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Abstract

Interactions between animals and plants represent an 
important driver of evolution. Especially the group Insecta 
has an enormous impact on plants, e.g., by consuming them. 
Among beetles, the larvae of different groups (Buprestidae, 
Cerambycidae, partly Eucnemidae) bore into wood and are 
therefore called wood-borer larvae or borers. While adults of 
these beetle groups are well known in the fossil record, there 
are barely any fossils of the corresponding larvae. We report 
here four new wood-borer larvae from Cretaceous Kachin 
amber (Myanmar, ca. 99 Ma). To compare these fossils 
with extant wood-borer larvae, we reconstructed the body 
outline and performed shape analysis via elliptic Fourier 
transformation and a subsequent principal component 
analysis. Two of the new larvae plot closely together 
and clearly in the same area as modern representatives 
of Buprestidae. As they furthermore lack legs, they are 
interpreted as representatives of Buprestidae. The other two 
new larvae possess legs and plot far apart from each other. 
They are more difficult to interpret; they may represent larvae 
of early offshoots of either Cerambycidae or Buprestidae, 
which still retain longer legs. These findings represent the 
earliest fossil record of larvae of Buprestidae and possibly of 
Cerambycidae known to date.

Keywords: Buprestidae, Cerambycidae, Burmese amber, 
Cretaceous, Kachin amber

Introduction

The interaction between plants and animals is an important 
driving force of evolution. This is especially true for 
representatives of the group Insecta, such as butterflies, 
beetles, or bees (e.g., Kergoat et al., 2017). On the one 
hand, many representatives are important pollinators of 

different plants, including agriculturally important ones 
(e.g., Potts et al., 2010; Powney et al., 2019). On the 
other hand, many representatives exploit different parts of 
plants, often causing severe damage up to the loss of entire 
crops (e.g., Metcalf, 1996; Evans et al., 2007; Oliveira et 
al., 2014). Especially some groups of beetles (Coleoptera) 
are known for their phytophagous behaviour, with some 
of these even having large economic impacts (e.g., bark 
beetles; Kirkendall et al., 2015 and references therein). 
 One such beetle group is Buprestidae. The about 
15,000 formally described extant species of this group 
(Bellamy, 2008–2009) are collectively known as jewel 
beetles or metallic wood-boring beetles. As these names 
suggest, the adults stand out by their shiny and metallic 
appearance, while they otherwise look like more common 
beetles. Larvae, also known as flatheaded borers, resemble 
grubs at first sight, but differ in several aspects (e.g., Wu 
et al., 2017). The head is very indistinct, immersed into 
the wide thorax region, which lacks legs. The abdomen 
exhibits segmentation, but otherwise appears worm-
shaped (vermiform). The larvae can reach astonishing 
sizes of more than 100 mm (Bellamy & Volkovitsh, 2005). 
They bore through different parts of plants, like roots, 
stems and leaves, fulfilling their eponymous ecological 
role as plant-borers. Overall, the larvae are very distinct, 
only very few larvae of other groups have a comparable 
morphology. 
 About 35,000 extant species of Cerambycidae, 
longhorn beetles, have been formally described (Svacha 
& Lawrence, 2014). Adults possess the eponymous and 
characteristic very long antennae. The larvae, called 
roundheaded borers, feed on plant material, very similar 
to those of Buprestidae. Morphologically, certain larvae 
of Cerambycidae also closely resemble the latter, mainly 
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differing in the transition area between thorax and 
abdomen: while the thorax is distinctly set off from the 
abdomen in larvae of Buprestidae, this transition is less 
pronounced in those of Cerambycidae (e.g., Wu et al., 
2017).
 Of Eucnemidae, false click beetles, there are about 
1,500 formally described extant species (Muona, 2010). 
The adults are usually brown to black with often serrate or 
more or less comb-shaped antennae. Also here, the larvae 
feed on plant material as in the previous two groups, but 
only few can bore into wood. Such larvae of Eucnemidae 
also morphologically resemble those of Buprestidae, but 
possess outward curved mandibles (e.g., Muona, 2010).
 Adult jewel beetles are well represented in the fossil 
record, with about 100 formally described species in the 
literature (Pan et al., 2011), the oldest one being of Middle 
Jurassic age (168–166 Ma; Alexeev, 1999). The fossil 
record of adult longhorn beetles is rich (see Discussion), 
the oldest record probably being from the Late Jurassic 
(ca. 150 Ma; Münster in Germar, 1839). Of false click 
beetles, more than 60 formally described fossil species 
are known (Li et al., 2021), with the oldest record from 
the Late Jurassic (ca. 151 Ma; Oberprieler et al., 2016).
 In contrast to the fossil record of adult representatives, 
the fossil record of the larvae is much scarcer. Only one 
fossil larva of false click beetles is known (Chang et al., 
2016; Early Cretaceous, ~125 Ma, see Swisher et al., 
1999). Some larvae of false click beetles are known to 
be solid-wood borers (solid-wood-boring types of Muona 
& Teräväinen, 2020: fig. 6), morphologically resembling 
larvae of jewel beetles. yet, most larvae of false click 
beetles feed on fungi in soft rotten wood and do not form 
galleries (Muona, 2010: 62), hence, cannot be considered 
solid-wood borers. The fossil described by Chang 
et al. (2016) is of this latter, vermiform, presumably 
non-solid-wood-boring type. Even older wood-boring 
larvae, namely of the group Micromalthidae, have been 
reported from Lebanese amber (Kirejtshuk & Azar, 
2008). Similar to many larvae of Eucnemidae, these 
larvae live in rotten, hence softer wood (e.g., Pollock 
& Normark, 2002; Normark, 2013; Hörnschemeyer, 
2016; Perotti et al., 2016). Few fossil larvae of longhorn 
beetles have been mentioned, fewer have been figured, 
e.g., one in Baltic amber (Eocene, ca. 38 Ma; Bachofen-
Echt, 1949: 115, fig. 102; Gröhn, 2015: 272). Only one 
larval jewel beetle seems to have been figured so far 
(New Jersey amber, ca. 90 Ma; Grimaldi & Engel, 2005: 
381, fig. 10.36), and few cases in Baltic amber have 
been mentioned (Spahr, 1981 and references therein). 
 Here we report the first jewel beetle larvae and, 
possibly, longhorn beetle larvae from 99 million years 
old Kachin amber, Myanmar, representing the oldest 
records of solid wood-borer larvae. We provide a 
detailed comparison to their extant relatives, including a 
morphometric study.

