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Abstract

The group Neuropteriformia (beetles, lacewings, etc.) is 
today very species-rich, but also has a good fossil record in 
the Mesozoic. Amber provides not only adults, but also fossil 
larvae; some of these fossil neuropteriformian larvae have 
very unusual morphologies not seen in the modern fauna. 
We here report an unusual new fossil neuropteriformian 
larva. The mouthparts form a beak. Fossil larvae with 
similar mouthparts are known, and it seems that this new 
larva is a representative of the species ?Partisaniferus 
edjarzembowskii. The new larva, unlike the already known 
ones, has a large and inflated trunk. Based on comparison 
with extant larvae, such an inflated trunk should be 
considered physogastric. The new larva is only the second 
case of physogastry in fossil holometabolan larvae. Also 
early larvae of this species are known. The strong difference 
between the different larval stages give reason to interpret the 
ontogeny hypermetamorphic. Also this phenomenon is in fact 
very rare in the fossil record; most earlier candidates remain 
assumptions without further substantiation. Physogastry in 
larvae is often coupled to a mode of life in confined spaces, 
for a fossil preserved in amber this may mean living inside 
wood. Feeding mode might have been predatory, but could 
also have been feeding on fungi.

Keywords: Neuropteriformia, Partisaniferus, Myanmar 
amber, Burmese amber, convergent evolution

Introduction

Neuropteriformia is a very species-rich ingroup of 
Pterygota (the “flying insects”), including beetles, 
lacewings, snakeflies and some more. Neuropteriformia 
has been suggested to have been part of the large 

diversification process in the Mesozoic (Aspöck & 
Aspöck, 1999, 2007; Grimaldi & Engel, 2005). Beetles 
are still a dominating group in modern ecosystems, while 
many other ingroups of Neuropteriformia have declined 
over time. This observation is based on Mesozoic fossils 
of the latter group and show morphologies that are not 
known from the modern fauna (e.g., Yang et al., 2014; 
Labandeira et al., 2016; Chang et al., 2018; Lu et al., 
2021).
 Such morphologies unknown today do not only 
occur in adult forms, but also in larval forms. As many 
neuropteriformians in fact spend more of their life time in 
the larval phase, their larger ecological impact (in the sense 
of interaction with other components of the ecosystem) 
lies in this life phase (e.g., Yang, 2001). Therefore, the 
larvae of different groups that had other morphologies in 
the past likely performed ecological functions nowadays 
no longer performed by these groups. 
 Especially amber has preserved spectacularly 
preserved fossils of unusual neuropteriformian larvae 
from the Mesozoic. These finds include numerous 
lacewing larvae (Pérez-de la Fuente et al., 2012, 2016; 
Liu et al., 2016, 2018; Badano et al., 2018, 2021a; Haug 
et al., 2019a, b, 2020a, 2021a, 2022a; Luo et al., 2022), 
but also snakefly larvae (Haug et al., 2020b, 2022b). 
 There is one group of very unusual larvae that 
have been given the nickname “beak larvae” (Haug et 
al., 2020c, 2022c; Haug & Haug, 2022a). As the name 
suggests, the mouthparts of these larvae form a distinct 
forward-projecting beak. The morphology of these 
fossils, three specimens so far, does not provide good 
clues for systematic interpretation. An ingroup position 
within Neuropteriformia seems very likely. Yet, the 
fossils show certain features that would hint towards 
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a coleopteran (beetle) relationship, others towards a 
neuropteran (lacewing) relationship (Haug et al., 2020c). 
This uncertainty has not decreased by finding new 
specimens (Haug et al., 2022c; Haug & Haug, 2022a). 
Two distinct species could be differentiated; of one 
species two developmental stages are known, but these 
are not consecutive (Haug & Haug, 2022a). 
 The high degree of uncertainty concerning the 
relationships of the beak larvae makes an interpretation 
of their general biology very challenging. We here report 
a new specimen of the beak larva type (specimen number 
4) that shows new and so far unexpected details. These 
provide some new hints about the biology of these 
larvae. 

