Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-30
Page range: 396–407
Abstract views: 182
PDF downloaded: 77

Temporal scaling of carbon emission accumulations and rates of the Meso-Cenozoic hyperthermal events: implication to the Anthropocene global warming

State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
time scaling global warming hyperthermal events carbon emission climate change

Abstract

Anthropocene global warming is largely associated with fossil fuel carbon emissions. Temporal scaling provides a way to place current carbon emissions on a geological scale. The scaling of carbon emissions at the onset of hyperthermal events suggests that we might anticipate higher carbon emission rates over longer time scales than what we currently observe in the Anthropocene. However, this inference is uncertain due to limited data concerning the accumulations and time intervals of carbon emissions of Meso-Cenozoic hyperthermal events. While on the long-time hyperthermal-event scales of several to hundreds of kiloyears, modern carbon accumulations and emission rates are 9 times greater than those of the hyperthermal-event emissions. The present-day carbon release can be effectively compared to the onset of hyperthermal events through temporal scaling. If current carbon emission trends persist, we may reach the carbon emission thresholds for hyperthermal events in one to three hundred years, getting an intensified hydrological cycle, enhanced continental weathering and ocean acidification. And if the situation gets worse, we may reach the upper limit of the carbon emission threshold for hyperthermal events (e.g., Permian-Triassic Boundary event, PTB) with a biotic mass extinction over four to thirteen hundred years. This study offers new insights into current carbon emissions from a temporal scale perspective, enhancing our understanding of contemporary climate change.

References

  1. Adloff, M., Greene, S.E., Parkinson, I.J., Naafs, B.D.A., Preston, W., Ridgwell, A., Lunt, D., Castro-Jimenez, J. & Monteiro, F.M. (2020) Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a. Earth and Planetary Science Letters, 530, 115947. https://doi.org/10.1016/j.epsl.2019.115947
  2. Beerling, D.J. & Berner, R.A. (2002) Biogeochemical constraints on the Triassic–Jurassic boundary carbon cycle event. Global Biogeochemical Cycles, 16 (3), 10-1-10-13. https://doi.org/10.1029/2001GB001637
  3. Beerling, D.J. & Brentnall, S.J. (2007) Numerical evaluation of mechanisms driving Early Jurassic changes in global carbon cycling. Geology, 35 (3), 247–250. https://doi.org/10.1130/G23416A.1
  4. Beil, S., Kuhnt, W., Holbourn, A., Scholz, F., Oxmann, J., Wallmann, K., Lorenzen, J., Aquit, A. & Chellai, E.H. (2020) Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks. Climate of the Past, 16 (2), 757–782. https://doi.org/10.5194/cp-16-757-2020
  5. Blackburn, T.J., Olsen, P.E., Bowring, S.A., McLean, N.M., Kent, D.V., Puffer, J., Mchone, G., Rasbury, E. & Et-Touhami, M. (2013) Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science, 340 (6135), 941–945. https://doi.org/10.1126/science.1234204
  6. Bowen, G.J., Maibauer, B.J., Kraus, M. J., Röhl, U., Westerhold, T., Steimke, A., Gingerich, P., Wing, L. & Clyde, W.C. (2015) Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum. Nature Geoscience, 8 (1), 44–47. https://doi.org/10.1038/ngeo2316
  7. Brazier, J.M., Suan, G., Tacail, T., Simon, L., Martin, J.E., Mattioli, E. & Balter, V. (2015) Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic). Earth and Planetary Science Letters, 411, 164–176. https://doi.org/10.1016/j.epsl.2014.12.023
  8. Cao, C. & Zheng, Q. (2009) Geological event sequences of the Permian-Triassic transition recorded in the microfacies in Meishan section. Science in China Series D: Earth Sciences, 52 (10), 1529–1536. https://doi.org/10.1007/s11430-009-0113-0