Material and methods

Material
Four fossil specimens from the Palaeo-Evo-Devo 
Research Group Collection of Arthropods, Ludwig-
Maximilians-Universität München are reported here (PED 
0597, 0816, 0838, 1130). All are preserved in Kachin 
amber (Cretaceous, ca. 99 Ma) from the Hukawng Valley, 
Myanmar (Cruickshank & Ko, 2003; Shi et al., 2012; yu 
et al., 2019). The specimens were legally acquired via the 
internet platform ebay.com from the fossil trader burmite-
miner.
 One extant larval specimen of Buprestidae from the 
entomological collections of the Centrum für Naturkunde 
(CeNak) Hamburg (ZMH 62921) is included for 
comparison.

Documentation methods
Fossil specimens were documented on a Keyence VHX-
6000 digital microscope. Specimens were documented 
in front of different backgrounds (black and white) 
and different light settings (cross-polarised coaxial 
light, unpolarised ring light) (Haug & Haug, 2019). 
Combinations with the best contrast were chosen for 
presentation.
 All images were recorded as composite images 
(Haug et al., 2008; Kerp & Bomfleur, 2011). To overcome 
limitations of dept of field, stacks of images with 
varying focus levels (frame) were recorded and fused 
to sharp images with the built-in software. To overcome 
limitations of field of view, several adjacent image details 
were recorded and merged to a panorama with the built-
in software. To avoid overexposed or underexposed areas 
each frame was recorded with HDR (see Haug et al., 2013). 
For one close-up, a stack was recorded and processed in 
FIJI, generally following the method described in Haug et 
al. (2009).
 The extant specimen was documented via 
macrophotography with a Canon Rebel T3i digital camera 
and a Canon MP-E 65 mm macro lens equipped with a 
polarisation filter. A yongnuo yN24EX E-TTL twin flash 
or two yongnuo Digital Speedlite yN560EX II flashes 
with polarisation filters perpendicular to that on the lens 
were used to illuminate the specimen. The specimen was 
documented in 70% ethanol; hence the cross-polarised 
light was necessary to reduce reflections (e.g., Haug et al., 
2011). As for the fossil specimens, here adjacent image 
stacks were also recorded, which were subsequently fused 
with CombineZP and stitched with Adobe Photoshop CS3 
(Haug et al., 2008).