Material and methods

Material
A single specimen is in the centre of this study. The 
specimen comes from about 100 million years old 
Kachin amber, Myanmar (e.g., Cruickshank & Ko, 
2003; Shi et al., 2012; Yu et al., 2019). The specimen 
was legally purchased on the website ebay.com from 
the trader burmite-miner. The specimen is now part of 
the Palaeo-Evo-Devo Research Group Collection of 
Arthropods, Ludwig-Maximilians-Universität München 
(LMU Munich), Germany under the repository number 
PED 2320. 
 For a functional comparison, an incomplete millipede 
of the group Siphonophorida (PED 2611) was documented. 
It originated from the same source, both concerning the 
amber deposit and the trader. 
 An extant larva of a wood-boring beetle was used 
for ecological comparison. It was directly collected from 
the rubber plantation area, Dawei Tanintharyi Region, 
Myanmar (14.04° N, 98.13° E). The larva was found in a 
dead rubber tree (Hevea brasiliensis).

Methods
The specimens in amber were documented on a Keyence 
vHX-6000. They were tested on different backgrounds 
(black; white) and with different illuminations (unpolarised 
ring illumination; cross-polarised coaxial illumination). 
The specimens were documented from both sides. Each 
recorded image is a composite image. Image stacking and 
fusion was used to overcome limitations in depth of field, 
panorama imaging and merging was used to overcome 
limitations of field of view, HDR was used to avoid over- 
or underexposed areas (see, e.g., Haug et al., 2020d and 
references therein).
 Glycerol in combination with a cover slip was placed 
on the amber to counteract irregularities of the surface. 
Yet, from one side the specimen was so close to the 
oblique rim that it could not be fully documented from 

this side (but from the other one). The amber piece is 
also full of particles (dirt?) concealing many details. Also 
other methods (e.g., fluorescence) did not provide better 
results. 
 The specimen of the beak larva was restored as 
a schematic vector graphic in Adobe Illustrator CS2. 
Comparative drawings were either used from our 
earlier studies or were drawn based on images from the 
literature. 
 For the description, we use entomological terms 
alongside general euarthropodan terms, the latter put 
in squared brackets. In this way, comparability with 
representatives of Euarthropoda outside Insecta is 
provided as we have already done in earlier studies.

Result

Description of specimen PED 2320
Small larva, about 3.5 mm (Fig. 1A, B). Body organised 
in head and trunk; presumably 20 body segments, ocular 
segment plus 19 post-ocular segments. Head small, 
triangular in dorsal and ventral view, presumably six 
segments, ocular segment plus five post-ocular segments 
(not directly visible, but inferred from the general body 
organisation of Insecta). No indications of eye structures 
apparent. Appendages of post-ocular segment 1, antennae 
[antennulae], short, with at least three  antennomeres (Fig. 
1B, C). Proximal antennomere not fully apparent, broad 
appearing. Antennomere 2 more slender, proximally 
narrow, distally widening. Bearing a small square-shaped 
jointed process disto-laterally. Antennomere 3 arising 
medio-distally, slightly larger than process, distally with 
small setae. No clear indications for further posterior 
structures of the head (appendages of post-ocular 
segments 3–5; mandibles, maxillae [maxillulae], labium 
[maxillae]), possibly contributing to elongate forward-
projecting beak, longer than head capsule (Fig. 1D). A 
further pair of forward projecting structures may represent 
palps; as it is only one pair, it is unclear if it is part of the 
maxillae or the labium (see also Haug & Haug, 2022a).
 Thorax and abdomen, together forming the trunk, 
very large (Fig. 1A, B), broader and much longer than 
head. Thorax segment 1 (post-ocular segment 6) slightly 
longer than head capsule, significantly wider, 2×. Thorax 
segment 2 (post-ocular segment 7) slightly longer than 
preceding segment, about as wide. Thorax segment 3 (post-
ocular segment 8) even longer than preceding segment, 
about as wide. Thorax segments 1–3 differentiated from 
further posterior segments by having a pair of ventral short 
and stout legs each (Fig. 1A, B), details not accessible. 
Further posterior segments (forming abdomen) not well 
differentiated, eight units more or less well apparent, seven 
segments and a trunk end (likely compound of several 
segments). Abdomen much longer than thorax, at least 
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3.5×. Also wider, at the widest point about 2×. Thorax 
and abdomen soft-appearing, no sclerites apparent. 

