Morphological variability of new chrysophyte stomatocyst forming a single-cyst assemblage in a low-conductivity tropical lake in the Guineo-Congolian rainforest

JOLANTA PIĄTEK¹* & MARCIN PIĄTEK²
¹Department of Phycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
²Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
*Corresponding author (j/piatek@botany.pl)

Abstract

Morphological variation of the chrysophyte stomatocyst found in surface sediments of a small, shallow lake in the Guineo-Congolian rainforest in eastern Cameroon, is described, illustrated and discussed. Neither living cells nor scales of chrysophytes were observed in the lake. The stomatocyst cannot be assigned to any known cyst and is described as new to science (stomatocyst #49) using International Statospore Working Group (ISWG) guidelines. This is the third report of stomatocysts in Africa, and the second from the tropical part of this continent. Some basic ecological information on the sampling site is provided and compared with similar data from other sampling sites of chrysophytes in Africa.

Key words: Africa, Cameroon, chrysophytes, Lower Guinea, paleotropics, stomatocyst

Introduction

Chrysophyte algae that belong to two classes Chrysophyceae and Synurophyceae (Yang et al. 2012, Škaloud et al. 2013) are characterized (among others) by the ability to produce siliceous resting stages called stomatocysts. They are classified independently of the free-living forms because of their importance and practical use in the paleoecological studies as well as in different biodiversity assessments in situations where living chrysophytes are not observed. Stomatocysts are species-specific, but only 10–15% of them are conclusively linked with living chrysophytes (e.g. Smol 1984, Cronberg 1988a, 1989a, 1992, 1995, Kristiansen 1989, Siver 1991, Zeeb & Smol 2001, Cronberg & Laugaste 2005, Coradeghini & Vigna 2008, Kim & Kim 2008, Piątek & Kowalska 2008, Findenig et al. 2010, Piątek et al. 2012), mainly because of difficulty with findings of encysting chrysophytes in nature and culture experiments.


During recent examination of materials collected in different water reservoirs in Cameroon, three samples from small, shallow lake in the Guineo-Congolian rainforest included stomatocyst specimens composed of one morphotype as observed by light microscope. The stomatocyst occurred abundantly in surface sediments, though without any direct or indirect connection with free-living chrysophyte. The examination of the material in scanning electron microscope revealed some degree of morphological variability between cyst specimens that still could be attributable to the same stomatocyst.

The inter-specimens variability within a single stomatocyst, linked or not to live chrysophyte species, has been rarely studied (e.g. Sandgren 1983, Smol 1984, Cronberg 1988a, 1989a, 1992, Siver 1991, Piątek & Piątek 2008).
could also depend on asexual or sexual formation, but according to Duff et al. (1995) “the stomatocysts produced by either mode are morphologically identical”. It is impossible to conclude which of these factors was responsible for morphological variability between specimens of stomatocyst #49 in sediments of the tropical lake in Cameroon. It should be also pointed out that Sandgren (1983) believed that “most cysts produced in nature are fully developed to the extent the environment will permit when they are deposited on the sediments”. If such scenario is taken into account, then specimens assigned to three developmental stages of stomatocyst #49 could be produced in years with different environmental conditions. On the other hand, Cronberg (1986) illustrated different developmental stages of stomatocyst in the same colony of Synura sp., indicating that different stages of development could be produced during the same encystment process.