Reconstruction of body outlines
For comparing the new fossil specimens to their extant 
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counterparts, we aimed at comparing the overall body 
outline (for recent examples on other groups, see Haug 
et al., 2021a, b). The fossils, as well as many extant 
larvae in the literature, are not straight. Some larvae in the 
literature have apparently been artificially straightened 
(e.g., figures in Peterson, 1957, see Supplementary Table 
1 and Supplementary Text 1). The challenge with rather 
soft larvae is to not deform the larvae (e.g., to make them 
thinner). To provide a constant, non-deforming artificial 
straightening, we used the following procedure (Fig. 1; 
performed in Adobe Illustrator CS2):
 Head and each segment were outlined with the 
Bezier tool on the convex side of a bent body. Each 
outline was drawn longer via extrapolation to allow later 
rotation. These lines were copied and rotated to match 
the concave side of the existing image. Then, head and 
each segment were rotated until they were straight. In this 
way, the natural thickness of each segment was retained; 
the procedure is comparable to approaches used in 3D 
modelling (e.g., Schmidt et al., 2021). 
 In total, 88 specimens were reconstructed, including 
new fossil larvae and extant larvae of Buprestidae, 
Cerambycidae, Schizopodidae (possible sister group to 
Buprestidae) and Eucnemidae (which in part resemble 
larvae of Buprestidae). A complete list is provided in 
Supplementary Table 1 (see also Supplementary Text 1).

Shape analysis
Reconstructed body outlines were exported as bmp-files. 
These files were analysed using the software package 
SHAPE (© National Agricultural Research Organization 
of Japan). Outlines were first translated into chaincodes, 
aligned, and then analysed with a principal component 
analysis (PCA; for details, see Iwata & Ukai, 2002; Braig 
et al., 2019; see Supplementary Files 1–6). The plots were 
prepared in OpenOffice and redrawn in Adobe Illustrator 
CS2. 

Results

General description of solid-wood-borer larvae
The body of the larvae is very elongate and worm-like 
(vermiform). It is differentiated into an anterior region 
and a set off posterior trunk region (Fig. 2A), as the 
head is strongly retracted into the first trunk segment 
(prothorax) (Fig. 2A, B). The head bears paired antennae 
(often not discernible due to the retraction of head region 
under the prothorax; Fig. 2A, B) and mouthparts (Fig. 
2A, C). The trunk can be further differentiated into the 
anterior thorax and the posterior abdomen. The thorax has 
three segments: prothorax, mesothorax and metathorax. 
Thoracic segments are very prominent with a longitudinal 
line. The prothorax is the broadest of all the segments of the 
body. The longitudinal line on the prothorax is brownish 
in colour and prominent. The abdomen has ten apparent 
vermiform units, of which the anterior nine represent 
true segments; the abdomen units are significantly 
narrower than the thorax segments. Terminal end (most 
likely undifferentiated compound structure of abdomen 
segment 10 and 11) conical; oval sclerotization around 
anal opening. The body bears numerous small setae (Fig. 
2C, D).

Description of the new fossil specimens
PED 0597
Larva preserved in dorsal or ventral view (Fig. 3A, B). 
Total body length approximately 2.87 mm. Head capsule 
trapezoid in lateral view, strongly retracted into anterior 
trunk (prothorax). Short antennae discernible, no details 
accessible. No mouth parts discernible.
 Prothorax very prominent (0.32 mm long and 
0.47 mm wide), bulbous in shape from lateral view, 
1.5 times wider than long; about 3 times longer 
than head, also about 2.25 times wider than head. 
Mesothorax only about 20–25% shorter than prothorax, 
approximately the same in width. Metathorax shorter 
than prothorax, only about 50%, somewhat narrower. 
No locomotory appendages (legs) discernible.