Discussion

Species identity of specimen PED 2320
The head morphology of the new specimen with the long 
forward-projecting beak-like mouthparts and the short 
antennae immediately reveals that this is a beak larva, 
known so far from three other specimens (Haug et al., 
2020c, 2022c; Haug & Haug, 2022a). While these larvae 

can relatively easily be identified as larval stages of the 
group Holometabola, further reaching interpretations 
about their relationships remain challenging (Haug et al., 
2020c). It seems likely that the larvae are representatives 
of Neuropteriformia, yet other aspects give conflicting 
signal, on the one hand in the direction of Coleoptera, 
but on the other hand also in the direction of Neuroptera 
(Haug et al., 2020c, 2022c; Haug & Haug, 2022a).
 Two species of beak larvae have so far been recog-
nised: Partisaniferus atrickmuelleri and ?Partisaniferus 
edjarzembowskii. Partisaniferus atrickmuelleri is charac-
terised by distinct processes on the abdomen (Haug et al., 

FIGURE 1. Beak larva, PED 2320, Cretaceous Kachin amber, Myanmar. A, ventral view. B, Colour-coded version of A. C, Dorsal 
view. D, Close-up on anterior end in ventral view. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; ms = mesothorax; 
mt = metathorax; pt = prothorax.
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2020c), which are absent in ?P. edjarzembowskii (Haug 
& Haug, 2022a) and the new specimen. This observation 
makes it more likely that the new specimen is a 
representative of ?P. edjarzembowskii. The new specimen 
differs from the already known specimens by size and the 
strongly inflated trunk. 
 Specimen SNHM-6013, the holotype of ?P. 
edjarzembowskii, is much smaller than the new specimen 
and has a rather normal, non-inflated trunk (Fig. 2C; Haug 
& Haug, 2022a: fig. 1). These differences may well be 
explained by ontogeny. In other neuropteriformian larvae 
with inflated and oversized trunks, these are restricted to 
the later developmental stages; hatchlings have a normal-
sized trunk (Fig. 2; Gurney, 1947; Malicky, 1984; Redborg 
& MacLeod, 1985; Haug et al., 2019a, 2021b; Badano et 
al., 2021b; Haug & Haug, 2022b). Hence, the holotype 
of ?P. edjarzembowskii (SNHM-6013; Haug & Haug, 
2022a) may represent a hatching stage, while the new 
specimen PED 2320 (Fig. 2B) represents a later stage, 
therefore being larger and having the inflated trunk.
 Specimen PED 0596, which has also been interpreted 
as a representative of ?P. edjarzembowskii (Haug et 
al., 2022c), is larger than the other two specimens (Fig. 
2A). It was reconstructed with a much less inflated trunk 
(Haug et al., 2022c), but the posterior abdomen is in fact 
not preserved. It seems therefore most likely that the 
original reconstruction of specimen PED 0596 was too 
conservative and that it also had a large inflated trunk. 
Hence, these differences can also be well explained as 
differences of an ontogenetic sequence.
 We can therefore not identify differences for 
distinguishing the three specimens as separate species. It 
can still not be fully excluded that they in fact represent 
larvae of closely related species, yet formally they can be 
considered conspecific.
 Unfortunately, the new specimen does not provide 
more details on one of the most crucial aspects of the 
larvae, the mouthparts. For better understanding the 
possible relationships of the larvae, these structures have 
the most potential, but will demand for finding further 
specimens. Still, the new specimen offers some insight 
into the ontogeny and morphological changes connected 
to it.

