Skip to main content Skip to main navigation menu Skip to site footer
Published: 2022-06-23

A lovely new, and potentially medicinal, species of Copaifera (Detarioideae, Fabaceae) from the Brazilian Cerrado supported by anatomical and morphological data

Laboratório de Morfologia e Taxonomia Vegetal, Instituto de Ciências Biológicas, Departamento de Botânica, Universidade Federal de Goiás, CP 131, 74001-970, Goiânia, GO, Brazil
Programa de Pós-graduação em Ciências Ambientais, Universidade Federal de Goiás, Chácara Califórnia, CP 131, 74045-155, Goiânia, GO, Brazil.
Copaíba Pau-de-óleo Leguminosae Taxonomy Micromorphology Histochemistry Eudicots


A new species of Copaifera from a diversity hotspot in the Brazilian Cerrado is described. Copaifera appendiculata M.J. Silva appears to be endemic of the northern portion of Goiás State, Brazil, and its conservation status is classified as Critically Endangered. It is a dwarf species and can be recognized by a set of characteristics that include: foliar rachis spiny and conspicuously prolonged (the first such report for the genus), leaflets similar in size, usually glabrescent on both surfaces, with planar margins, with discreet or conspicuous translucent points, sepals indumented on both surfaces, fruits glabrous, and seeds with an orange aril. It is compared with similar dwarf species of the genus present in the Cerrado, especially with Copaifera marginata, its closest congener. Also furnished are illustrations, images, information concerning its flowering and fruiting seasons, geographical distribution, as well as preliminary conservation assessments. Examinations of the leaf anatomies of the new species, as well as that of C. marginata, revealed the numbers of layers of palisade parenchyma, the presence of a hypodermis, the numbers of vascular bundles in the petiole, rachis and midrib, as well as their contours, and aspects of the leaf margins. All of those features constitute useful characters to separate the two species. Histochemical tests demonstrated that chemical compounds (e.g., alkaloids, phenolic compounds, and lipids) present in the leaf tissues of both species have potential medicinal properties.


  1. Alquini, Y., Bona C, Boeger, M.R.T., Costa, C.G. & Barra, C.F. (2006) Epiderme. In: Appezzato-da-Glória, B. & Carmello-Guerreiro, S.M. (Eds.) Anatomia Vegetal. 2.ed. Ed. UFV, Viçosa, pp. 87–108.

  2. Appezzato-da-Glória, B. & Carmello-Guerreiro, S.M. (2003) Anatomia vegetal. Editora Universidade Federal de Viçosa, Minas Gerais. pp. 1–438.

  3. Bachman, S., Moat, J., Hill, A.W., de la Torre, J. & Scott, B. (2011) Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys 150: 117–126.

  4. Basile, A.C., Sertié, J.A.A., Freitas, P.C.D. & Zanini, A.C. (1988) Anti-inflamatory activity of oleoresin from Brazilian Copaifera. Journal of Ethnopharmacology 22: 101–109.

  5. Batista, Â.G., Ferrari, A.S., Cunha, D.C., Silva, J.K., Cazarin, C.B.B., Correa, L.C., Prado, M.A., Carvalho-Silva, L.B., Esteves, E.A. & Júnior, M.R.M. (2016) Polyphenols, antioxidants, and antimutagenic effects of Copaifera langsdorffii fruit. Food Chemistry 197: 1153–1159.

  6. Bentham, G. (1870) Leguminosae II. Swartzieae et Caesalpinieae. In: Martius, C.F.P. von, Eicher AW, Urban I (Eds.) Flora brasiliensis. Munchen, Wien, Leipzig, v. 15, pp. 239–249.

  7. van den Berg, M.E. (1993) Plantas medicinais na Amazônia: contribuição ao seu conhecimento sistemático. MPEG, Belém, pp. 1–207.

