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Abstract

Confocal laser scanning microscopy is an essential 
analytical tool in biological, biomedical, and material 
sciences, integrating microscope manufacturing 
technology, optical-electronic technology, and computer 
technology. In the last decade, confocal laser scanning 
microscopy has been successfully applied to the study 
of amber bioinclusions. Enhanced signal to noise ratios, 
resolution power, capability of optical sectioning, three-
dimensional reconstruction, and better performance when 
imaging thicker samples provide a great deal of valuable 
and detailed morphological information about amber 
fossils. We briefly discuss the practical applications of 
CLSM in amber studies and compare it with other imaging 
methods commonly used in the field, including bright-
field microscopy, wide-field fluorescence microscopy, 
and micro-computed tomography. A general procedure for 
imaging amber inclusions with CLSM is provided, with a 
focus on pretreatments and image processing.

Keywords: CLSM imaging system, fluorescence, micro-
CT, fossil, arthropod inclusions

Introduction

Confocal laser scanning microscopy (CLSM) has been 
successfully applied in many research fields due to its 
enhanced signal to noise ratio (SNR) resulting from the 
effective exclusion of out of focus lights (Halbhuber & 
Kӧnig, 2003; Paddock, 2000; Hovis & Heuer, 2010). 
In recent years, CLSM has been found to be useful 
for the study of amber inclusions, especially dark and 
well-sclerotised insects and other arthropods. However, 

applications of this method in amber research are still few 
and far in between.
 In this paper, we briefly introduce the principles of 
CLSM and its application in amber studies, discuss the 
advantages of CLSM over other imaging methods, and 
describe our procedure of imaging amber inclusions with 
CLSM. We hope that this study will help promote the 
application of confocal microscopy in the study of amber 
bioinclusions.

Principles of CLSM
The imaging procedure used in confocal microscopy 
differs fundamentally from that of conventional wide-
field microscopy (Hein et al., 1995; González & Halpern, 
2007; Borlinghaus, 2017). In a confocal microscope (Fig. 
1), the point source of light and the pinhole in front of 
the detector lie in optically conjugate focal planes. The 
laser light source focuses on one point in the focal range 
of the sample, forming a small illuminated area. Then 
the fluorescence emission is delivered through a pinhole 
and imaged on the detector. The pinhole in front of the 
detector is a key element in confocal imaging, since it acts 
as a spatial filter, blocking the majority of light from the 
out-of-focus planes, so that the fluorescent optical signal 
obtained by the photomultiplier tube detectors (PMT) is 
all derived from the focal spot of the sample, resulting 
in great improvements in signal to noise ratios (SNRs) 
compared to widefield techniques in optical microscopy, 
especially for thicker samples (Xiao et al., 1999; Paddock, 
2000; Borlinghaus, 2017).

Brief history of CLSM in the study of amber inclusions
Compared with compression/impression fossils, the 
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exceptional three-dimensional preservation of amber 
fossils usually enables the observation of many valuable 
morphological details. Therefore, amber inclusions have 
become crucial for studying the evolution of life and 
reconstructing palaeoecology and palaeoenvironments. 
With the development of new imaging techniques, a 
variety of methods have been applied to the study of amber 
bioinclusions, including micro-computed tomography 
(micro-CT), wide-field fluorescence microscopy, and 
confocal laser scanning microscopy. Böker & Brocksch 
(2002) first noticed that confocal microscopy is 
suitable for studying bioinclusions in Baltic amber and 
demonstrated the potential for 3D imaging of minute 

details using confocal microscopy. Later, a protozoan with 
fungal hyphae trapped in Spanish amber was examined 
and a 3D image of partial microcenosis was provided 
by confocal microscopy (Ascaso et al., 2003, 2005). 
The use of confocal microscopy for the study of amber 
bioinclusions has been rapidly developed during the last 
decade (Clark & Daly, 2010; Kirejtshuk et al., 2015). 
Since confocal microscopy enables detailed observation 
of the morphology of bioinclusions without damaging 
the sample, and has comparatively better performance on 
thicker samples, a variety of bioinclusions such as insects, 
myriapods, plants, fungi, and trichomes from various 
amber localities (e.g., Spain, Canada, Baltic area, Lebanon, 