  9. Charbonnier, G., Boulila, S., Spangenberg, J.E., Vermeulen, J. & Galbrun, B. (2023) Astrochronology of the Aptian stage and evidence for the chaotic orbital motion of Mercury. Earth and Planetary Science Letters, 610, 118104. https://doi.org/10.1016/j.epsl.2023.118104
  10. Clarkson, M.O., Kasemann, S.A., Wood, R.A., Lenton, T.M., Daines, S.J., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, W. & Tipper, E.T. (2015) Ocean acidification and the Permo-Triassic mass extinction. Science, 348 (6231), 229–232. https://doi.org/10.1126/science.aaa0193
  11. Clarkson, M.O., Stirling, C.H., Jenkyns, H.C., Dickson, A.J., Porcelli, D., Moy, C.M., Pogge von Strandmann, P., Cooke, I. & Lenton, T.M. (2018) Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences, 115 (12), 2918–2923. https://doi.org/10.1073/pnas.1715278115
  12. Cui, Y., Kump, L. R., Ridgwell, A. J., Charles, A. J., Junium, C.K., Diefendorf, A.F., Freeman, K., Urban, N. & Harding, I.C. (2011) Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 4 (7), 481–485. https://doi.org/10.1038/ngeo1179
  13. Cui, Y., Kump, L. R. & Ridgwell, A. (2013) Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 389, 128–136. https://doi.org/10.1016/j.palaeo.2013.03.020
  14. Cui, Y., Li, M., Van Soelen, E.E., Peterse, F. & Kürschner, W.M. (2021) Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction. Proceedings of the National Academy of Sciences, 118 (37), e2014701118. https://doi.org/10.1073/pnas.2014701118
  15. Foster, G.L., Hull, P., Lunt, D.J. & Zachos, J.C. (2018) Placing our current ‘hyperthermal’in the context of rapid climate change in our geological past. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2130), 20170086. http://dx.doi.org/10.1098/rsta.2017.0086
  16. Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Bakker, D. et al. (2023) Global Carbon Budget 2023. Earth System Science Data, 15, 5301–5369. https://doi.org/10.5194/essd-15-5301-2023
  17. Gingerich, P.D. (1983) Rates of evolution: effects of time and temporal scaling. Science, 222 (4620), 159–161. https://doi.org/10.1126/science.222.4620.159
  18. Gingerich, P.D. (1993) Quantification and comparison of evolutionary rates. American Journal of Science, 293A, 453–478. https://doi.org/10.2475/ajs.293.a.453
  19. Gingerich, P.D. (2019) Temporal scaling of carbon emission and accumulation rates: modern anthropogenic emissions compared to estimates of PETM onset accumulation. Paleoceanography and Paleoclimatology, 34 (3), 329–335. https://doi.org/10.1029/2018PA003379
  20. Gingerich, P.D. (2021) Rates of geological processes. Earth-Science Reviews, 220, 103723. https://doi.org/10.1016/j.earscirev.2021.103723
  21. Gutjahr, M., Ridgwell, A., Sexton, P.F., Anagnostou, E., Pearson, P.N., Pälike, H., Norris, R., Thomas, E. & Foster, G.L. (2017) Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature, 548 (7669), 573–577. https://doi.org/10.1038/nature23646
  22. Harvey, L.D. (2000) Global warming (1st ed). Routledge, London. 376 pp. https://doi.org/10.4324/9781315838779
  23. Heimdal, T.H., Jones, M.T. & Svensen, H.H. (2020) Thermogenic carbon release from the Central Atlantic magmatic province caused major end-Triassic carbon cycle perturbations. Proceedings of the National Academy of Sciences, 117 (22), 11968–11974. https://doi.org/10.1073/pnas.2005586117
  24. He, T., Kemp, D.B., Li, J. & Ruhl, M. (2023) Paleoenvironmental changes across the Mesozoic–Paleogene hyperthermal events. Global and Planetary Change, 222, 104058. https://doi.org/10.1016/j.gloplacha.2023.104058
  25. Hu, X., Li, J., Han, Z. & Li, Y. (2020) Two types of hyperthermal events in the Mesozoic-Cenozoic: Environmental impacts, biotic effects, and driving mechanisms. Science China Earth Sciences, 63 (8), 1041–1058. https://doi.org/10.1007/s11430-019-9604-4