Other than describing variability of stomatocyst #49, this study provides some contribution to the knowledge on ecological requirements of chrysophytes in tropical Africa. Although many water samples were collected in Cameroon, only in some fraction of them chrysophytes or stomatocysts were observed. The stomatocyst #49 occurred in warm, small, undisturbed natural lake embedded within rainforest, having low electrolytic conductivity and circumneutral pH. This may be compared with observations on chrysophytes in other African samples, from ponds of Cameroon, Nigeria and Zimbabwe, for which some basic ecological data are known. Therein, the chrysophytes were found in water reservoirs with similar temperatures (between 22–29 °C in Lake Kariba, around 30 °C in two other ponds in Zimbabwe—Cronberg & Hickel 1985, Cronberg 1988b, 1989b; between 26–33 °C in Lekki Lagoon, Nigeria—Wujek et al. 2003–2004; 29.5 °C in small pond in Cameroon—Piątek et al. 2012), pH (between 7.26–8.15 in Lake Kariba, Zimbabwe—Cronberg 1989b; between 6.1–7.7 in Lekki Lagoon, Nigeria—Wujek et al. 2003–2004; 7.8 in small pond in Cameroon—Piątek et al. 2012), with similar (35 µS·cm⁻¹ in small pond in Cameroon—Piątek et al. 2012), but usually with much higher electrolytic conductivity (640–1230 µS·cm⁻¹ in Lake Kariba, Zimbabwe—Cronberg 1989b; 200–1000 µS·cm⁻¹ in Lekki Lagoon, Nigeria—Wujek et al. 2003–2004). Interestingly, similar environmental conditions (pH between 5.8–6.8, conductivity between 12–82 µS·cm⁻¹) were detected in several Nigerian rivers that have diverse assemblages of chrysophyte species (Wujek et al. 2010). In general, Cronberg (1989b) concluded that chrysophytes in the tropics (including Afrotropics) are more frequent in small water reservoirs than in large lakes, and the present observation in Cameroon is also from a small lake. Anyway, the ecological data for African chrysophytes are still sparse and fragmentary. Further observations are required to understand the habitat and ecological preferences (and consequently evolutionary adaptations) of chrysophytes in Africa.

Acknowledgements

We thank Dominique C. Mossebo (Yaoundé, Cameroon) for facilitating the obtaining of the research permit, Anna Łatkiewicz (Kraków, Poland) for her help with the SEM pictures, and two unknown reviewers for helpful suggestions to improve the manuscript. This work was partly financed by the W. Szafer Foundation for Polish Botany and partly through the statutory fund of the W. Szafer Institute of Botany of the Polish Academy of Sciences, Kraków, Poland.

References


Coradeghini, A. & Vigna, M.S. (2008) The aerial epiphytic stomatocyst flora (Chrysophyceae and Synurophyceae) of mosses from...

http://dx.doi.org/10.1127/0029-5035/2008/0086-0401


http://dx.doi.org/10.1007/BF00044097


http://dx.doi.org/10.1111/j.1756-1051.1989.tb01745.x


http://dx.doi.org/10.1111/j.1756-1051.1992.tb01829.x


http://dx.doi.org/10.1017/CBO9780511752292.015


http://dx.doi.org/10.1111/j.1756-1051.1985.tb02079.x


http://dx.doi.org/10.1111/j.1756-1051.1992.tb01292.x


http://dx.doi.org/10.1007/978-94-017-0809-8


http://dx.doi.org/10.1111/j.1529-8817.2010.00892.x


http://dx.doi.org/10.1127/0029-5035/2009/0089-0245


http://dx.doi.org/10.1127/0029-5035/2008/0086-0469


http://dx.doi.org/10.1139/b87-246


http://dx.doi.org/10.1127/0029-5035/2008/0087-0161


http://dx.doi.org/10.2216/08-50.1

http://dx.doi.org/10.1127/0029-5035/2012/0058


http://dx.doi.org/10.1111/j.0022-3646.1983.00064.x

http://dx.doi.org/10.1007/BF00226556

http://dx.doi.org/10.1111/j.1756-1051.2013.00119.x

http://dx.doi.org/10.1111/j.1756-1051.1984.tb02014.x

http://dx.doi.org/10.1016/s0003-9365(97)80024-3

http://dx.doi.org/10.1016/s0003-9365(97)80026-7

http://dx.doi.org/10.1139/b99-165


http://dx.doi.org/10.1007/978-94-017-0811-1

http://dx.doi.org/10.2216/10-94.1

http://dx.doi.org/10.2478/s13545-013-0095-6

http://dx.doi.org/10.4314/tfb.v12i1.20080


http://dx.doi.org/10.1016/j.protis.2011.08.001


http://dx.doi.org/10.1007/0-306-47668-1_9