FIGURE 1. Procedure of artificial straightening of wood-borer 
larvae. A, Simplified re-drawing based on Volkovitsh & Bílý 
(2015, their fig. 21). B, Straightened version of A. C, Filled 
version of B. 
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 Abdomen units cylindrical, all approximately 
same in length, about 50% of prothorax length. Last 
two abdomen units narrower than the anterior abdomen 
segments. Long setae discernible on abdomen segments 
(length approximately same as width of segments). Setae 
position lateral, anterior or dorsal on the segment, exact 
chaetotaxy not reconstructible. 

PED 0838
Larva preserved in probable dorsal view (Fig. 4A, B). 
Total body length 1.95 mm. Head capsule trapezoid 
in dorsal view, strongly retracted into anterior trunk 

(prothorax). Visible part of head capsule about 3.4 times 
wider than long. No antennae discernible. Mouth parts 
partly accessible (probable mandible and palp) (Fig. 4C). 
 Prothorax very prominent, roughly hexagonal in 
dorsal view (0.31 mm long and 0.43 mm wide); almost 6 
times longer than visible part of head, also about 2.5 times 
wider. Middle part of prothorax widest, about 1.4 times 
wider than long. Pronotum set-off, divided by longitudinal 
line. Meso- and metathorax similar in width to posterior 
width of prothorax; shorter than prothorax, each only 30% 
of prothorax length. No locomotory appendages (legs) 
discernible. 

FIGURE 2. Extant larva of Buprestidae; ZMH 62921. A, Ventral view. B, Dorsal view of anterior body. C, Detail of mouthparts. 
D, Detail of ventral region of thorax with numerous setae. Abbreviations: a1–a9 = abdomen segments 1–9; hc = head capsule; ms 
= mesothorax; mt = metathorax; pt = prothorax; te = trunk end.
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 Abdomen units cylindrical. Abdomen segment 1 
shortest, about 20% of prothorax length; about 30% 
narrower than prothorax width. Remaining abdomen units 
similar in width, but about 2.5 times longer than abdomen 
segment 1. Terminal end triangular in dorsal view. Lateral 
sides of thorax and abdomen segments with short setae.

PED 0816
Larva preserved in dorsal view (Fig. 5A, B). Total body 
length 2.24 mm. Head capsule trapezoid in dorsal view. 
Head capsule wider than long, 2.7 times. Three stemmata 
discernible antero-laterally on both sides (Fig. 5D). No 

FIGURE 3. Fossil wood-borer larva without legs, Buprestidae, PED 0597. A, Dorsal or ventral view. B, Colour-marked version 
of A. Abbreviations: a1–a9 = abdomen segments 1–9; hc = head capsule; ms = mesothorax; mt = metathorax; pt = prothorax; te = 
trunk end.

FIGURE 4. Fossil wood-borer larva without legs, Buprestidae, PED 0838. A, Dorsal (?) view. B, Colour-marked version of 
A. C, Details of mouthparts. Abbreviations: a1–a9 = abdomen segments 1–9; hc = head capsule; m? = possible mandible; ms = 
mesothorax; mt = metathorax; pl = palp; pt = prothorax.
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antennae discernible. Partial mouth parts discernible 
(prominent mandible and palp) (Fig. 5B, C). 
 Prothorax very prominent, ovoidal in shape from 
dorsal view (0.19 mm long and 0.68 mm wide). Prothorax 
3.5 times wider than long. Slightly longer than head, also 
about 1.13 wider. Meso- and metathorax similar in width 
to posterior width of prothorax; only about 70% shorter 
than prothorax. 
 Thoracic segments with locomotory appendages 
legs. Three elements discernible: possible trochanter, 

femur, tibiotarsus (Fig. 5D). Abdomen units 1–8 similar in 
width and length to metathorax. Terminal end is ovoidal 
in dorsal view; 1.4 times longer than anterior abdominal 
segments, but only about 80% narrower. 
 Antero-lateral rim of the head capsule and lateral 
sides of prothorax and abdomen segments bear multiple 
setae. Terminal end bears distally and laterally two 
different types of setae; short setae similar to other setae; 
long setae about 4 times longer.