  26. Jenkyns, H.C. (2010) Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11 (3), 1–30. https://doi.org/10.1029/2009GC002788
  27. Joachimski, M.M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J. & Sun, Y. (2012) Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology, 40 (3), 195–198. https://doi.org/10.1130/G32707.1
  28. Jurikova, H., Gutjahr, M., Wallmann, K., Flögel, S., Liebetrau, V., Posenato, R., Angiolini, L., Garbelli, C., Brand, U., Wiedenbeck, M. & Eisenhauer, A. (2020) Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nature Geoscience, 13 (11), 745–750. https://doi.org/10.1038/s41561-020-00646-4
  29. Kemp, D.B., Coe, A.L., Cohen, A.S. & Schwark, L. (2005) Astronomical pacing of methane release in the Early Jurassic period. Nature, 437 (7057), 396–399. https://doi.org/10.1038/nature04037
  30. Kennett, J.P. & Stott, L.D. (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353 (6341), 225–229. https://doi.org/10.1038/353225a0
  31. Kerr, R.A. (2005) How hot will the greenhouse world be? Science, 309 (5731), 100. https://doi.org/10.1126/science.309.5731.100
  32. Kukal, Z. (1990) The rate of geological processes. Earth-Science Reviews, 28 (1-3), 73–82. https://doi.org/10.1016/0012-8252(90)90017-P
  33. Kuroda, J., Ogawa, N.O., Tanimizu, M., Coffin, M.F., Tokuyama, H., Kitazato, H. & Ohkouchi, N. (2007) Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 256 (1-2), 211–223. https://doi.org/10.1016/j.epsl.2007.01.027
  34. Lewis, S.L. & Maslin, M. A. (2015) Defining the Anthropocene. Nature, 519 (7542), 171–-80. https://doi.org/10.1038/nature14258
  35. Li, Y.X., Bralower, T.J., Montañez, I.P., Osleger, D.A., Arthur, M.A., Bice, D.M., Herbert, T., Erba, E. & Silva, I.P. (2008) Toward an orbital chronology for the early Aptian oceanic anoxic event (OAE1a, ~120 Ma). Earth and Planetary Science Letters, 271 (1-4), 88–100. https://doi.org/10.1016/j.epsl.2008.03.055
  36. Li, Y. X., Montañez, I. P., Liu, Z. & Ma, L. (2017) Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2). Earth and Planetary Science Letters, 462, 35–46. https://doi.org/10.1016/j.epsl.2017.01.015
  37. McInerney, F.A. & Wing, S.L. (2011) The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences, 39 (1), 489–516. https://doi.org/10.1146/annurev-earth-040610-133431
  38. Menegatti, A.P., Weissert, H., Brown, R.S., Tyson, R.V., Farrimond, P., Strasser, A. & Caron, M. (1998) High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography, 13 (5), 530–545. https://doi.org/10.1029/98PA01793
  39. Mutterlose, J., Bottini, C., Schouten, S. & Sinninghe Damsté, J.S. (2014) High sea-surface temperatures during the early Aptian Oceanic Anoxic Event 1a in the Boreal Realm. Geology, 42 (5), 439–442. https://doi.org/10.1130/G35394.1
  40. Naafs, B.D.A. & Pancost, R.D. (2016) Sea-surface temperature evolution across Aptian oceanic anoxic event 1a. Geology, 44 (11), 959–962. https://doi.org/10.1130/G38575.1
  41. Robinson, S.A., Heimhofer, U., Hesselbo, S.P. & Petrizzo, M.R. (2017) Mesozoic climates and oceans–a tribute to Hugh Jenkyns and Helmut Weissert. Sedimentology, 64 (1), 1–15. https://doi.org/10.1111/sed.12349
  42. Ruddiman, W.F., Ellis, E.C., Kaplan, J.O. & Fuller, D.Q. (2015) Defining the epoch we live in. Science, 348 (6230), 38–39. https://doi.org/10.1126/science.aaa7297
  43. Ruhl, M., Hesselbo, S.P., Al-Suwaidi, A., Jenkyns, H.C., Damborenea, S.E., Manceñido, M.O., Storm, M., Mather, T. & Riccardi, A.C. (2020) On the onset of Central Atlantic Magmatic Province (CAMP) volcanism and environmental and carbon-cycle change at the Triassic–Jurassic transition (Neuquén Basin, Argentina). Earth-Science Reviews, 208, 103229. https://doi.org/10.1016/j.earscirev.2020.103229
  44. Ruhl, M. & Kürschner, W.M. (2011) Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic-Jurassic transition. Geology, 39 (5), 431–434. https://doi.org/10.1130/G31680.1
