Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2022-08-11

Siamcapillus rubidus gen. et sp. nov. (Oculatellaceae), a novel filamentous cyanobacterium from Thailand based on molecular and morphological analyses

Department of Agricultural Sciences, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence in Research in Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
Department of Agricultural Sciences, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence in Research in Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
Cawthron Institute, Nelson 7010, New Zealand
Walai Rukhavej Botanical Research Institute, and Center of Excellence in Biodiversity Research, Mahasarakham University, Maha Sarakham 44150, Thailand
16S rDNA ITS secondary structures rpoC1 gene Cyanobacteria Leptolyngbya Oculatellaceae Thailand Algae

Abstract

Cyanobacterial diversity has been extensively studied; however, scant knowledge exists concerning genetic data and higher accuracy for tropical cyanobacterial diversity. In particular, the existence of unnamed monophyletic genera within the Oculatellaceae requires further investigation. Here, two novel strains (NUACC13 and NUACC14) were isolated from a cyanobacterial mat covering border soil of a small freshwater pond in Phitsanulok Province, Thailand. A polyphasic approach combining genetic (16S rDNA and rpoC1 gene phylogenies, evolutionary distance and ITS secondary structures) and morphological information was applied to evaluate the taxonomic status of these novel strains. All phylogenetic analyses of 16S rDNA and rpoC1 gene sequences placed our strains within the Oculatellaceae, strongly supporting a novel monophyletic clade that did not belong to other known Oculatellaceae genera. The 16S rDNA sequence similarity  (<96.2%) values among the closest described genera also supported the novelty of our strains. The hypothetical secondary structures (D1–D1′, Box-B, V2 and V3 helices) of the ITS region confirmed the uniqueness of our strains, indicating differences from the related genera. Morphological features of the novel strains differed from the phylogenetically closest taxa by size and color of filament and vegetative cell and the presence of a frayed sheath. Considering all the results, we herein described our strains as the novel genus Siamcapillus gen. nov. in the Oculatellaceae with the type species S. rubidus sp. nov.

References

  1. Averina, S., Polyakova, E., Senatskaya, E. & Pinevich, A. (2021) A new cyanobacterial genus Altericista and three species, A. lacusladogae sp. nov., A. violacea sp. nov., and A. variichlora sp. nov., described using a polyphasic approach. Journal of Phycology 57: 1517–1529.  https://doi.org/10.1111/jpy.13188

  2. Basheva, D., Moten, D., Stoyanov, P., Belkinova, D., Mladenov, R. & Teneva, I. (2018) Content of phycoerythrin, phycocyanin, alophycocyanin and phycoerythrocyanin in some cyanobacterial strains: Applications. Engineering in Life Sciences 18: 861–866.  https://doi.org/10.1002/elsc.201800035

  3. Bennett, A. & Bogorad, L. (1973) Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology 58: 419–435. https://doi.org/10.1083/jcb.58.2.419

  4. Berthold, D.E., Lefler, F.W. & Laughinghouse, H.D. (2021) Untangling filamentous marine cyanobacterial diversity from the coast of South Florida with the description of Vermifilaceae fam. nov. and three new genera: Leptochromothrix gen. nov., Ophiophycus gen. nov., and Vermifilum gen. nov. Molecular Phylogenetics and Evolution 160: 107010. https://doi.org/10.1016/j.ympev.2020.107010

  5. Berrendero Gómez, E., Johansen, J.R., Kaštovský, J., Bohunická, M. and Čapková, K. (2016) Macrochaete gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. Journal of Phycology 52: 638–655.  https://doi.org/10.1111/jpy.12425

  6. Brito, Â., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C.P., Kaštovský, J., Vasconcelos, V.M. & Tamagnini, P. (2017) Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast, Molecular Phylogenetics and Evolution 111: 18–34. https://doi.org/10.1016/j.ympev.2017.03.006.