Reconstructing the ontogenetic sequence of ?P. 
edjarzembowskii
It remains unclear whether the three specimens of 
?Partisaniferus edjarzembowskii can represent three 
successive stages (instars). If we compare the size gain 
between hatching stage and the first stage with an inflated 
trunk in some modern neuropteriformians with the 
difference between the smallest and the second smallest 
specimen of ?P. edjarzembowskii, we can recognise that 
the difference is larger than in the extant counterpart. Also 
the size difference from the second largest to the (third) 
largest specimen seems larger than in extant counterparts. 

It seems therefore unlikely that the three fossils represent 
successive stages; Haug & Haug (2022a) suggested that, 
based on the smallest and the largest specimen, it should 
include at least four stages. Based on the new specimen, 
demonstrating the enormous inflated trunk, it seems more 
likely that the original sequence included possibly five 
stages. As pointed out by Haug & Haug (2022a), this 
does not immediately exclude that ?P. edjarzembowskii 
is a representative of Neuroptera, most of which have 
only three larval stages, as there are some exceptions (see 
discussion in Haug et al., 2020e), and ?P. edjarzembowskii 
may also represent one. Hence, also this aspect does not 
resolve the conflict between interpreting the two species 
either as neuropterans or coleopterans.

Physogastry
A strongly inflated trunk, as in the new fossil, is often 
referred to as physogastric, the phenomenon as such as 
physogastry (see discussion in Haug & Haug, 2022b). In 
larvae, such inflated trunks are well known in lacewings 
(Fig. 2; Mantispidae, Berothidae, Dilardiae), but also 
in other neuropteriformians namely beetles and also in 
mecopteriformians such as flies (Wasmann, 1897; Prell, 
1911; Arndt, 1993). 
 A soft trunk that is large is also known in larvae 
of other groups of Pterygota, but here usually the term 
physogastry has not been applied. This accounts for 
caterpillars (see discussion in Haug & Haug, 2022b; 
different larvae of the groups Lepidoptera, Mecoptera, 
Hymenoptera). It also accounts for grubs, larvae of certain 
other beetle ingroups (e.g. Scarabaeidae, Curculionidae, 
Cerambycidae; e.g., vitner & Král, 2009: fig. 1, p. 52; 
Šípek & Král, 2012: fig. 1, p. 3; Švácha & Lawrence, 
2014: fig. 2.4.20, p. 112; Muafor et al., 2015: fig. 2, p. 
4; viswam et al., 2018: fig. 2, p. 3) and other lacewing 
groups (Ithonidae: Tillyard, 1922; Grebennikov, 2004; 
some larvae of Chrysopidae: Tauber & Winterton, 2014: 
fig. 2, p. 97). In principle, many of these larvae could 
also be considered physogastric (see also Fig. 3A–C for 
a beetle larva with large and soft trunk collected from a 
modern-day tree in Myanmar). 
 As often with terminology, it is simply not 
consistently applied. The literature has many examples, 
e.g., campodeiform larvae being termed grubs (e.g., 
Beerendra et al., 2022: pl. 2, p. 2112). It seems unlikely 
that we will be able to get to a point of consistent 
terminology, and that may even not be important; 
more important are the characters behind the terms. 
Concerning the characters, it appears that the later larvae 
of ?P. edjarzembowskii have a soft-appearing, very large, 
inflated trunk and can be considered physogastric.
 We still lack a second specimen for P. atrickmuelleri. 
Yet, also the small holotype, presumably representing 
a stage 1 larva, shows certain specialisations that are 
well compatible with the later stages being physogastric 
(Haug et al., 2020c): Tergites and sclerites of the 
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abdomen segments are not continuous, but “dissolved” 
into numerous smaller sclerites. Such an arrangement 
could indeed allow for an expansion of the trunk in later 
stages. 