FIGURE 1. Zeiss LSM710 confocal laser scanning microscope system at the Nanjing Institute of Geology and Palaeontology, 
Chinese Academy of Sciences, Nanjing, China. A, Confocal microscope on an Axio Imager Z2 upright microscope stand. B, 
Trimmed and polished amber piece on the microscopic slide. C, Dr. Yitong Su (3rd author) working with the confocal system.
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FIGURE 2. A trogossitid beetle (NIGP173910) in Burmese amber under different imaging methods. A, Incident light. B, Wide-
field fluorescence. C, Confocal microscopy (maximum intensity projection). D, Micro-CT reconstruction. Scale bars: 500 μm.
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Dominican republic, and particularly Myanmar) have 
been analysed using this technique (e.g., Ascaso et al., 
2003, 2005; Christiansen & Nascimbene, 2006; Compton 
et al., 2010; Clark & Daly, 2010; Speranza et al., 2010; 
Bonato et al., 2014; Cai & Huang, 2014; Kirejtshuk et al., 
2015; Arillo et al., 2016).
 Christiansen & Nascimbene (2006) used confocal 
microscopy to study taxonomically important features 
of springtails in mid-Cretaceous Burmese amber, which 
was the first example of the application of confocal 
technology to the study of Burmese amber bioinclusions. 
Subsequently, many studies have shown that confocal 
microscopy is an effective method for reconstructing tiny 
arthropods (e.g., beetles, myriapods, froghoppers; Bonato 
et al., 2014; Cai & Huang, 2014; Zhao et al., 2016; Zhang 
et al., 2017; Cai et al., 2018, 2019, 2021; Tihelka et al., 
2020; Su et al., 2019, 2020; Yin et al., 2019, 2021; Fu 
et al., 2020, 2021; Liu et al., 2020; Li et al., 2021a, b), 
spores, and pollen (Prasad et al., 2018; Peyrot et al., 2020; 
Tihelka et al., 2021) in Burmese amber.

Different imaging methods provide a complementary view 
of amber fossil morphology
The most common and simplest way to observe fossils 
in amber is to use a classical optical microscope with 

incident or transmitted light. However, the boundaries 
between structures are not always clear with bright-field 
microscopy (Figs 2A, 3A, D, 4A, D, G, H, 5A), especially 
for strongly carbonised inclusions (fig. 5C in Tihelka et 
al., 2020), making it difficult to accurately distinguish 
between minute structures. In contrast, under a wide-field 
fluorescence or confocal microscope, the fluorescence 
emitted around the inclusion’s surface clearly illustrates 
the boundaries of surface structures (Figs 2B, C, 3B, C, E, 
F, 4B, E, H, K, 5B–E, 6B, D–F; fig. 5B in Tihelka et al., 
2020). Nevertheless, conventional imaging with bright-
field microscopy has its own irreplaceable advantages. 
Colour information might be observed under incident 
light (in some well-preserved specimens; fig. 1b in Li et 
al., 2021a), while it is completely or almost completely 
lost with fluorescence (widefield or confocal; fig. 2d in Li 
et al., 2021a) or micro-CT images.
 The development of micro-CT techniques offers a 
great opportunity for palaeontological studies. Using a 
CT reconstruction, researchers may freely view the fossils 
from any desired angle (Fig. 2D). It is also possible to 
virtually remove bubbles covering the fossil inclusions 
(e.g., Kundrata et al., 2020; Kypke & Solodovnikov, 
2020), or even investigate inclusions in fully opaque amber 
(Lak et al., 2008). In some exceptionally cases, micro-CT 

FIGURE 3. Auchenorrhynchan fossils in Burmese amber. A–C, Three ocelli of Minlagerron hongi (NIGP170945). D–F, Pygofer 
and male genitalia of Cretomultinervis burmensis (NIGP173218). A, D, Incident light; B, E, Wide-field fluorescence; C, F, 
Confocal microscopy (maximum intensity projection). Scale bars: 200 μm.
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may even reveal the internal structures of fossil insects in 
amber non-destructively (e.g., Van de Kamp, 2014; Li et 
al., 2021b). However, the quality of micro-CT scanning 
varies dramatically among different amber inclusions. 
Some inclusions appear to have poor or no contrast under 
an X-ray, and therefore cannot be properly imaged (Guo 
et al., 2016). Besides, even though synchrotron CT may 
theoretically reach quite high resolutions (Perreau & 
Tafforeau, 2011), the resolution of most widely available 

micro-CT scanners is still usually lower than optical 
imaging, especially for larger specimens. Thus, currently 
optical imaging is still indispensable for the observation 
of minute structures (e.g., small-sized setae or sensilla) 
(Heethoff & Norton, 2009; robin et al., 2016; Sidorchuk 
et al., 2018).
 Widefield and confocal fluorescence microscopies 
basically share a similar principle, and therefore generate 
somewhat similar imaging results (Figs 2B, C, 3E, F). 

FIGURE 4. Diplopod in Burmese amber under different imaging methods. A–C, Lateral view of the head (NIGP170945). D–F, 
Ventral view of the head and 1st, 2nd pairs of appendages. G–I, Dorsal view of the 8th to 10th segment under incident light. J–L, 
Ventrolateral view of the head and the 1st to 6th segment. A, D, G, J, Incident light. B, E, H, K, under widefield fluorescence. C, F, 
I, L, Confocal microscopy. Scale bars 200 μm.