  7. Brown, I.I., Bryant, D.A., Casamatta, D., Thomas-Keprta, K.L., Sarkisova, S.A., Shen, G., Graham, J.E., Boyd, E.S., Peters, J.W., Garrison, D.H. & McKay, D.S. (2010) Polyphasic characterization of a thermotolerant siderophilic filamentous cyanobacterium that produces intracellular iron deposits. Applied Environmental Microbiology 76: 6664–6672. https://doi.org/10.1128/AEM.00662-10

  8. Casamatta, D., Johansen, J.R., Vis, M.L. & Broadwater, S.T. (2005) Molecular and morphological characterization of ten polar and near polar strains within the Oscillatoriales (Cyanobacteria). Journal of Phycology 41: 421–438. https://doi.org/10.1111/j.1529-8817.2005.04062.x

  9. Chakraborty, S., Maruthanayagam, V., Achari, A., Pramanik, A., Jaisankar, P. & Mukherjee, J. (2021) Aerofilum fasciculatum gen. nov., sp. nov. (Oculatellaceae) and Euryhalinema pallustris sp. nov. (Prochlorotrichaceae) isolated from an Indian mangrove forest. Phytotaxa 522: 165–186. https://doi.org/10.11646/phytotaxa.522.3.1

  10. Chan, P.P., & Lowe, T.M. (2019) tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods in molecular biology (Clifton, N.J.) 1962: 1–14. https://doi.org/10.1007/978-1-4939-9173-0_1

  11. Charpy, L., Casareto, B.E., Langlade, M.J. & Suzuki, Y. (2012) Cyanobacteria in coral reef ecosystems: A review. Journal of Marine Biology 2012: 1–9. https://doi.org/10.1155/2012/259571

  12. Chatchawan, T., Komárek, J., Strunecky, O., Smarda, J. & Peerapornpisal, Y. (2012) Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). Cryptogamie Algologie 33: 41–59. https://doi.org/10.7872/crya.v33.iss1.2011.041

  13. Demay, J., Bernard, C. Reinhardt, A. & Marie, B. (2019) Natural products from cyanobaceria: Focus on beneficial activities. Marine Drugs 17: 320. https://doi.org/10.3390/md17060320

  14. Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.P. & Raoult, D. (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial Isolates. Journal of Clinical Microbiology 38: 3623–3630.  https://doi.org/10.1128/JCM.38.10.3623-3630.2000

  15. Dvořák, P., Poulíčková, A., Hašler, P., Belli, M., Casamatta, D.A. & Papini, A. (2015) Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodiversity and Conservation 24: 739–757.  https://doi.org/10.1007/s10531-015-0888-6

  16. Dvořák, P., Hašler, P., Casamatta, D.A. & Poulíčková, A. (2021) Underestimated cyanobacteria diversity: trends and perspectives of research in tropical environments. Fottea 21: 110–127. https://doi.org/10.0.21.131/fot.2021.009

  17. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340

  18. Genuário, D.B., Vas, M.G.M.V., Hentschke, G.S., Sant’Anna, C.L. & Fiore, M.F. (2015) Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. International Journal of Systematic and Evolutionary Microbiology 65: 663–675.  https://doi.org/10.1099/ijs.0.070078-0

  19. González-Resendiz, L., Johansen, J.R., Alba-Lois, L., Segal-Kischinevzky, C., Escobar-Sámche, V., Jiménez-García, L.F., Huaer, T. & León-Tejera, H. (2018) Nunduva, a new marine genus of Rivulariaceae (Nostocales, Cyanobacteria) from marine rocky shores. Fottea 18: 86–105. https://doi.org/10.5507/fot.2017.018

  20. González-Resendiz, L., Johansen, J.R., León-Tejera, H., Sánchez, L., Segal-Kischinevzky, C., Escobar-Sánchez, V. & Morales, M. (2019) A bridge too far in naming species: a total evidence approach does not support recognition of four species in Desertifilum (Cyanobacteria). Journal of Phycology 55: 898–911. https://doi.org/10.1111/jpy.12867

  21. Guindon, S., Dufayard, J-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59: 307–321.  https://doi.org/10.1093/sysbio/syq010

  22. Hašler, P., Dvořák, P., Johansen, J.R., Kitner, M., Ondřej, V. & Poulíčková, A. (2012) Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea 12: 341–356.  https://doi.org/10.5507/fot.2012.024

  23. Hašler, P., Dvořák, P., Poulíčková, P. & Casamatta, D.A. (2014) A novel genus Ammassolinea gen. nov. (Cyanobacteria) isolated from sub-tropical epipelic habitats. Fottea 14: 241–248. https://doi.org/10.5507/fot.2014.018

  24. Hauerová, R., Hauer, T., Kaštovský, J., Komárek, J., Lepšová-Skácelová, O. & Mareš, O. (2021) Tenebriella gen. nov. – The dark twin of Oscillatoria, Molecular Phylogenetics and Evolution 165: 107293. https://doi.org/10.1016/j.ympev.2021.107293.