  8. Bieras, A.C. & Sajo, M.G. (2009) Leaf structure of the cerrado (Brazilian savanna) woody plants. Trees 23: 451–471.

  9. Brito, H.O., Noronha, E.P. & França, L.M. (2008) Phytochemical analysis composition from Annona squamosa (Ata) ethanolic extract leaves. Revista Brasileira de Farmacognosia 89: 180–184.

  10. Buarque, P.F.S.M., Machado, S.R. & Rodrigues, T.M. (2020) Anatomical and ultrastructural studies reveal temporal and spatial variation in the oil production in leaves of the diesel tree (Copaifera langsdorffii, Leguminosae). Protoplasma 257: 1447–1456.

  11. Bukatsch, F. (1972) Bemerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos 61: 255.

  12. Cain, A.J. (1947) The use of Nile blue in the examination oflipids. The Quarterly Journal of Microscopical Science 88: 383–392.

  13. Carneiro, L.J., Tasso, T.O., Santos, M.F.C., Goulart, M.O., Santos, R.A., Bastos, J.K., Silva, J.J.M., Crotti, A.E.M., Parreira, R.L.T., Orenha, R.P., Veneziani, R.C.S. & Ambrósio, S.R. (2020) Copaifera multijuga, Copaifera pubiflora and Copaifera trapezifolia Oleoresins: chemical characterization and in vitro cytotoxic potential against tumoral cell lines. Journal of the Brazilian Chemical Society 31: 1679–1689.

  14. Carvalho, C.R.V., Soares, E.K.S. & Oliveira, A.B. (2019) Morfoanatomia foliar de Copaifera sabulicola J.A.S. Costa & L.P. Queiroz: uma planta com potencial medicinal. Hoehnea 46: e192018.

  15. Carvalho, J.C.T., Cascon, V., Possebon, L.S., Morimoto, M.S.S., Cardoso, L.G.V., Kaplan, M.A.C. & Gilbert, B. (2005) Topical antiinflammatory and analgesic activities of Copaifera duckei Dwyer. Phytotherapy Research 19: 946–950.

  16. Castellión, M., Matiacevich, S., Buera, P. & Maldonado, S. (2010) Protein deterioration and longevity of quinoa seeds during long-term storage. Food Chemistry 121: 952–958.

  17. Choong, M.F., Lucas, P.W., Ong, J.S.Y., Pereira, B., Tan, H.T.W. & Turner, I.M. (1992) Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytolist 121: 597–610.

  18. Cole, M.M. (1986) The savannas: biogeography and geobotany. London: Academy Press.

  19. Costa, J.A.S. (2007) Estudos taxonômicos, biossistemáticos e filogenéticos em Copaifera L. (Leguminosae-Detarieae) com ênfase nas espécies do Brasil Extra-Amazônico. Tese de Doutorado, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia.

  20. Costa, J.A.S. (2020) Copaifera in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Available from: (Accessed 15 February 2022)

  21. Costa, J.A.S. & Queiroz, L.P. (2007) Copaifera sabulicola (Leguminosae), uma nova espécie do cerrado brasileiro. Rodriguésia 58: 393–396.

  22. DeLucia, E.H., Nelson, K., Vogelmann, T.C. & Smith, W.K. (1996) Contribution of the intercelular reflectance to photosinthesis in shade leaves. Plant, Cell & Enviroment 19: 159–170.

  23. Desfontaines, M. (1821) Observations sur le genre Copaifera, description de deux nouvelles espècies qui lui appartiennent. Mémoires du Museum national d’histoire naturelle Paris. 7: 375–378.

  24. Dickison, W.C. (2000) Integrative plant anatomy. Academic Press, Harcourt.

  25. Dwyer, J.D. (1951) The Central American, West Indian and South American species of Copaifera (Caesalpiniaceae). Brittonia 7: 143–172.

  26. Dwyer, J.D. (1954) Further Studies on the New World Species of Copaifera. Bulletin of the Torrey Botanical Club 81: 179–187.

  27. Evert, R.F. (2006) Esau’s plant anatomy: meristems, cells and tissues of the plant body: their structure, function and development. 3 ed. New Jersey: Wiley, 601 pp.

