Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2022-08-11

Deep sequencing of the epitype specimen of Synarthrophyton patena (Hooker f. & Harvey) R.A.Townsend (Hapalidiales, Rhodophyta) confirms the correct application of this name

Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California, USA
BioCost Research Group, Universidade da Coruña, Facultad de Ciencias, Campus de A Zapateira S/N, 15071, A Coruña, Spain
Herbarium and Biology Department, Coker Hall, CB 3280, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599-3280, USA
Melobesia patena rbcL psbA Synarthrophyton systematics Algae

Abstract

Synarthrophyton patena (Hooker f. & Harvey) R.A.Townsend is a discoid marine coralline red alga distributed in the southwestern Pacific Ocean (type locality: southeast North Island, New Zealand). It is the generitype of Synarthrophyton R.A.Townsend, a genus of taxonomic debate. High-throughput sequencing was performed on the herein designated epitype specimen of S. patena to characterize its genetic markers and organellar genome structure. The complete plastid genome of S. patena is 181,685 bp in length and contains 232 genes. A partial mitogenome was assembled amounting to 25,779 bp and encodes 46 genes. Both genomes show a high level of gene synteny to the organellar genomes of S. chejuense. DNA markers rbcL, psbA, and cox1 are identical or very similar to sequences deposited in GenBank and analyzed here under the same name from Australia (including Tasmania) and New Zealand. A combined phylogenetic analysis of S. patena using rbcL and psbA gene sequences fully resolved it in a clade with other S. patena, Synarthrophyton spp., and unidentified Hapalidiales. These data confirm the accurate application of the binomial S. patena, stabilize the use of the generitype, and contribute to future congeneric evolutionary and taxonomic studies in the Hapalidiaceae.

References

  1. Adey, W.H., Hernandez-Kantun, J.J., Johnson, G. & Gabrielson, P.W. (2015) DNA sequencing, anatomy and calcification patterns support a monophyletic, subarctic, carbonate reef-forming Clathromorphum (Hapalidiaceae, Corallinales, Rhodophyta. Journal of Phycology 51: 189–203.  https://doi.org/10.1111/jpy.12266

  2. Adey, W.H., Hernández-Kantún, J.J., Gabrielson, P.W., Nash, M.C. & Hayek, L.C. (2018) Phymatolithon (Melobesioideae, Hapalidiales) in the boreal-subarctic transition zone of the North Atlantic: A correlation of plastid DNA markers with morpho-anatomy, ecology, and biogeography. Smithsonian Contributions to the Marine Sciences 57: i–vii + 1–90.

  3. Athanasiadis, A. (2019) Carlskottsbergia antarctica (Hooker fil. & Harv.) gen. & comb. nov., with a re-assessment of Synarthrophyton (Mesophyllaceae, Corallinales, Rhodophyta). Nova Hedwigia 108: 291–320.  https://doi.org/10.1127/nova_hedwigia/2018/0506

  4. Bailey, J.C. & Chapman, R.L. (1998) A phylogenetic study of the corallinales (Rhodophyta) based on nuclear small-subunit rRNA gene sequences. Journal of Phycology 34: 692–705.  https://doi.org/10.1046/j.1529-8817.1998.340692.x

  5. Bittner, L., Payri, C., Maneveldt, G., Couloux, A., Cruaud, C., de Reviers, B. & Le Gall, L. (2011) Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes. Molecular Phylogenetics and Evolution 61: 697–713.  https://doi.org/10.1016/j.ympev.2011.07.019

  6. Bustamante, D.E., Calderon, M.S. & Hughey, J.R. (2019) Conspecificity of the Peruvian Corallina ferreyrae with C. caespitosa (Corallinaceae, Rhodophyta) inferred from genomic analysis of the type specimen. Mitochondrial DNA Part B Resources 4: 1285–1286.  https://doi.org/10.1080/23802359.2019.1591203

  7. Calderon, M.S., Bustamante, D.E., Gabrielson, P.W., Martone, P.T., Hind, K.R., Schipper, S.R. & Mansilla, A. (2021) Type specimen sequencing, multilocus analyses, and species delimitation methods recognize the cosmopolitan Corallina berteroi and establish the northern Japanese C. yendoi sp. nov. (Corallinaceae, Rhodophyta). Journal of Phycology 57: 1659–1672.  https://doi.org/10.1111/jpy.13202

  8. Chapman, V.J. & Parkison, P.G. (1974) The Marine Algae of New Zealand. Part III. Rhodophyceae. Issue 3: Cryptonemiales. J. Cramer, Lehre. 155–278.