Physogastry and hypermetamorphosis
Hypermetamorphosis describes a specific post-embryonic 
developmental pattern within Holometabola, in which 

the larval phase is further differentiated into two sub-
phases, which differ in morphology and ecology. It may 
be possible to find strict criteria when to apply this term in 
a quantitative frame (Haug, 2019; Haug et al., 2023), yet 
for the moment we can only consider the literature about 
when, where and how such terms are generally applied. 
 Within Coleoptera, hypermetamorphosis is generally 
accepted for the groups Meloidae, Ripiphoridae, 

FIGURE 2. Larvae with inflated (late stages) and normal-sized trunks (early stages) for comparison with the new specimen. 
A–C, Beak larvae type 2, ?Partisaniferus edjarzembowskii. A, Possible representative of ?P. edjarzembowskii, PED 0596 (Haug 
& Haug, 2022a; Haug et al., 2022c). B, New specimen, possible representative of ?P. edjarzembowskii, PED 2320. C, Holotype, 
SNHM-6013 (Haug & Haug, 2022a). D–F, Nevrorthidae. D, Nevrorthus sp. (Gepp, 1984). E, Nevrorthus fallax (Malicky, 1984). 
F, Rophalis relicta (Haug et al., 2019a). G, H, Mantispidae, Mantispa uhleri (Redborg & MacLeod, 1985). I, J, Dilaridae, Dilar 
duelli (Badano et al., 2021b). K–O, Berothidae. K, CJW F 3198 (Haug et al., 2021b). L, CJW F 3197 (Haug et al., 2021b). M, PED 
1794 (Haug & Haug, 2022b). N, Lomamyia sp. (Gurney, 1947). O, Lomamyia sp. (Gurney, 1947).



THE STRANGE HOLOMETABOLAN BEAK LARvA Palaeoentomology 006 (4) © 2023 Magnolia Press   •   377

Rhipiceridae and Eucnemidae (e.g., Burakowski, 1989; 
Pinto et al., 1996; Di Giulio et al., 2003; Muona, 2010; 
Bologna & Di Giulio, 2011; Lawrence et al., 2011; 
Lawrence, 2016; Németh & Otto, 2016; Otto, 2017; 
Scholtz et al., 2018; Muona & Teräväinen, 2020). The 
first larval stages of these groups are highly mobile, often 
termed triungulin stages. For the first three groups, these 
larvae are campodeiform, first stage larvae of Eucnemidae 
are much more elongated and may best be considered 
elateriform. Later stages of Meloidae, Ripiphoridae 
and Rhipiceridae are grub-like and parasitic (Švácha, 
1994; Lawrence et al., 2011; Lawrence, 2016; Scholtz 
et al., 2018; Bahmer & Lückmann, 2021). Later stages 
of Eucnemidae are legless vermiform or buprestiform 
(Muona, 2010; Németh & Otto, 2016; Otto, 2017; Muona 
& Teräväinen, 2020). 
 Individuals of other groups with soft-appearing 
larvae with prominent trunks, such as Scarabaeidae or 
Cerambycidae, appear grub-like already when hatching 
(e.g., Huerta et al., 2010; Švácha & Lawrence, 2014). 
Consistently, the term hypermetamorphosis has not been 
applied here.
 The term hypermetamorphosis has been attributed 
to two groups of lacewings, Mantispidae and Berothidae 
(Aspöck & Aspöck, 2008; Beutel et al., 2010). Also here, 
first stage larvae are highly mobile campodeiform (e.g., 