CLSM TO THE STUDY OF AMBEr BIOINCLUSIONS Palaeoentomology 004 (3) © 2021 Magnolia Press   •   271

Although confocal microscopy can generally obtain 
images with higher quality, wide-field fluorescence 
microscopy is much less time-consuming. As such, 
wide-field fluorescence microscopy can be useful for 
preliminary observations. Besides, since arc-lamps, the 
light sources for wide-field fluorescence microscopy, 
provide light with continuous wavelengths, it is much 
easier to make observations under various excitation 
wavelengths.
 Compared to wide-field fluorescence microscopy, 
the main advantage of confocal microscopy is its high 
signal-to-noise ratio. Only fluorescence generated around 
the surface of the inclusion serves as the desired signal, 
while fluorescence generated by other parts of the amber 

matrix is unwanted noise. In wide-field fluorescence 
microscopy, both signal and background noise are 
captured by the camera simultaneously, resulting in 
comparatively low signal-to-noise ratios, especially when 
the amber layer above the inclusion is thick or strongly 
fluorescent (fig. 1C, D in Li et al., 2020a). In a confocal 
system, the out-of-focus background fluorescence 
produced by the amber matrix is blocked by the pinhole, 
leading to higher contrast of the structures (Figs 2C, 3C, 
F, 4C, F, I, L, 5D, E, 6D, F; fig. 4 in Li et al., 2020a). 
This is useful especially when the amber piece cannot be 
trimmed further (e.g., when there are long appendages 
extending into the amber matrix). When a small pinhole 
size is adopted (e.g., Fig. 5F), confocal microscopy can 

FIGURE 5. Pauropsxenus ordinatus (NGIP168231) in Burmese amber under different imaging methods. A, Trichomes, 
ommatidia, and basiconic sensilla on antennomeres VI and VII under incident light. B, Same as A, under wide-field fluorescence. 
C, Enlargement of A, showing details of antenna. D, Trichomes and ommatidia under confocal microscopy. E, Enlargement of B. 
F, Antennomeres VI and VII under confocal microscopy. Scale bars: 100 μm in A–E, 50 μm in F.
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also reach higher resolutions than wide-field microscopy 
(Cox & Sheppard, 2004). Besides, the z-stack obtained 
from a confocal microscope can be easily used to generate 
a 3D surface reconstruction (e.g., Kirejtshuk et al., 2015). 
Although it is not impossible to generate a reconstruction 
from z-stacks obtained by a wide-field microscope, the 
image processing is much more complicated (Martišek, 
2017).

Materials and methods

Amber materials
Our research was mainly based on fossil specimens 
entombed in mid-Cretaceous Burmese amber. However, 

the technique of CLSM is applicable to studies on any 
other transparent amber specimens (as discussed in the 
Introduction). The Burmese amber specimens used as 
exemplars in this study originated from near Noije Bum 
(26°20′N, 96°36′E), Hukawng Valley, Kachin State, 
northern Myanmar. A diverse group of protists, fungi, 
plants, invertebrates, and vertebrates have been recorded 
from the Burmese amber biota (ross, 2019, 2021). Similar 
to amber from other localities (e.g., Speranza et al., 2010), 
Burmese amber varies in optical properties, including 
colour and transparency, ranging from yellow, orange 
to reddish brown, and from transparent, semitransparent 
to opaque (Chen et al., 2018), which could be related to 
differences in the origin of resin flows in the source plants 
or chemical microenvironments during resin secretion. 

FIGURE 6. Ventral view of the last 2 pairs of appendages and telson of diplopod, under different imaging methods from Burmese 
amber. A, Incident light. B, Wide-field fluorescence. C, Confocal microscopy. D, Confocal microscopy with depth colour-coding. 
Scale bars: 100 μm.
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Amber specimens illustrated in this study are deposited 
at the Nanjing Institute of Geology and Palaeontology 

(NIGP), Chinese Academy of Sciences (CAS), Nanjing, 
China.

FIGURE 7. Unstacked confocal slices of beetles in the Burmese amber. A, Pronotum of Cretophengodes azari (NIGP173775), 
showing median lanceolate areola. B, Elytron of Paraodontomma leptocristatum (NIGP174676), showing window punctures and 
scales. C, Meso-metaventral junction of a psephenid beetle (NIGP173913). Scale bars: 200 μm.

