Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-27
Page range: 340–348
Abstract views: 129
PDF downloaded: 125

Discovery of ≥ 105 Ma continental redbeds in the Qiangtang Block: Implications for the early uplift of central Tibet

State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Department of Earth and Environmental Sciences, Università di Milano-Bicocca, Milano 20126, Italy
State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
rise of Tibet continental redbed zircon U-Pb dating sedimentology Cretaceous

Abstract

The Abushan Formation represents the oldest continental redbed deposit overlying Triassic-Jurassic marine strata in the Qiangtang Block. Knowledge of the exact depositional age of the Abushan Formation is important to reconstruct early history of surface uplift in central Tibet. Pollen and magneto-stratigraphy studies from central Qiangtang suggest that the Abushan Formation was deposited during the mid-Cretaceous; however, confirmation through isotopic geochronological data is still required. Here we describe the newly studied Madeng section exposing fluvial Abushan Formation redbeds at the base and felsic volcanic rocks at the top. SIMS U-Pb dating of zircons from one sample of these volcanic rocks yield a weighted mean ²⁰⁶Pb/²³⁸U age of 105.1 ± 0.9 Ma, indicating latest Early Cretaceous (late Albian) deposition of the Abushan Formation. Our data support the Abushan Formation redbeds were deposited in intermontane basins in an intra-plate tectonic setting following the collision, suturing, and amalgamation of the Qiangtang and Lhasa blocks.