  25. Iteman, I., Rippka, R., de Marsac, N.T. & Herdman, M. (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 146: 1275–1286. https://doi.org/10.1099/00221287-146-6-1275

  26. Jahodářová, E., Dvořák, P., Hašler, P., Holušová, K. & Poulíčková, A. (2018) Elainella gen. nov.: a new tropical cyanobacterium characterized using a complex genomic approach. European Journal of Phycology 53: 39–51 https://doi.org/10.1080/09670262.2017.1362591

  27. Johansen, J.R. & Casamatta, D.A. (2005) Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies 117: 71–93. https://doi.org/10.1127/1864-1318/2005/0117-0071

  28. Johansen, J.R, Kovácik, L., Casamatta, D.A., Fuĉiková, K. & Kaštovský, J. (2011) Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92: 283–302. https://doi.org/10.1127/0029-5035/2011/0092-0283

  29. Johansen, J.R., González-Resendiz, L., Escobar-Sánchez, V., Segal-Kischinevzky, C., Martínez-Yerena, J., Hernández-Sánchez, J., Hernández-Pérez, G. & León-Tejera, H. (2021) When will taxonomic saturation be achieved? A case study in Nunduva and Kyrtuthrix (Rivulariaceae, Cyanobacteria). Journal of Phycology 57 (6): 1699–1720. https://doi.org/10.1111/jpy.13201

  30. Jungblut, A., Lovejoy, C. & Vincent, W. (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. The ISME Journal 4: 191–202.  https://doi.org/10.1038/ismej.2009.113

  31. Komárek, J. (2006) Cyanobacterial Taxonomy: Current problems and prospects for the integration of traditional and molecular approaches. Algae 21: 349–375. https://doi.org/10.4490/algae.2006.21.4.349

  32. Komárek, J. & Anagnostidis, K. (2005) Cyanoprokaryota.2.Oscillatoriales. In: Büdel, B., Krienitz, L., Gärtner, G. & Schagerl, M. (Eds.) Süsswasserflora von Mitteleuropa 19/2. Elsevier/Spektrum, Heidelberg. pp. 759.

  33. Kaštovský, J., Berrendero Gomez, E., Hladil, J. & Johansen, J.R. (2014) Cyanocohniella calida gen. et sp. nov. (Cyanobacteria: Aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic. Phytotaxa 181: 279–292.  https://doi.org/10.11646/phytotaxa.181.5.3

  34. Komárek, J., Kaštovsky´, J., Mareš, J. & Johansen, J.R. (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86: 295–335. [http://www.preslia.cz/P144Komarek.pdf]

  35. Komárek, J. (2016) A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology 51: 346–353. https://doi.org/10.1080/09670262.2016.1163738

  36. Komárek, J. (2018) Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 811: 7–17.  https://doi.org/10.1007/s10750-017-3379-9

  37. Kozlíková-Zapomělová, E., Chatchawan, T., Kaštovský, J., & Komárek, J. (2016) Phylogenetic and taxonomic position of the genus Wollea with the description of Wollea salina sp. nov. (Cyanobacteria, Nostocales). Fottea 16: 43–55.  https://doi.org/10.5507/fot.2015.026

  38. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35: 1547–1549.  https://doi.org/10.1093/molbev/msy096

  39. Lyons, T.W., Reinhard, C.T. & Planavsky, N.J. (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506: 307–315. https://doi.org/10.1038/nature13068

  40. Mai, T., Johansen, J.R., Pietrasiak, N., Bohunicka, M. & Martin, M.P. (2018) Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 365: 1–59. https://doi.org/10.11646/phytotaxa.365.1.1

  41. Malone, C.F.d.S., Genuário, D.B., Vaz, M.G.M.V., Fiore, M.F. & Sant’Anna, C.L. (2021) Monilinema gen. nov., a homocytous genus (Cyanobacteria, Leptolyngbyaceae) from saline–alkaline lakes of Pantanal wetlands, Brazil. Journal of Phycology 57: 473–483. https://doi.org/10.1111/jpy.13106