FIGURE 5. Fossil wood-borer larva with legs, Cerambycidae?/Buprestidae?, PED 0816. A, Dorsal view. B, Colour-marked 
version of A. C, Detail of anterior head region (image processed according to Haug et al., 2009). D, Upper part: detail of anterior 
body region; lower part: colour-marked version of upper part. Abbreviations: a1–a7 = abdomen segments 1–7; fe = femur; hc = 
head capsule; md = mandible; ms = mesothorax; mt = metathorax; pl = palp; pt = prothorax; st = stemmata; ti = tibiotarsus; tr = 
trochanter.
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PED 1130
Larva preserved in ventral view (Fig. 6A, B). Total body 
length 3 mm. Head capsule trapezoid in ventral view. 
Head capsule 1.5 times wider than long. No antennae 
discernible. Partial mouth parts discernible (mandible, 
palp and possible labium) (Fig. 6B–D).
 Prothorax quite prominent, ovoidal in dorsal view 
(0.57 mm long and 0.83 mm wide). Prothorax about 1.5 
times wider than long; slightly longer and wider than 
head. Meso- and metathorax similar in width to posterior 
prothorax width. Mesothorax shorter, only about 25% 
of prothorax length. Metathorax slightly longer. Thorax 
segments bear locomotory appendages (legs). Five 
elements discernible: coxa, trochanter, femur, tibia and 
claw-like tarsus (Fig. 6B). 
 Abdomen segments 1–4 similar in width and length, 
narrower and shorter than prothorax, only about 30% of 
length, only about 70% of width. Abdomen segments 

5–7 similar in width to anterior abdomen segments but 
somewhat shorter, only about 25% of prothorax length. 
Abdomen units 8–10 narrower than further anterior 
segments, but as wide as abdomen segments 1–4. Terminal 
end triangular in ventral view. Antero-lateral rim of the 
head capsule and lateral sides of thorax and abdomen 
segments bear multiple setae. 

Shape analysis
In total, the data set contains 48 extant larvae of Buprestidae, 
one extant larva of Schizopodidae, 29 extant larvae of 
Cerambycidae, six extant larvae of Eucnemidae, and the 
four new fossils described above. The analysis resulted in 
six effective principal components (Supplementary Fig. 1, 
Supplementary File 6). PC1 explains 46.3% of the overall 
variation, PC2 explains 21.0% of the overall variation 
(Supplementary File 6). 
 Plotting PC2 versus PC1 results in a large overlap 

FIGURE 6. Fossil wood-borer larva with legs, Cerambycidae?/Buprestidae?, PED 1130. A, Ventral view. B, Colour-marked 
version of A. C, Detail of palp. D, Detail of remains of labium. Abbreviations: a1–a9 = abdomen segments 1–9; ga = ground-
off area; hc = head capsule; l? = possible remains of labium; md = mandible; ms = mesothorax; mt = metathorax; pl = palp; pt = 
prothorax; te = trunk end.
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of the areas occupied by all groups (Fig. 7). The larvae 
of Eucnemidae plot entirely within the area occupied by 
those of Buprestidae. The two fossil larvae with legs plot 
relatively far away from the extant larvae with legs and 
also from each other. The two fossil larvae without legs 
plot quite close together and close to the centre of the 
morphospace.
 When plotting the range of each effective PC for 
each group, the range is largest for Buprestidae for all 
PCs besides PC6 (Fig. 8). In most cases, the ranges of the 
other groups fall within those of Buprestidae.

