New and noteworthy species of white *Entoloma* (Agaricales, Entolomataceae) in China

XIAO-LAN HE¹, XIAO-JIN YE¹, TAI-HUI LI², WEI-HONG PENG¹ & BING-CHENG GAN¹*

¹Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
²Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry—Guangdong Province Jointly Breeding Base), South China, Guangdong Institute of Microbiology, Guangzhou 510070, China
*Corresponding author’s e-mail: bgan918@sohu.com

Abstract

Three species of *Entoloma* with white basidioma in subgenus *Alboleptonia* from China are reported in this paper. *Entoloma crocotillum* is described as new to science from high altitudes in southwestern China. It is characterized by the small, white to pinkish pileus covered with matted-appressed fibrils, relatively large basidiospores with 5–6 angles, and the common presence of clamp-connections. *Entoloma sulcatum*, a new Chinese record, and *E. stylophorum* are documented based on new collections. Additionally, ITS (internal transcribed spacer region), nLSU (nuclear large subunit), and RPB2 (RNA polymerase II second largest subunit) sequences of *E. crocotillum* were successfully generated, and the phylogenetic positions of the three species among *Alboleptonia* species and other entolomatoid groups are preliminarily analyzed based on the combined nLSU and RPB2 dataset. The phylogenetic analysis showed that *E. crocotillum* is most closely related to *E. sericellum* and that *Alboleptonia* is not a monophyletic group.

Key words: Basidiomycota, phylogeny, taxonomy

Introduction

During our field surveys of Entolomataceae in China, several collections representing ‘*Alboleptonia*’ were discovered, one of which is described as new in this paper. Additionally, a new Chinese record, *E. sulcatum* (T.J. Baroni & Lodge) Noordel. & Co-David, as well as the widespread species *E. stylophorum* (Berk. & Broome) Sacc. are also presented hereafter.
discrimination between *E. crocotillum* and *E. sericellum*. The morphological differences between the two species are discussed above. One morphological character common to both of them is the conspicuous presence of clamp-connections. *Alboleptonia* aff. *sericellum*, *E. stylophorum* and *E. sulcatum* were grouped in the same clade, while no support was received (Fig. 1). The three species were positioned in a broader clade consisting of some ‘Cyanula’ species (Fig. 1). In the present analysis, *E. cephalotrichum* was nested in the clade composed of several ‘Nolanea’ species, and was closest to *E. conferendum* (Britzelm.) Noordel. with a support of BS 74% and BPP 0.99 (Fig. 1).

In conclusion, the analysis based on nLSU and RPB2 sequences did not support ‘*Alboleptonia*’ as a distinct genus or even a subgenus, which is consistent with the study by Co-David *et al.* (2009). However, the phylogenetic positions of these distinctive ‘*Alboleptonia*’ among entolomatoid species are far from resolved at present, and further studies based on more collections and multigene sequences are needed to get a better understanding of ‘*Alboleptonia*’.

Acknowledgments

We express special thanks to Ms. Zheng-Duan Xiao and Dr. Wang-Qiu Deng (GDGM, China) for assistance in the loan of specimens for study. This research is financed by the National Nature Science Foundation of China (Nos. 31400023, 31370071), Innovation Ability Promotion Engineering, Sichuan Provincial Department of Finance (Project No. 2013XXXX-014), and Applied Basic Research, Science and Technology Department of Sichuan Province (Project No. 2013JY0114).

References

http://dx.doi.org/10.2307/3761227

http://dx.doi.org/10.3767/003158509X480944

http://dx.doi.org/10.5248/116.413

http://dx.doi.org/10.1007/s11557-012-0807-0

http://dx.doi.org/10.1007/s13225-012-0212-7

http://dx.doi.org/10.5248/114.115

http://dx.doi.org/10.2307/3760708

http://dx.doi.org/10.5248/116.231

http://dx.doi.org/10.2307/3757517

http://dx.doi.org/10.1016/S0953-7562(09)80777-6

http://dx.doi.org/10.1016/S0269-915X(09)80307-8

http://dx.doi.org/10.1016/S0269-915X(09)80478-3

http://dx.doi.org/10.2307/4117266

http://dx.doi.org/10.5248/121.193

http://dx.doi.org/10.1093/bioinformatics/btg180

http://dx.doi.org/10.1093/nar/25.24.4876

http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1