Redborg & MacLeod, 1985; Minter, 1990; Möller et 
al., 2006; Jandausch et al., 2018). Later stage larvae are 
physogastric and live in protected spaces (see discussion 
in Haug & Haug, 2022b). Although a similar pattern 
of development seems to be present in Dilaridae (e.g., 
Monserrat, 2005; Badano et al., 2021a, b; Haug & Haug, 
2022b), the term hypermetamorphosis is usually not 
applied here (e.g., Badano et al., 2021b).
 Strepsipteran larvae include also a highly 
mobile first stage (triungulin; Brues, 1905) and less 
differentiated parasitic later stages (Kathirithamby, 
1989, 2009; Chaudhuri & Mazumdar, 2000; Manfredini 
et al., 2007). Also this pattern is generally considered 
hypermetamorphic (e.g., Kathirithamby, 1989, 2009; 
Pohl, 2002).
 In some parasitoid hymenopterans, first stage larvae 
are more differentiated than later ones (e.g., the head is set 
off more pronouncedly; Gumovsky, 2006). These seem 
generally considered to develop in a hypermetamorphic 
pattern (e.g., Heraty & Darling, 1984; Darling & Miller, 
1991). Yet, early and late larvae appear much less 
differentiated than larvae of other groups. The condition 
in dipterans considered to be hypermetamorphic is 
comparable to that in hypermetamorphic hymenopterans 
(e.g., Capelle, 1966).
 As pointed out, many lepidopteran larvae may also be 

FIGURE 3. Specimens for comparison. A–C, Modern beetle larva from a tree in Myanmar. A, Piece of wood of a dead rubber tree 
(Hevea brasiliensis) with gallery and larva inside. B, Close-up of larva in dorsal view; note the large and soft trunk. C, Colour-
marked version of B. D, ventral view on anterior end of fossil siphonophoridan millipede (PED 2611) in Kachin amber; note the 
beak-like mouth parts. Abbreviations: a1–a8 = abdomen segments 1–8; hc = head capsule; ms = mesothorax.
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considered physogastric. The term hypermetamorphosis 
has been applied here to cases in which the ecology 
strongly changes (Fitzgerald & Simeone, 1971a, b; 
Fitzgerald, 1973; Guillén & Heraty, 2004; Davis & De 
Prins, 2011; Davis & Wagner, 2011; Jordan et al., 2016; 
Moreira et al., 2018; vargas-Ortiz et al., 2019; Davis et 
al., 2020), as in the leaf-mining larvae of Gracillariidae 
(which do not really appear physogastric; Brito et al., 
2013; Body et al., 2015). 
 Overall, the term hypermetamorphosis seems to be 
applied to quite different ontogenetic patterns. In some 
cases it is related to a stronger restructuring of certain 
aspects of the morphology. These can also be recognised 
quantitatively as in mantis lacewings, but in the closely 
related beaded lacewings this is not the case, although 
they are also considered hypermetamorphic. In many 
cases the term hypermetamorphic is coupled to a parasitic 
lifestyle of the later stages, yet that is not always the case. 
Therefore, there seems to be no real uniting character for 
the term. At least for neuropteriformians it appears that 
species generally regarded as hypermetamorphic have a 
mobile, campodeiform first larval stage and physogastric 
later larval stages. As this aspect seems also to be present 
in ?P. edjarzembowskii, we can interpret its developmental 
pattern as hypermetamorphic for this specific criterion.
 
Fossil record of grubs, physogastric larvae and 
hypermetamorphosis
Grubs in the strict sense, i.e. truly scarabaeiform larvae, 
have not been reported from Cretaceous ambers so far, 
but are known from Miocene amber (Grimaldi & Engel, 
2005: fig. 10.31, p. 378). Larvae (as well as adults) of 
the group Cerambycidae are known from Eocene ambers, 
and some possible representatives have been identified in 
Cretaceous amber. Yet, these larvae appear less extreme 
than in the modern (and Eocene) larvae. The legs are 
proportionally still larger, and the body appears less 
inflated (see discussion in Haug et al., 2021c; Zippel et 
al., 2022a). 
 Strictly physogastric larvae in Cretaceous amber have 
so far only been reported for two specimens of beaded 
lacewing larvae (Berothidae; Haug & Haug, 2022b). 
The new specimen here is therefore only the second case 
of physogastry in holometabolan larvae preserved in 
Cretaceous amber. 
 Cases of hypermetamorphosis have so far been 
rarely suggested to be present in the fossil record. A stage 
1 larva of a mantis lacewing from Eocene amber has been 
interpreted in this way (Ohl, 2011). Yet, without a clear 
indication for the morphology of the corresponding stage 2 
or 3 larvae, this in fact remains unclear (Haug et al., 2018). 
Caterpillars from Cretaceous amber were also suggested 
to indicate the presence of hypermetamorphosis (Fischer, 
2021). Yet, also here only one type of larval morphology 