  28. Fahn, A. (1979) Secretory tissues in plants. Academic Press, London.

  29. Ferreira, P.M. & Flores, A.S. (2013) Anatomia foliolar de espécies lenhosas de Leguminosae-Caesalpinioideae em uma área de savana em Roraima, Brasil. Boletim do Museu Integrado de Roraima 7: 69–76.

  30. Fineschi, S. & Loreto, F. (2012) Leaf volatile isoprenoids: an important defensive armament in forest tree species. IForest 5: 13–17.

  31. Firmino, A., Abreu, H.S., Portugal, A.C.P., Nascimento, A.M., Souza, E.L., Pereira, R.P.W., Monteiro, M.B.O. & Maêda, J.M. (2006) Alterações ligno-anatômicas em Solanum gilo Raddi por aplicação de cálcio e boro como estratégia de defesa. Ciência e Agrotecologia 30: 394–401.

  32. Fisher, D.B. (1968) Protein staining of ribboned epon sections for light microscopy. Histochemie 16: 92–96.

  33. Furr, M. & Mahlberg, P.G. (1981) Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. Journal of Natural Products 44: 153–159.

  34. Gasanov, S.E., Alsarraj, M.A., Gasanov, N.E. & Rael, E.D. (1997) Cobra venom cytotoxin free of phospholipase A2 and Its effect on model membranes and T leukemia cells. Journal of Membrane Biology 155: 133–142.

  35. Gengaihi, S.E.I., Ella, F.M.A., Emad, M.H., Shlaby, E. & Doha, H. (2014) Antioxidant activity of phenolic compounds from different grape wastes. Journal of Food Processing & Technology 5: 1–5.

  36. Gomes, N.M., Rezende, C.M., Fontes, S.P., Matheus, M.E., Pinto, A.C. & Fernandes, P.D. (2010) Characterization of the antinociceptive and anti-inflammatory activities of fractions obtaneid from Copaifera multijuga Hayne. Journal of Ethnopharmacology 128: 177–183.

  37. Gurgel, E.S.C. (2009) Morfoanatomia, perfil químico e atividade alelopática de três espécies de Copaifera L. (Leguminosae, Caesalpinioideae) nativas da Amazônia. Tese de Doutorado, Universidade Federal do Amazonas, Manaus.

  38. Habermeht, G.G. & Fliegner, W. (1997) Terpenes and their biological relevance. Studies in Natural Products Chemistry 20: 3–24.

  39. Harms, H. (1924) Plantae Luetzelburgianae brasilienses III - Leguminosae. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem 8: 711−716.

  40. Hayne, F.G. (1827) Getreue Darstellung und Beschreibung der in der Arzneykund gebräuchlichen Gewächse, wie auch solcher, welche mit ihnen verwechselt werden können. Auf. Kosten des Versfassers, Berlin, 10 pp.

  41. Izumi, E., Ueda-Nakamura, T., Veiga Jr., V.F., Pinto, A.C. & Nakamura, C.V. (2012) Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity. Journal of Medicinal Chemistry 55: 2994−3001.

  42. IUCN (2017) Standards and Petitions Subcommittee. Guidelines for using the IUCN Red List Categories and Criteria. Version 13. Prepared by the Standards and Petitions Subcommittee. Available at: (Accessed 15 February 2022)

  43. Jacomassi, E., Moscheta, I.S. & Machado, S.R. (2010) Morfoanatomia e histoquímica de órgãos reprodutivos de Brosimum gaudichaudii (Moraceae). Revista Brasileira de Botânica 33: 115–129.

  44. Jensen, W.A. (1962) Botanical histochemistry, principles and practice. W.H. Freeman, San Francisco.

  45. Johansen, D.A. (1940) Plant Microtecnique. 2.ed. Tata McGraw-Hill, New York, 532 pp.

  46. Kocherginsky, N. (2009) Acidic lipids, H+-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell’s Nobel Prize award. Progress in Biophysics & Molecular Biology 99: 20–41.