  42. Mareš, J., Johansen, J.R., Hauer, T., Zima Jr., J., Ventura, S., Cuzman, O., Tiribilli, B & Kaštovský, J. (2019) Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria. Journal of Phycology 55: 578−610. https://doi.org/10.1111/jpy.12853

  43. Mathews Lab, University of Rochester Medical Center (2018) RNA structure, version 6.0.1 Available from: https://rna.urmc.rochester.edu/RNAstructure.html (accessed 16 April 2018)

  44. Mühlsteinová, R., Johansen, J.R., Pietrasiak, N., Martin, M.P., Osoirio-Santos, K. & Warren, S.D. (2014) Polyphasic characterization of Trichocoleus desertorum sp. nov. Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa 163: 241–261.  https://doi.org/10.11646/phytotaxa.163.5.1

  45. Neilan, B.A., Jacobs, D., Dot, T.D., Blackall, L.L., Hawkins, P.R., Cox, P.T. & Goodman, A.E. (1997) rRNA Sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology 47: 693–697. https://doi.org/10.1099/00207713-47-3-693

  46. Nowruzi, B., & Shalygin, S. (2021) Multiple phylogenies reveal a true taxonomic position of Dulcicalothrix alborzica sp. nov. (Nostocales, Cyanobacteria). Fottea 21: 235–246. https://doi.org/10.5507/fot.2021.008

  47. Nübel, U., Garcia-Pichel, F. & Muyzer, G. (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology 63: 3327–3332.  https://doi.org/10.1128/aem.63.8.3327-3332.1997

  48. Nylander, J.A.A. (2008) mrmodeltest v2. Program distributed by author. Evolutionary Biology Centre, Uppsala University.

  49. Osorio-Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L.H., Kovacik, L., Martin, M.P. & Johansen, J.R. (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria) European Journal of Phycology 49: 450–470. https://doi.org/10.1080/09670262.2014.976843

  50. Pagel, F., Guedes, A.C., Amaro, H.M., Kijjoa, A. & Vasconcelos, V. (2019) Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances 37: 422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010.

  51. Partensky, F., Six, C., Ratin, M., Garczarek, L., Vaulot, D., Probert, I., Calteau, A., Gourvil, P., Marie, D., Grébert, T., Bouchier, C., Le Panse, S., Gachenot, M., Rodríguez, F. & Garrido, J.L. (2018) A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and lifestyle. Scientific Report 8: 9142.  https://doi.org/10.1038/s41598-018-27542-7

  52. Pietrasiak, N., Muhlsteinova, R., Siegesmund, M.A. & Johansen, J.R. (2014) Phylogenetic placement of Symplocastrum (Phormidiaceae) with a new combination S. californicum and two new species: S. flechtnerae and S. torsivum. Phycologia 53: 529–541. https://doi.org/10.2216/14-029.1

  53. Pietrasiak, N., Osorio-Santos, K., Shalygin, S., Martin, M.P. & Johansen, J.R. (2019) When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. Journal of Phycology 55: 976–996. https://doi.org/10.1111/jpy.12897

  54. Pietrasiak, N., Reeve, S., Osorio-Santos, K., Lipson, D.A. & Johansen, J.R. (2021) Trichotorquatus gen. nov. - a new genus of soil cyanobacteria discovered from American drylands. Journal of Phycology 57: 886–902. https://doi.org/10.1111/jpy.13147

  55. Philippot, L., Andersson, S.G., Battin, T.J., Prosser, J.I., Schimel, J.P., Whitman, W.B. & Hallin, S. (2010) The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology 8: 523–529.  https://doi.org/10.1038/nrmicro2367

  56. Sciuto, K. & Moro, I. (2016) Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S–23S ITS region. Molecular Phylogenetics and Evolution 105: 15–35. https://doi.org/10.1016/j.ympev.2016.08.010

  57. Sciuto, K., Moschin, E. & Moro, I. (2017) Cryptic Cyanobacterial Diversity in the Giant Cave (Trieste, Italy): The New Genus Timaviella (Leptolyngbyaceae). Cryptogamie Algologie 38: 285–323. https://doi.org/10.7872/crya/v38.iss4.2017.285

  58. Sendall, B.C. & McGregor, G.B. (2018) Cryptic diversity within the Scytonema complex: Characterization of the paralytic shellfish toxin producer Heterosyctonema crispum, and the establishment of the family Heteroscytonemataceae (Cyanobacteria/Nostocales). Harmful Algae 80: 158–170.  https://doi.org/10.1016/j.hal.2018.11.002.