(here the later one) is represented as fossils. Also the 
interpretation is strongly influenced by the assumed 
relationships of these larvae, which is partly challenging 
(Gauweiler et al., 2022). 
 There is a partially preserved ontogeny for a 
ripiphoridan beetle from Cretaceous amber (Batelka et al., 
2021). Yet, only one part of that larval phase is available, 
making it possible that the species developed through 
hypermetamorphosis, but lacking a substantiation for this 
assumption. Also, a later stage larva of the beetle group 
Eucnemidae is known from the Cretaceous (Zippel et 
al., 2023). As here the early stages are unknown, it can 
again not be further concluded whether these beetles were 
already hypermetamorphic. 
 Overall, grub-like larvae or even physogastric ones 
and indications for hypermetamorphosis seem still rather 
rare in the fossil record and in the Myanmar amber forest 
100 Ma ago. The larvae of ?P. edjarzembowskii seem to 
represent only the second clear case of this phenomenon, 
larvae of Berothidae being the first one (Haug & Haug, 
2022b). The seeming rareness of all three aspects appears 
to be quite different in the modern fauna, where such 
larvae are quite common. It seems likely that such larvae 
and also the developmental pattern evolved convergently 
in several lineages and became more abundant either later 
in the Cretaceous or even after the Cretaceous. 