Discussion

Fossil record of jewel beetles
The sister group of jewel beetles, Schizopodidae, is 
species-poor in the modern fauna, but already known 
since the Lower Cretaceous (Cai et al., 2015). The oldest 
fossil record of Buprestidae reaches back into the Middle 
Jurassic; older supposed fossils from the Triassic have been 
re-interpreted (Alexeev, 1999). Numerous adult specimens 
are known in Jurassic (Whalley & Jarzembowski, 1985; 
Alekseev, 1993; Alexeev, 1999, 2000; Pan et al., 2011) and 

FIGURE 7. Morphospace, represented by principal component 2 (PC2) vs. principal component 1 (PC1) of the shape analysis of 
the body outline of wood-borer larvae. Numbers refer to the data set in Supplementary Tab. 1. 
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Cretaceous sedimentary rocks (Whalley & Jarzembowski, 
1985; Alekseev, 1993; Alexeev, 1999, 2000; Molino-
Olmedo, 2011; yu et al., 2013). Sedimentary rocks have 
also provided jewel beetle fossils in the Cenozoic (e.g., 
Ortuño & Arillo, 2000; Simov et al., 2021). There are also 
some fossils in amber (e.g., Bellamy, 1999), but at least 
some of these seem to be challenging concerning their 
interpretation (Bellamy, 1995). Just recently, an adult 
jewel beetle has been reported from Kachin amber (Jiang 
et al., 2021; Ross, 2021). 
 One jewel beetle larva from Cretaceous New Jersey 
amber is known (Grimaldi & Engel, 2005: 381, fig. 
10.36) and some larvae in Eocene Baltic amber have 
been mentioned (Spahr, 1981 and references therein). In 
addition, leaf mining fossils from the Cretaceous have 
been interpreted as traces of jewel beetle larvae (Ding et 
al., 2014).

Fossil record of longhorn beetles
The group Cerambycidae occurs later in the fossil record 
than Buprestidae. The oldest fossil longhorn beetles have 
been reported from the Cretaceous (Wang et al., 2014; yu 
et al., 2015), yet a fossil from the Late Jurassic has also 
been suggested to represent a longhorn beetle (Münster 
in Germar, 1839; see Vitali, 2019). Still, there is a time 
gap in comparison to jewel beetles. This time gap is, to 
a certain degree, congruent with reconstructions of dated 
phylogenies (McKenna et al., 2019), indicating an earlier 
diversification of jewel beetles. 
 Amber fossils are in fact quite numerous; yet so far 
only a single species has been recognised in Kachin amber, 

Myanmar, namely Qitianniu zhihaoi Lin & Bai, 2017 (Lin 
& Bai, 2017; Vitali, 2019). Numerous specimens have been 
reported in Eocene amber (Vitali, 2005, 2009a, b, 2014, 
2016; Alekseev & Vitali, 2020), Miocene amber (Vitali, 
2009b, c) and also non-fossil copal (Vitali, 2009b). 
 Some larvae in amber have been mentioned, but only 
few have been figured, and many seem now lost (Larsson, 
1978; Vitali, 2009a: 235, 238). Some well preserved fossil 
larvae in Baltic amber have been figured in Bachofen-
Echt (1949: 115, fig. 102) and Gröhn (2015: 272).

Identity of the new fossil specimens
In many cases, fossil larvae are rather challenging to 
interpret in a taxonomic or phylogenetic frame. In extant 
larvae, the focus in descriptions and documentation of 
morphological details is often on very specific characters 
that are considered crucial for taxonomy. However, these 
characters are not always visible in a fossil. While in extant 
larvae usually several specimens are available as basis 
for recognising characters of taxonomic value, the fossil 
larvae may be representatives of outgroups to the extant 
ones, hence such characters may not be informative. As 
a result, there can in fact be characters available in the 
fossil larvae for which no appropriate comparable frame 
is available. Therefore, only if the modern larvae are well 
known (including a certain variability in the respective 
group) and if morphological details are accessible in 
the fossils, it is possible to make a more educated guess 
or perform a strict analysis (for examples, see Badano 
et al., 2018, 2021). yet, the shape of the larvae can 
also be informative to a certain extent by comparing it 