References

  1. An, W., Hu, X.M., Garzanti, E., Wang, J.G. & Liu, Q. (2021) New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma. Geophysical Research Letters, 48 (3), e2020GL090641. https://doi.org/10.1029/2020GL090641
  2. Ding, L., Xu, Q., Yue, Y.H., Wang, H.Q., Cai, F.L. & Li, S. (2014) The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth and Planetary Science Letters, 392, 250–264. https://doi.org/10.1016/j.epsl.2014.01.045
  3. Ding, L., Kapp, P., Cai, F.L., Garzione, C. N., Xiong, Z.Y., Wang, H.Q. & Wang, C. (2022) Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3, 652–667. https://doi.org/10.1038/s43017-022-00318-4
  4. He, H.Y., Li, Y.L., Wang, C.S., Zhou, A., Qian, X.Y., Zhang, J.W., Du, L.T. & Bi, W.J. (2018) Late Cretaceous (ca. 95 Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: petrogenetic and tectonic implications. Lithos, 302–303, 389–404. https://doi.org/10.1016/j.lithos.2018.01.013
  5. Hu, X.M., Ma, A.L., Xue, W.W., Garzanti, E., Cao, Y., Li, S.M., Sun, G.Y. & Lai, W. (2022) Exploring a lost ocean in the Tibetan Plateau: birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 229, 104031. https://doi.org/10.1016/j.earscirev.2022.104031
  6. Kapp, P. & DeCelles, P.G. (2019) Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319, 159–254. https://doi.org/10.2475/03.2019.01
  7. Kapp, P., Yin, A., Harrison, T. M. & Ding, L. (2005) Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117, 865–878. https://doi.org/10.1130/b25595.1
  8. Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizier, M. & Ding, L. (2007) Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119, 917–932. https://doi.org/10.1130/b26033.1
  9. Lai, W., Hu, X.M., Garzanti, E., Sun, G.Y., Garzione, C. N., BouDagher Fadel, M. & Ma, A.L. (2019) Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). Geological Society of America Bulletin, 131, 1823–1836. https://doi.org/10.1130/B35124.1
  10. Leeder, M.R. (2011) Tectonic sedimentology: sediment systems deciphering global to local tectonics. Sedimentology, 58, 2–56. https://doi.org/10.1111/j.1365-3091.2010.01207.x
  11. Leier, A.L., DeCelles, P. G., Kapp, P. & Ding, L. (2007) The Takena Formation of the Lhasa terrane, southern Tibet: the record of a Late Cretaceous retroarc foreland basin. Geological Society of America Bulletin, 119, 31–48. https://doi.org/10.1130/B25974.1
  12. Li, C. (1987) The Longmucuo-Shuanghu-Lanchangjiang plate suture and the north boundary of distribution of Gondwana facies Permian-Carboniferous system in northern Xizang (in Chinese with English abstract). Journal of Changchun college of geology, 17, 155–166.
  13. Li, L., Garzione, C. N., Pullen, A., Zhang, P. & Li, Y. (2018) Late Cretaceous–Cenozoic basin evolution and topographic growth of the Hoh Xil Basin, central Tibetan Plateau. GSA Bulletin, 130, 499–521. https://doi.org/10.1130/B31769.1
  14. Li, X.H., Liu, Y., Li, Q.L., Guo, C.H. & Chamberlain, K. R. (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems, 10 (4). https://doi.org/10.1029/2009GC002400
  15. Li, X.H., Tang, G.Q., Gong, B., Yang, Y.H., Hou, K.J., Hu, Z.C., Li, Q.L. & Li, W.X. (2013a) Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58, 4647–4654. https://doi.org/10.1007/s11434-013-5932-x
  16. Li, Y.L., He, J., Wang, C.S., Santosh, M., Dai, J.G., Zhang, Y.X., Wei, Y.S. & Wang, J.G. (2013b) Late Cretaceous K-rich magmatism in central Tibet: evidence for early elevation of the Tibetan plateau? Lithos, 160-161, 1–13. https://doi.org/10.1016/j.lithos.2012.11.019
  17. Li, Y.L., He, J., Wang, C.S., Han, Z.P., Ma, P.F., Xu, M. & Du, K.Y. (2015) Cretaceous volcanic rocks in south Qiangtang Terrane: products of northward subduction of the Bangong–Nujiang Ocean? Journal of Asian Earth Sciences, 104, 69–83. https://doi.org/10.1016/j.jseaes.2014.09.033
  18. Li, Y.L., He, H.Y., Wang, C.S., Wei, Y.S., Chen, X., He, J., Ning, Z.J. & Zhou, A. (2017) Early Cretaceous (ca. 100 Ma) magmatism in the southern Qiangtang subterrane, central Tibet: product of slab break-off? International Journal of Earth Sciences, 106, 1289–1310. https://doi.org/10.1007/s00531-016-1391-3
  19. Lin, J., Dai, J.G., Zhuang, G.S., Jia, G.D., Zhang, L.M., Ning, Z.J., Li, Y.L. & Wang, C.S. (2020) Late Eocene–Oligocene high relief paleotopography in the north central Tibetan Plateau: Insights from detrital zircon U–Pb geochronology and leaf wax hydrogen isotope studies. Tectonics, 39 (2), e2019TC005815. https://doi.org/10.1029/2019TC005815
  20. Luo, A.B., Fan, J.J., Hao, Y.J., Li, H. & Zhang, B.C. (2020) Aptian Flysch in Central Tibet: Constraints on the Timing of Closure of the Bangong-Nujiang Tethyan Ocean. Tectonics, 39, e2020TC006198. https://doi.org/https://doi.org/10.1029/2020TC006198