  47. Kraus, J.E. & Arduin, M. (1997) Manual básico de métodos em morfologia vegetal. EDUR (Editora Universidade Rural), Rio de Janeiro. 198 p.

  48. Langenheim, J.H. (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. Journal of Chemical Ecology 20: 1223–1280.

  49. Leandro, L.M., Vargas, F.S., Barbosa, P.C.S., Neves, J.K.O., Silva, J.A. & Veiga-Júnior, V.F. (2012) Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules 17: 3866–3889.

  50. Lewis, G.P. (1987) Legumes of Bahia. Royal Botanic Gardens, Kew, 369 pp.

  51. Li, R., Liu, T., Liu, M., Chen, F., Liu, S. & Yang, J. (2017) Anti-influenza a virus activity of dendrobine and its mechanism of action. Journal of Agricultural and Food Chemistry 65: 3665–3674.

  52. Linnaeus, C. (1753) Species Plantarum 1. Laurentii Salvius, Stockolm, 560 pp.

  53. Linnaeus, C. (1762) Species plantarum, ed. 2, vol. 1. Impensis Laurentii Salvii, Holmiæ, Stockholm, 784 pp.

  54. LPWG (The Legume Phylogeny Working Group) (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66: 44–77.

  55. Lunáčková, L., Masarovičová, E. & Lux, A. (2000) Respiration rate and chemical composition of Karwinskia roots as affected by temperature. Biologia Plantarum 43: 611–613.

  56. Mace, M.E. & Howell, C.R. (1974) Histochemistryand identification of condensed tannin percursorin roots of cotton seedlings. Phytopathology 64: 1297–1302.

  57. Martins-da-Silva, R.C.V. (2006) Taxonomia das espécies de Copaifera L. (Leguminosae-Caesalpinioideae) ocorrentes na Amazônia brasileira. Tese de Doutorado. Museu Nacional/ Universidade Federal do Rio de Janeiro, Rio de Janeiro.

  58. Martins-da-Silva, R.C.V., Pereira, J.F. & Lima, H.C. (2008) O gênero Copaifera (Leguminosae – Caesalpinioideae) na Amazônia Brasileira. Rodriguésia 59: 455–476.

  59. Martius, C.F.P. (1837) Herbarium florae brasiliensis. Flora 20 (Beibl. 2): 1–128.

  60. Melo Júnior, J.C.F., Bona, C. & Ceccantini, G. (2012) Anatomia foliar de Copaifera langsdorffii Desf. (Leguminosae): interpretações ecológicas em diferentes condições edáficas de Cerrado. Biotemas 22: 29–36.

  61. Metcalfe, C.R. & Chalk, L. (1950) Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy with Notes on Economic Uses. v.2. Claredon Press, Oxford.

  62. Metcalfe, C.R. & Chalk, L. (1983) Anatomy of Dicotyledons. Oxford, Clarendon Press, V. II, 2nd ed., 279 pp.

  63. Monteiro, W.R., Castro, M.M. & Giulietti, A.M. (1985) Aspects of leaf structure of some species of Leiolhrix Ruhl. (Eriocaulaceae) from the Serra do Cipó (Minas Gerais, Brasil). Revista Brasileira de Botânica 8: 109–125.

  64. Mota, E.V., Lemos, M., Costa, J.C., Banderó-Filho, V.C., Sasse, A., Sheridan, H. & Bastos, J.K. (2017) Galloylquinic acid derivatives from Copaifera langsdorffii leaves display gastroprotective activity. Chemico-Biological Interactactions 261: 145–155.

  65. Morretes, B.L. (1966) Contribuição ao estudo da anatomia das folhas de plantas do cerrado II. Boletim de Botânica da Universidade de São Paulo 305: 209–244.

  66. Morretes, B.L. (1969) Contribuição ao estudo da anatomia das folhas de plantas do cerrado III. Boletim de Botânica da Universidade de São Paulo 331: 7–32.

