2), 139–149.
  34. Wueringer, B.E., Squire, L., Jr., Kajiura, S.M., Hart, N.S. & Collin, S.P. (2012a) The function of the sawfish's saw. Current Biology, 22 (5), R150–R151.
  35. Wueringer, B.E., Squire, L., Jr., Kajiura, S.M., Tibbetts, I.R., Hart, N.S. & Collin, S.P. (2012b) Electric field detection in sawfish and shovelnose rays. PLoS ONE, 7 (7), e41605.
  36. Wueringer, B.E., Winther-Jason, M., Raoult, V. & Guttridge, T.L. (2021) Anatomy of the mechanosensory lateral line canal system and electrosensory ampullae of Lorenzini in two species of sawshark (fam. Pristiophoridae). Journal of Fish Biology, 98 (1), 168–177.