  45. Ruhl, M., Veld, H. & Kürschner, W.M. (2010) Sedimentary organic matter characterization of the Triassic–Jurassic boundary GSSP at Kuhjoch (Austria). Earth and Planetary Science Letters, 292 (1-2), 17–26. https://doi.org/10.1016/j.epsl.2010.01.020
  46. Schaller, M.F., Wright, J.D. & Kent, D.V. (2011) Atmospheric p CO2 perturbations associated with the Central Atlantic Magmatic Province. Science, 331 (6023), 1404–1409. https://doi.org/10.1126/science.1199011
  47. Schneebeli-Hermann, E., Kürschner, W.M., Kerp, H., Bomfleur, B., Hochuli, P.A., Bucher, H., Ware, D. & Roohi, G. (2015) Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range). Gondwana Research, 27 (3), 911–924. https://doi.org/10.1016/j.gr.2013.11.007
  48. Scott, R.W. (2016) Barremian–Aptian–Albian carbon isotope segments as chronostratigraphic signals: numerical age calibration and durations. Stratigraphy, 13 (1), 21–47. https://doi.org/10.29041/strat.13.1.02
  49. Shen, J., Zhang, Y.G., Yang, H., Xie, S. & Pearson, A. (2022) Early and late phases of the Permian–Triassic mass extinction marked by different atmospheric CO2 regimes. Nature Geoscience, 15 (10), 839–844. https://doi.org/10.1038/s41561-022-01034-w
  50. Shen, S.Z., Zhang, F.F., Wang, W.Q., Fan, J., Chen, J., Wang, B., Cao, J., Yang, S., Zhang, H., Li, G., Deng, T., Li, X. & Chen, J. (2024) Deep-time major biological and climatic events versus global changes: Progresses and challenges. China Science Bulletin, 69, 268–285. [In English] https://doi.org/10.1360/TB-2023-0218
  51. Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. (2011) The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 (1938), 842–867. https://doi.org/10.1098/rsta.2010.0327
  52. Suan, G., Pittet, B., Bour, I., Mattioli, E., Duarte, L.V. & Mailliot, S. (2008) Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: consequence for its possible causes. Earth and Planetary Science Letters, 267 (3-4), 666–679. https://doi.org/10.1016/j.epsl.2007.12.017
  53. Sun, Y., Joachimski, M.M., Wignall, P.B., Yan, C., Chen, Y., Jiang, H., Wang, L. & Lai, X. (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science, 338 (6105), 366–370. https://doi.org/10.1126/science.1224126
  54. Svensen, H. (2012) Bubbles from the deep. Nature, 483, 413–415. https://doi.org/10.1038/483413a
  55. Them II, T.R., Gill, B.C., Caruthers, A.H., Gröcke, D.R., Tulsky, E., Martindale, R.C., Poulton, T. & Smith, P.L. (2017) High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth and Planetary Science Letters, 459, 118–126. https://doi.org/10.1016/j.epsl.2016.11.021
  56. Tierney, J.E., Poulsen, C.J., Montañez, I.P., Bhattacharya, T., Feng, R., Ford, H.L., Hönisch, B., Inglis, G., Petersen, S., Sagoo, N., Tabor, C., Thirumalai, K., Zhu, J., Bruls, N., Foster, G., Godderis, Y., Huber, B., Ivany, L., Turner, S., Lunt, D., McElwain, J., Mills, B., Otto-Bliesner, B., Ridgwell, A. & Zhang, Y.G. (2020) Past climates inform our future. Science, 370 (6517), eaay3701. https://doi.org/10.1126/science.aay3701
  57. Wu, Y., Chu, D., Tong, J., Song, H., Dal Corso, J., Wignall, P.B., Song, H., Du, Y. & Cui, Y. (2021) Six-fold increase of atmospheric p CO2 during the Permian–Triassic mass extinction. Nature communications, 12 (1), 2137. https://doi.org/10.1038/s41467-021-22298-7
  58. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292 (5517), 686–693. https://doi.org/10.1126/science.1059412
  59. Zeebe, R.E., Ridgwell, A. & Zachos, J.C. (2016) Anthropogenic carbon release rate unprecedented during the past 66 million years. Nature Geoscience, 9 (4), 325–329. https://doi.org/10.1038/ngeo2681
  60. Zeebe, R.E., Zachos, J.C. & Dickens, G.R. (2009) Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geoscience, 2 (8), 576–580. https://doi.org/10.1038/ngeo578