  67. Moudache, M., Colon, M., Nerín, C. & Zaidi, F. (2016) Phenolic content and antioxidant activity of olive by products and antioxidant film containing olive leaf extract. Food Chemistry 212: 521–527.

  68. Munk, L., Sitarz, A.K., Kalyani, D., Mikkelsen, J.D. & Meyer, A.S. (2015) Can laccases catalyze bond cleavage in lignin? Biotechnology Advances 33: 13–24.

  69. Nascimento, J.C. & Langenheim, J.H. (1986) Leaf sesquiterpenes and phenolics in Copaifera multijuga on contrasting soil types in a central amazonian rain forest. Biochemical Systematics and Ecology 14: 615–624.

  70. Nascimento, M.E., Bertolucci, S.K.V., Santos, F.M., Santos Jr., J.M., Castro, E.M. & Pinto, J.E.B.P. (2014) Avaliação morfológica de plantas jovens de Copaifera langsdorffii Desf. desenvolvidas em diferentes temperaturas. Revista Brasileira de Plantas Medicinais 6: 931–937.

  71. Ng, T.B., Liu, J., Wong, J.H., Ye, X., Sze, S.C.W., Tong, Y. & Zhang, K.Y. (2012) Review of research on Dendrobium, a prized folk medicine. Applied Microbiology Biotechnology 93: 1795–1803.

  72. Oliveira, D.C., Drummond, M.M., Moreira, A.S.F.P., Soares, G.L.G. & Isaias, R.M.S. (2008) Potencialidades morfogênicas de Copaifera langsdorffii Desf. (Fabaceae): Super-hospedeira de herbívoros galhadores. Revista de Biologia Tropical 5: 31–39.

  73. Oliveira, D.S., Lima, L.S., Antonio, A.S., Wiedemann, L.S.M. & Veiga-Junior, V.F. (2020) Perfil metabólico dos extratos polares das folhas, galhos e cascas de Copaifera multijuga hayne (Copaíba Mari-Mari da amazônia) por ESI-EM. Química Nova 43: 72–77.

  74. O’Brien, T.P. & McCully, M.E. (1982) The study of plant structure principles and selected methods. Termarcarphi Pty. Ltda, Melbourne.

  75. Pinto, R.B., Lusa, M.G., Mansano, V.F., Tozzi, A.M.G.A. & Mayer, J.L.S. (2018) Morphoanatomy of the leaflets of the Hymenaea clade (Fabaceae: Detarioideae) reveals their potential for taxonomic and phylogenetic studies. Botanical Journal of the Linnean Society 187: 87–98.

  76. Pinheiro, L.F.S., Kolb, R.M. & Rossatto, D.R. (2017) Leaf anatomical traits of non-arboreal savanna species along a gradient of tree encroachment. Acta Botanica Brasilica 32: 28–36.

  77. Pizzolato, T.D., Burbano, J.L., Berlin, J.D., Morey, P.R. & Pease, R.W. (1976) An electron microscope study of the path of water movement in transpiring leaves of cotton (Gossypium hirsutum L.). Journal Experimental Botany 27: 145–161.

  78. Pyykkô, M. (1966) The leaf anatomy of East Patagonian xerophytic plants. Annales Botanici Fennici 3: 453–622.

  79. Ramos, B.H., Silva, K.L.F., Coimbra, R.R., Chagas, D.B. & Ferreira, W.M. (2015) Anatomy and micromorphometry of Caryocar brasiliense leaves. Rodriguésia 66: 87–94.

  80. Rizzini, C.T. (1971) Plantas Novas ou Pouco Conhecidas do Brasil. Revista Brasileira de Biologia 31 (2): 189–204.

  81. Rodrigues, T.M., Teixeira, S.P., Machado, S.R. (2011) The oleoresin secretory system in seedlings and adult plants of copaíba (Copaifera langsdorffii Desf., Leguminosae - Caesalpinoideae). Flora 206: 585–594.