Lifestyle of ?P. edjarzembowskii
The mouthparts of ?P. edjarzembowskii form a distinct 
unpaired beak, that of the new specimen appears even 
slightly longer than in the already known specimens. Such 
unpaired beaks are rare among holometabolan larvae 
(Haug et al., 2020c), a functional similarity to certain 
paired mouthparts in larvae of dustywings seems possible 
(Haug & Haug, 2022a). Such a larva has been recently 
reported from Kachin amber (Haug & Haug, 2023).
 An aspect so far not discussed concerning the 
mouthparts of ?P. edjarzembowskii is the similarity to 
the mouthparts, in the overall morphology, to a number 
of different representatives of Euarthropoda. While beak-
like mouthparts are well known in hemipterans, these 
are usually not forward-projecting and are often less 
tightly connected to the head, providing them a certain 
movability (especially in heteropterans) and may only 
serve for a rather distant comparison. The rather short 
length of the beak and the more continuous connection 
to the head resembles the beak-like mouthparts of 
palaeodictyopteroideans (immatures and adults; Prokop 
et al., 2019). Unfortunately, we do not know a lot of the 
feeding habits of these Paleozoic, long extinct animals.
 Yet, certain siphonophoridan millipedes also possess 
forward-projecting beak-like mouthparts (Read & 
Enghoff, 2009: fig. 3, p. 549; Jiang et al., 2019: fig. 5B; 
Moritz et al., 2022: fig. 1F, p. 2, fig. 2C, p. 3), a condition 
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also known from representatives in Kachin amber (Fig. 
3D; Jiang et al., 2019: fig. 2B). These millipedes have 
been demonstrated to have a sucking mechanism very 
similar to different representatives of Insecta, hence a 
similarity is not surprising. Yet, unfortunately the exact 
food source for siphonophoridan millipedes is not known 
with certainty. It has been suggested that they may feed 
on fungi or rotten wood (see discussion in Moritz et al., 
2022). Such a function for the beak of the beak larvae 
was already discussed based on the comparison with 
some extant beetle larvae with beak-forming mouthparts 
(see discussion in Haug et al., 2020c), yet in these the 
beak is not projecting forwards, differing in this aspect 
from the beak larvae. The mouthparts of siphonophoridan 
millipedes demonstrate that also forward-projecting beaks 
may be used in this way.
 The newly reconstructed ontogenetic pattern of 
the beak larvae is also informative for reconstructing 
aspects of their life habits. The physogastric trunk in the 
later larval stages of modern larvae seems often to be 
coupled to confined spaces. Physogastric larvae of mantis 
lacewings (Mantispidae) live inside egg cocoons of 
spiders (Redborg & MacLeod, 1985; Redborg, 1998) or in 
nests of eusocial insects (Maia-Silva et al., 2013; Ardila-
Camacho et al., 2021; Snyman & Binoy, 2022). The latter 
is also true for physogastric larvae of beaded lacewings 
(Berothidae), which live in termite nests (Wedmann et 
al., 2013; Komatsu, 2014), as do physogastric larvae of 
different beetles and flies (Mergelsberg, 1934; Komárek, 
2003). Physogastric larvae of Dilaridae live in soil or 
rotting wood (Badano et al., 2021b). Also other grubs for 
which the term physogastry is usually not applied, such 
as larvae of moth lacewings (Ithonidae) or dung beetles 
(Scarabaeidae), live in confined surroundings, mostly 
soil (Grebennikov, 2004; Scholtz & Grebennikov, 2011). 
Even the slender late stage larvae of Nevrorthidae, which 
show no widening of the trunk, but still a remarkable 
elongation of the trunk (Fig. 2D), live in more confined 
spaces, between pebbles in fast running waters (Haug et 
al., 2020e). 
 It therefore seems very possible to also assume a 
lifestyle in confined spaces for ?P. edjarzembowskii. 
Given that the larvae were preserved in amber, living 
inside wood (as the confined space) seems a likely 
interpretation, possibly in galleries of wood-boring larvae 
in hard or soft wood, hunting these larvae. Indeed, hard- 
and soft-wood-boring immatures of different lineages 
are well known in Myanmar amber (beetles: Haug et al., 
2021c; Zippel et al., 2022b, 2023; flies: Baranov et al., 
2020; termites: Engel et al., 2016; Zhao et al., 2021). 
Alternatively, the lifestyle of ?P. edjarzembowskii may 
include living in rotting wood, feeding on fluids from the 
wood or fungi within the wood. 
 Forward-projecting piercing mouthparts in 
combination with a physogastric trunk occur in larvae 

of Mantispidae, Berothidae and Dilaridae (Haug et al., 
2021b; Haug & Haug, 2022b and references therein). 
These larvae hunt for prey in confined spaces (besides 
mantis lacewing larvae within egg cocoons, as eggs do 
not run away). Assuming a comparable lifestyle for ?P. 
edjarzembowskii seems therefore a possible interpretation. 
Likewise, the mouthparts seem well suited to feed on 
fungi as suggested for siphonophoridan millipedes. We 
can so far not exclude either of the two feeding modes, it 
remains unclear whether the beak larvae were predatory, 
fungivorous or even feeding on other liquids. 

Conclusion

A new specimen of the enigmatic beak larva type, more 
precisely of the species ?P. edjarzembowskii indicates the 
following new details of its ecology:
 —the first larval stage is functionally comparable to 
a triungulin (being campodeiform);
 —the later larval stages (at least from stage 3 on) 
have a physogastric trunk;
 —the post-embryonic ontogeny is hypermetamorphic 
(in transitioning from campodeiform to physogastric);
 —a wood-associated lifestyle seems likely;
 —a predatory or a fungus-feeding lifestyle seem 
equally likely. 
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