FIGURE 8. Ranges of all effective principal components (PCs) resulting from the shape analysis. 
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to the shape of their extant counterparts. In our case, 
important characters such as details of the mouthparts or 
chaetotaxy are not available in the fossil larvae; hence, 
a shape analysis was performed. In addition, qualitative 
morphological data were used for further identification 
where available.
 Two of the new fossils presented here clearly lack legs 
and have a prominent broad prothorax, partly surrounding 
the broad head capsule; the abdomen is narrower, 
vermiform. All these aspects are highly compatible with an 
interpretation of these specimens as larvae of Buprestidae. 
Although there are some other holometabolan larvae 
with roughly comparable body shapes, e.g., leaf-mining 
caterpillars of the group Gracillariidae (e.g., Heppner, 
1993: 53, fig. 10; Lopez-Vaamonde et al., 2021: 440, 
fig.17.1b), the overall morphology clearly is most similar 
to jewel beetle larvae. 
 This interpretation is further supported by the shape 
analysis, in which the fossil larvae plot within the area 
occupied by modern-day jewel beetle larvae. We therefore 
interpret these specimens as most likely the first report of 
jewel beetle larvae from Kachin amber, and also the oldest 
record of such larvae. Further identification within jewel 
beetles remains challenging, most details of mouthparts 
and seta arrangement are not accessible. Such further 
reaching interpretations will demand for better preserved 
specimens.
 More problematic to understand are the other two 
fossils. They resemble the other larvae in having a broad 
prominent head with very prominent mandibles. yet here 
the prothorax is even wider, partly embracing the head 
capsule, and also the abdomen is narrower. 
 The overall morphology of the two fossil larvae 
is therefore clearly compatible with an interpretation 
as a solid-wood borer. Solid-wood-boring larvae of 
Eucnemidae can easily be identified based on their 
outward-curving mandibles. Although many details are 
not accessible in the fossil larvae, their mandibles clearly 
are not outward curving, making an ingroup position in 
Eucnemidae unlikely.
 In contrast to the two fossils interpreted as jewel 
beetles, the other two larvae possess prominent appendages 
on the thorax, commonly termed legs. All jewel beetle 
larvae lack legs. Only some larvae of longhorn beetles 
possess legs. yet, these differ significantly in overall 
appearance from the two fossil larvae with legs. This is also 
further supported by the shape analysis. The two fossils 
plot outside the area occupied by larvae of Cerambycidae, 
closer to some larvae of Buprestidae, but also far away 
from each other. This makes the interpretation of these 
larvae more challenging. 
 It has been suggested that the presence of longer legs 
in modern longhorn beetle larvae, similar to those in the 
two fossils, is a novelty of a specific ingroup (Lepturinae; 

Svacha & Lawrence, 2014: 125). Given the difference in 
overall appearance, it seems unlikely that the two fossils 
are representatives of Lepturinae. Unfortunately, many 
details in the two larvae are not accessible. As many 
systematically important characters are not accessible 
in the fossils, we can only speculate to a certain degree. 
The fossils may represent larvae of early offshoots of 
either Cerambycidae or Buprestidae, which still retained 
longer legs. Even a clear decision between the two groups 
remains problematic as their overall appearance in the 
extant groups is a result of convergent evolution. Further, 
better preserved specimens will be necessary to further 
support or reject such an assumption. So far, we can only 
recognise that these two larvae are unusual types of wood 
borers. Although their overall body shape still plots within 
the range of modern-day wood borers, the combination 
with longer legs is not represented in the modern fauna, 
making these larvae another possible case of a now extinct 
morphology of holometabolan larvae found in Cretaceous 
ambers (e.g., Pérez-de la Fuente et al., 2012, 2016, 2018, 
2019; Liu et al., 2016, 2018; Badano et al., 2018, 2021; 
Haug et al., 2019a–c, 2020a, b).