  82. Rossatto, D.R., Kolb, R.M. & Franco, A.C. (2015) Leaf anatomy is associated with the type of growth form in Neotropical savanna plants. Botany 93: 507–518.

  83. Sant’Anna-Santos, B.F., Thadeo, M., Meira, R.M.S.A. & Ascensão, L. (2006) Anatomy and histochemistry of stem secretory structures of Spondias dulcis Forst. F. (Anacardiaceae). Revista Árvore 30: 481–489.

  84. Scatena, V.L. & Scremin-Dias, E. (2006) Parênquima, Colênquima e Esclerênquima. In: Appezzato-da-Glória, B. & Carmello-Guerreiro, S.M. (Eds.) Anatomia Vegetal. 2.ed. Ed. UFV, Viçosa, pp. 109–128.

  85. Sepúlveda-Jiménez, G., Porta-Ducoing, H. & Rocha-Sosa, M. (2003) La participación de los metabolitos secundarios en la defensa de las plantas. Revista Mexicana de Fitopatologia 21: 355–363.

  86. Shanley, P., Leite, A., Alechandre, A. & Azevedo, C. (2005) Copaíba. In: Shanley, P. & Medina, G. (Eds.) Frutíferas e plantas úteis na vida amazônica. CIFOR/Imazon, Belém, pp. 1–300.

  87. Silva, R.N., Monteiro, V.N., Alcanfor, J.D.X., Assis, E.M., Asquieri, E.R. (2003) Comparision methods for the determination of reducers sugars and total in honey. Food Science and Technology 23: 337–341.

  88. Silva, M.S., Leite, K.R.B. & Saba, M.D. (2012) Anatomia dos órgãos vegetativos de Hymenaea martiana Hayne (Caesalpinioideae-Fabaceae): espécie de uso medicinal em Caetité-BA. Revista Brasileira de Plantas Medicinais 14: 673–679.

  89. Siqueira, G.C.L. (1996) Produtos potenciais da Amazônia. Ed. Sebrae, Brasília, pp. 1–97.

  90. Souza, C.M.M., Silva, H.R., Vieira-Jr., G.M., Ayres, M.C., Costa, C.L.S., Araújo, D.S., Cavalcante, L.C., Barros, E.D., Araújo, P.B.M., Brandão, M.S. & Chaves, M.H. (2007) Fenóis totais e atividade antioxidante de cinco plantas medicinais. Química Nova 30: 351–355.

  91. Souza, V.C., Toledo, C.A.P., Araujo, A.O. & Rando, J.G. (2016) Leguminosae-Caesalpinioideae (exceto Bauhinia e Chamaecrista) In: Flora dos estados de Goiás e Tocantins. Universidade Federal de Goiás, Goiânia. pp. 1–147.

  92. Thiers, B. (2022 [continuously updated]) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium, New York. Available from: (Accessed 15 February 2022)

  93. Tiago, P.V., Larocca, D., Silva, I.V., Carpejani, A.A., Tiago, A.V., Dardengo, J.F.E. & Rossi, A.A.B. (2020) Morpho-anatomical, phytochemical, and histochemical characterization of Hymenaea courbaril (Leguminosae), occurring in Southern Amazon. Rodriguésia 71: e02182018.

  94. Vargas, F.S., Almeida, P.D.O., Aranha, E.S.P., Boleti, A.P.A., Newton, P., Vasconcellos, M.C., Veiga Junior, V.F. & Lima, E.S. (2015) Biological activities and cytotoxicity of diterpenes from Copaifera spp. oleoresins. Molecules 20: 6194–6210.

  95. Veiga Junior, V.F. & Pinto, A.C. (2002) O gênero Copaifera L. Química Nova 25: 273–286.

  96. Zarinkamar, F., Moradi, A. & Davoodpour, M. (2021) Ecophysiological, anatomical, and apigenin changes due to uptake and accumulation of cadmium in Matricaria chamomilla L. flowers in hydroponics. Environmental Science and Pollution Research 28: 55154–55165.