FIGURE 8. Confocal data of a trogossitid beetle (NIGP173910) in Burmese amber. A, Serial confocal slices. B–D, Stacked images 
by different methods. B, Maximum intensity projection. C, Maximum intensity projection with depth colour coding. D, Weighted 
average by Helicon Focus. Scale bars: 200 μm.
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Pretreatments
Preparation of the sub-millimeter amber pieces is an 
essential step for obtaining optimal imaging results. 
The amber pieces containing the inclusion can be cut 
and shaped manually with a handheld engraving tool 
and a razor blade, and polished using emery papers of 
different grit sizes, rare earth polishing powder, and 
diatomite mud (e.g., Su et al., 2020). The ideal sample 
should be processed to minimum thickness (generally 
not exceeding 100 μm between the surface of the 
inclusion and the surface of amber matrix) in order to 
minimize light scattering. Ideally, the surfaces of the 
amber piece should be cut and ground flat and parallel 
to one of the desired planes of observation (Sidorchuk, 
2013; Sidorchuk & Vorontsov, 2018). However, if 
flat surfaces cannot be achieved, amber pieces can be 
immersed into mineral oil (e.g., CAS 8020-83-5) during 
optical imaging to reduce refraction.
 The quality of CLSM images is largely dependent 
on the medium of amber specimens (Kirejtshuk et al., 
2015). In some cases, specimens were mounted between 
two coverslips in a Canada balsam medium to enable 
clear observation of as many characters as possible, 

while epoxy resin masks the signal from the inclusion 
under examination, as noted by Azar et al. (2003) and 
Kirejtshuk et al. (2015).

Confocal microscopy and imaging
The following procedure describes the devices and 
parameters normally used in our research. However, 
since we didn’t test the parameters exhaustively, the 
procedure described here may not be optimal for every 
type of amber. The Zeiss LSM710 confocal microscope 
system at NIGP is installed on an Axio Imager Z2 upright 
microscope stand with widefield and laser illumination 
sources (Fig. 2). Normally the amber pieces are observed 
under an EC Plan-Neofluar 10×/0.30 objective. Burmese 
amber exhibited a generally ideal signal to background 
noise ratio when excited with the 488 nm Argon laser 
line, and with the emission filter of 493–797 nm. For 
high-quality images, high laser power and a low scanning 
speed are desired. The pinhole size is normally set to 1 
Airy Unit. A smaller pinhole size might be helpful when 
observing more detailed structures. The gain can be 
adjusted to achieve an appropriate exposure.

FIGURE 9. Confocal data of Miniomma chenkuni (NIGP173375) in Burmese amber. A, Serial confocal slices. B–D, Stacked 
images by different methods. B, Maximum intensity projection. C, Manually stacked image. D, Weighted average by Helicon 
Focus. Scale bars: 200 μm.
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Image stacking for confocal data
In some cases, a single confocal slice is enough to 
capture minute morphological structures (Fig. 7; fig. 
2B–D in Bao et al., 2019). However, to obtain more 
complete three-dimensional information, a series of slices 
is usually captured. Therefore, an “extended depth of 
focus” procedure is required to present three-dimensional 
confocal data in a two-dimensional plane. The most 
widely used stacking method for confocal data is the 
maximum intensity projection (MIP) (Borlinghaus, 2017; 
Shihavuddin et al., 2017). Maximum intensity projection 
has been implemented in many programs, including 
ZEN, the software for manipulating the Zeiss microscope 
system. This method has been found to be appropriate 
for many biological samples, where the structures of 
interest are labeled by a fluorescent tag, because there 
is little or no background fluorescence emitted. In some 
amber specimens, fluorescence is produced only around 
the border between the fossil and the amber (e.g., Fig. 
8A; Li et al., 2021c, 2021d). In this case, maximum 
intensity projection can generate ideal stacking results, 
since the maximum intensity is obtained exactly on the 
surface of the fossil (Fig. 8B). In an MIP image, the 
axial position can also be coded by different colours, so 
that the information of all three dimensions is retained 
(Borlinghaus, 2017; Fig. 8C; fig. 7 in Li et al., 2021b). 
However, for many other amber specimens, there is strong 
background fluorescence emitted from the amber matrix, 
which can be even stronger than the fluorescent signal of 
the fossil surface (e.g., Fig. 9A; Li et al., 2020b, 2021e). 
In such cases, a maximum intensity projection would be 
incapable of generating any informative stacking results 
(Fig. 9B). One possible solution is to manually mark out 
the insect surface in every slice (e.g., in Adobe Photoshop), 
and combine them into a single plane (Fig. 9C; fig. 4 
in Li et al., 2020a). However, this method is extremely 
time-consuming, and whether a desired outcome can be 
achieved is largely dependent on the skill of the operator. 
The weighted average algorithm (e.g., as implemented in 
the commercial software Helicon Focus) provides another 
possible solution. Although the structures may not be as 
clear as those in manually stacked images, most are still 
readily identifiable (Fig. 9D). Considering that weighted 
average is much more time-efficient than manual stacking, 
it represents a more convenient way to process confocal 
data, especially when there are a lot of images.
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