  59. Seo, P-S. & Yokota, A. (2003) The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. The journal of General and Applied Microbiology 49: 191–203. https://doi.org/10.2323/jgam.49.191

  60. Shen, L.-Q., Zhang, Z.-C., Shang, J.-L., Li, Z.-K., Chen, M., Li, R. & Qiu, B.-S. (2022) Kovacikia minuta sp. nov. (Leptolyngbyaceae, Cyanobacteria), a new freshwater chlorophyll f-producing cyanobacterium. Journal of Phycology 58 (3): 424–435. https://doi.org/10.1111/jpy.13248

  61. Strunecky, O., Bohunická, M., Johansen, J.R., Čapková, K., Raabová, L., Dvořák, P., & Komárek, J. (2017) A revision of the genus Geitlerinema and a description of the genus Anagnostidinema gen. nov. (Oscillatoriophycidae, Cyanobacteria). Fottea 17: 114–126.  https://doi.org/10.5507/fot.2016.025

  62. Strunecky, O., Raabova, L., Bernardova, A., Ivanova, A.P., Semanova, A., Crossley, J. & Kaftan, D. (2020) Diversity of cyanobacteria at the Alaska North Slope with description of two new genera: Gibliniella and Shackletoniella, FEMS Microbiology Ecology 96: fiz189. https://doi.org/10.1093/femsec/fiz189

  63. Strunecky, O., Kopejtka, K., Goecke, F., Tomasch, J., Lukavský, J., Neori, A., Kahl, S., Pieper, D.H., Pilarski, P., Kaftan, D. & Koblížek, M. (2019) High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing. Extremophiles 23: 35–48. https://doi.org/10.1007/s00792-018-1058-z.

  64. Ronquist, F., Teslenko, M. van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

  65. Tang, W., Cerdán-García, E., Berthelot, H., Polyviou, D., Wang, S., Baylay, A., Whitby, H., Planquette, H., Mowlem, M., Robidart, J., & Cassar, N. (2020) New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. The ISME journal 14: 2514–2526. https://doi.org/10.1038/s41396-020-0703-6

  66. Tawong, W. (2017) Diversity of the Potential 2-Methylisoborneol-Producing Genotypes in Thai Strains of Planktothricoides (Cyanobacteria). Brazilian Archives of Biology and Technology 60: e17160567. https://doi.org/10.1590/1678-4324-2017160567

  67. Tawong, W., Pongcharoen, P., Pongpadung, P. & Ponza, S. (2019a) Neowollea manoromense sp. nov. (Nostocales, Cyanobacteria), a novel geosmin producer isolated from Thailand. Phytotaxa 424: 1–17.

  68. Tawong, W., Pongcharoen, P., Nishimura, T. & Adachi, M. (2019b) Molecular characterizations of Thai Raphidiopsis raciborskii (Nostocales, Cyanobacteria) based on 16S rDNA, rbcLX, and cylindrospermopsin synthetase genes. Plankton and Benthos Research 14: 211–223. https://doi.org/10.3800/pbr.14.211

  69. Wang, Y., Cai, F., Jia, N. & Li, R. (2019) Description of a novel coccoid cyanobacterial genus and species Sinocapsa zengkensis gen. nov. sp. nov. (Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsidales. Phytotaxa 409: 146–160. https://doi.org/10.11646/phytotaxa.409.3.3

  70. Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.-H., Whitman, W.B., Euzéby, J., Rudolf, A. & Rosselló-Móra, R. (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12: 635–645. https://doi.org/10.1038/nrmicro3330

  71. Zammit, G., Billi, D. & Albertano, P. (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. European Journal of Phycology 47: 341–354.  https://doi.org/10.1080/09670262.2012.717106

  72. Zammit, G. (2018) Systematics and biogeography of sciophilous cyanobacteria; an ecological and molecular description of Albertania skiophila (Leptolyngbyaceae) gen. & sp. nov. Phycologia 57: 481–491. https://doi.org/10.2216/17-125.1