  21. Ma, A., Hu, X., Garzanti, E., Han, Z. & Lai, W. (2017) Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. Journal of Geophysical Research: Solid Earth, 122, 4790–4813. https://doi.org/10.1002/2017JB014211
  22. Ma, A., Hu, X., Kapp, P., BouDagher‐Fadel, M. & Lai, W. (2020) Pre‐Oxfordian (> 163 Ma) ophiolite obduction in Central Tibet. Geophysical Research Letters, 47, e2019GL086650. https://doi.org/10.1029/2019GL086650
  23. Ma, A.L., Hu, X.M., Garzanti, E., Boudagher-Fadel, M., Xue, W.W., Han, Z. & Wang, P. (2023a) Paleogeographic and tectonic evolution of Mesozoic Qiangtang basins (Tibet). Tectonophysics, 862, 229957. https://doi.org/10.1016/j.tecto.2023.229957
  24. Ma, A.L., Hu, X.M., Garzanti, E., Pullen, A., BouDagher-Fadel, M., Ji, X.K., Wang, J.G., Lai, W. & Xue, W.W. (2023b) Mid-Cretaceous exhumation of the central Qiangtang Mountain Range metamorphic rocks as evidenced by the Abushan Continental Redbeds. Tectonics, 42 (3), e2022TC007520. https://doi.org/10.1029/2022TC007520
  25. Ma, A., Hu, X., Kapp, P., Han, Z., Lai, W. & BouDagher-Fadel, M. (2018) The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 506, 30–47. https://doi.org/10.1016/j.palaeo.2018.06.005
  26. Meng, J., Zhao, X.X., Wang, C.S., Liu, H., Li, Y.L., Han, Z.P., Liu, T. & Wang, M. (2018) Palaeomagnetism and detrital zircon U-Pb geochronology of Cretaceous redbeds from central Tibet and tectonic implications. Geological Journal, 53 (5), 2315–2333. https://doi.org/10.1002/gj.3070
  27. Miall, A.D. (1977) A review of the braided-river depositional environment. Earth-Science Reviews, 13, 1–62. https://doi.org/10.1016/0012-8252(77)90055-1
  28. Pan, G., Ding, J. & Wang, L. (2004) Geological map of Qinghai–Tibet Plateau and adjacent regions: Map Publication in Chengdu, China.
  29. Pullen, A. & Kapp, P. (2014) Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: Insights from the Qiangtang metamorphic belt, central Tibet. Geological Society of America Special Papers, 507, SPE507-504. https://doi.org/10.1130/2014.2507(04)
  30. Sun, G., Hu, X., Sinclair, H. D., BouDagher-Fadel, M. K. & Wang, J. (2015) Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau. Geological Society of America Bulletin, B31137. 31131. https://doi.org/10.1130/B31137.1.
  31. Vermeesch, P. (2018) IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
  32. Wang, J.G., Hu, X.M., Garzanti, E., BouDagher-Fadel, M. K., Liu, Z.C., Li, J. & Wu, F.Y. (2020) From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet. GSA Bulletin, 132, 2432–2454. https://doi.org/10.1130/B35314.1
  33. Wen, D.J., Hu, X.M., Chapman, T., Zeng, G., Ma, A.L. & Wang, R.Q. (2023) Late Cretaceous bimodal volcanic rocks in Shuanghu induced by lithospheric delamination beneath the Southern Qiangtang, Tibet. Lithos, 460, 107368. https://doi.org/10.1016/j.lithos.2023.107368
  34. Wu, R., Hu, C., Wang, C. & Chen, D. (1986) The stratigraphical system of qangtang district in northern xizang (Tibet) [In Chinese with English abstract]. Contribution to the Geology of the Qinghai-Xizang (TIBET) Plateau, 9, 7–38.
  35. Xia, D. X. & Liu, S. K. (1997) Lithostratigraphy of Xizang (Tibet) Autonomous Region [In Chinese]. Wuhan, China University of Geosciences press, 302 pp.
  36. Xiong, Z., Liu, X., Ding, L., Farnsworth, A., Spicer, R. A., Xu, Q., Valdes, P., He, S., Zeng, D. & Wang, C. (2022) The rise and demise of the Paleogene Central Tibetan Valley. Science Advances, 8, eabj0944. https://doi.org/10.1126/sciadv.abj0944
  37. Xu, Q., Ding, L., Zhang, L.Y., Cai, F.L., Lai, Q.Z., Yang, D. & Zeng, J.L. (2013) Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth and Planetary Science Letters, 362, 31–42. https://doi.org/10.1016/j.epsl.2012.11.058
  38. Xu, Y., Hu, X., Garzanti, E., BouDagher-Fadel, M., Sun, G., Lai, W. & Zhang, S. (2022) Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): eustatic vs. tectonic control? Bulletin, 134, 389–404. https://doi.org/10.1130/B35930.1
  39. Xue, W., Hu, X., Ma, A., Garzanti, E. & Li, J. (2020) Eustatic and tectonic control on the evolution of the Jurassic North Qiangtang Basin, northern Tibet, China: Impact on the petroleum system. Marine and Petroleum Geology, 120, 104558. https://doi.org/10.1016/j.marpetgeo.2020.104558
  40. Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
  41. Zhang, J.W., Sinclair, H. D., Li, Y.L., Wang, C.S., Persano, C., Qian, X.Y., Han, Z.P., Yao, X. & Duan, Y.Y. (2019) Subsidence and exhumation of the Mesozoic Qiangtang basin: implications for the growth of the Tibetan plateau. Basin Research, 31 (4), 754–781. https://doi.org/10.1111/bre.12343