Size of the fossils
Extant wood-borer larvae can be quite large; the 
extreme within Buprestidae is over 100 mm (Bellamy & 
Volkovitsh, 2005). Quite the contrary, the fossil larvae 
examined here are rather small; only a single modern-
day larva from the literature included in the data set is 
smaller than the fossils (Hernández & de la Rosa, 2001). 
A similar observation has been made in the literature, for 
fossil larvae of the beetle group Scraptiidae preserved in 
amber, which are smaller than their modern counterparts 
(Haug & Haug, 2019; Zippel et al., in review). So far, 
it cannot be easily excluded that this difference in size 
is caused by a taphonomic factor, i.e., that earlier stage 
larvae become more easily entombed in the still liquid 
resin than the larger later stages (see discussion in Haug 
& Haug, 2019; Zippel et al., in review). 

the ecology and lifestyle of the fossil larvae
As the new fossil larvae reported here resemble modern-
day solid-wood borers in many aspects, it is tempting to 
simply interpret them as solid-wood borers. yet, there is 
a certain variability in the lifestyles of modern-day wood 
borers. For example, some smaller larvae may represent 
leaf miners (e.g., Grebennikov, 2013). As mentioned 
previously, leaf mines that could represent traces of jewel 
beetle larvae have already been recognised in Cretaceous 
leaves (Ding et al., 2014). yet, the fossils reported here 
do not resemble leaf-mining larvae, which differ to a 
certain degree from the solid-wood-boring type larvae 
(Grebennikov, 2013). Hence, a leaf-mining lifestyle is 
unlikely, and the overall morphology is best compatible 
with an interpretation of the larvae as solid-wood borers. 
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 It is partly surprising to find solid-wood-boring and 
leaf-mining larvae in amber, as to become entrapped in 
amber they should be outside on the surface of a plant 
or on the ground, which such larvae usually do not do. 
Only very late-stage larvae will leave their host to pupate. 
The rather small size of the fossil larvae makes it unlikely 
that these are such late-stage larvae. Other possible leaf-
mining larvae have been found in amber (see discussion 
in Haug & Haug, 2021).

Wood-borer larvae—a case of plant parasitism?
Categorising the interaction between different organisms 
can be challenging. Often very distinct interactions are 
chosen as an example to specify a given category, instead 
of criteria. That makes the application to other cases 
sometimes very difficult. Also, for subcategories it is 
often difficult to remain in the same relational frame. For 
example, the terms “parasitic” and “free-living” are seen 
as opposites. yet, these terms are in fact not in the same 
frame, “free-living” referring to an aspect of locomotion, 
“parasitic” potentially referring to aspects of feeding.
 A more basic aspect is which types of organisms 
interact. Predation, for example, is most often used for 
an interaction of one metazoan with another metazoan. 
yet, it has also been applied in other instances (e.g., seed 
predation; Janzen, 1971; Heithaus, 1981; Dylewski et al., 
2020). Comparably, the term “parasitism” has also often 
been restricted to metazoan-metazoan interactions. yet, 
for example for nematodes the term “plant parasitism” 
also seems widespread (Bongers et al., 1997; Kumar & 
Yadav, 2020; Topalović et al., 2020). It has been discussed 
whether many more metazoan-plant interactions should 
in fact be categorised as cases of parasitism (Eggleton 
& Gaston, 1990; Windsor, 1998; Poulin, 2011). This 
was especially emphasised for leaf-miners and other 
endophytic living organisms (Janzen, 1975; Price, 1980). 
This example applies also to larvae of Buprestidae, which 
are clearly not free-living (see above), but may even 
be considered parasites. yet, the idea of parasitism of 
animals on (or within plants) seems not widely accepted 
(e.g., Labandeira & Li, 2021).
 So why is it interesting to think of wood-borer larvae 
as parasites? The larvae are highly specialised. In fact, 
they show specialisations that we could expect from clear 
endoparasites: loss of legs, overall vermiform body with 
specialised types of setae, e.g., for anchoring (Chiappini 
& Nicoli Aldini, 2011). As pointed out by Poulin (2011), 
it would clearly be beneficial to study such comparable 
cases beyond normal categories. It should be interesting 
to reconstruct the evolutionary path to endophytic life and 
to endoparasitic life. 
 The fossils reported here resemble their modern-
day counterparts to a high degree and do not contribute 
significantly towards such a reconstruction of character 
evolution. yet, in a framework of palaeo-parasitism, such 
fossils should be considered, providing minimum ages for 

highly specialised morphologies (not reliably indirectly 
inferable; Baranov et al., 2019). 
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