  9. Coutinho, L.M., Gomes, F.P., Sissini, M.N., Vieira-Pinto, T., de Oliveira Henriques, M.C.M., Oliveira, M.C., Horta, P.A. & de Barros Barreto, M.B.B. (2022) Cryptic diversity in non-geniculate coralline algae: a new genus Roseolithon (Hapalidiales, Rhodophyta) and seven new species from the Western Atlantic. European Journal of Phycology 57: 227–250.  https://doi.org/10.1080/09670262.2021.1950839

  10. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.-M. & Gascuel, O. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36: W465–W469.  https://doi.org/10.1093/nar/gkn180

  11. De Toni, G.B. (1905) Sylloge algarum omnium hucusque cognitarum. Vo. IV. Floridae. Sectio IV. Patavii [Padova]: suptibus auctoris. pp. [i–v], 1523–1973.

  12. De Toni, G.B. & Forti, A. (1923) Alghe di Australia, Tasmania e Nuova Zelanda raccolte dal rev. dott. Giuseppe Capra nel 1908-1909. Memorie del Reale Istituto Veneto di Scienze, Lettere ed Arti 29: 1–183.

  13. Foslie, M. (1898) List of species of the Lithothamnia. Kongelige Norske Videnskabers Selskabs Skrifter 1898: 1–11.

  14. Gabrielson, P.W., Miller, K.A. & Martone, P.T. (2011) Morphometric and molecular analyses confirm two species of Calliarthron (Corallinales, Rhodophyta), a genus endemic to the northeast Pacific. Phycologia 50: 298–316.  https://doi.org/10.2216/10-42.1

  15. Gabrielson, P.W., Hughey, J.R. & Diaz-Pulido, G. (2018) Genomics reveals abundant speciation in the coral reef building alga Porolithon onkodes (Corallinales, Rhodophyta) (Letter). Journal of Phycology 54: 429–434.  https://doi.org/10.1111/jpy.12761

  16. Gabrielson, P.W., Lindstrom, S.C. & Hughey, J.R. (2019) Neopolyporolithon loculosum is a junior synonym of N. arcticum comb. nov. (Hapalidiales, Rhodophyta), based on sequencing type material. Phycologia 58: 229–233.  https://doi.org/10.1080/00318884.2018.1541272

  17. Harvey, A.S., Woelkerling, W.J. & Wilks, K.M. (1994) The genus Synarthrophyton (Corallinaceae Rhodophyta) in southern Australia. Phycologia 33: 331–342. https://doi.org/10.2216/i0031-8884-33-5-331.1

  18. Harvey, W.H. (1849) Nereis australis, or algae of the southern ocean: being figures and descriptions of marine plants, collected on the shores of the Cape of Good Hope, the extra-tropical Australian colonies, Tasmania, New Zealand, and the Antarctic regions; deposited in the Herbarium of the Dublin University. [Part 2]. Reeve Brothers, London. pp. 65–124.

  19. Hernández-Kantún, J.J., Riosmena-Rodriguez, R., Hall-Spencer, J.M., Peña, V., Maggs, C.A. & Rindi, F. (2015) Phylogenetic analysis of rhodolith formation in the Corallinales (Rhodophyta). European Journal of Phycology 50: 46–61.  https://doi.org/10.1080/09670262.2014.984347

  20. Hernández-Kantún, J.J., Gabrielson, P.W., Hughey, J.R., Pezzolesi, L., Rindi, F., Robinson, N.M., Peña, V., Riosmena-Rodriguez, R., Le Gall, L. & Adey, W.H. (2016) Reassessment of branched Lithophyllum spp. (Corallinales, Rhodophyta) in the Caribbean Sea with global implications. Phycologia 55: 609–635.  https://doi.org/10.2216/16-7.1

  21. Heydrich, F. (1897) Melobesiae. Berichte der deutsche botanischen Gesellschaft 15: 403–420.

  22. Hind, K.R., Gabrielson, P.W., Lindstrom, S.C. & Martone, P.T. (2014) Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis. Journal of Phycology 50: 760–764.  https://doi.org/10.1111/jpy.12205

  23. Hind, K.R., Miller, K.A., Young, M., Jensen, C., Gabrielson, P.W. & Martone, P.T. (2015) Resolving cryptic species of Bossiella (Corallinales, Rhodophyta) using contemporary and historical DNA. American Journal of Botany 102: 1–19.  https://doi.org/10.3732/ajb.1500308

  24. Hind, K.R., Gabrielson, P.W., Jensen, C.P. & Martone, P.T. (2016) Crusticorallina gen. nov., a non-geniculate genus in the subfamily Corallinoideae (Corallinales, Rhodophyta). Journal of Phycology 52: 929–941.  https://doi.org/10.1111/jpy.12449

  25. Hughey, J.R. & Gabrielson, P.W. (2012) Comment on “Acquiring DNA sequence data from dried archival red algae (Florideophyceae) for the purpose of applying available names to contemporary genetic species: a critical assessment”. Botany 90: 1191–1194.  https://doi.org/10.1139/b2012-102

  26. Hughey, J.R., Gabrielson, P.W., Maggs, C.A. & Mineur, F. (2021) Genomic analysis of the lectotype specimens of European Ulva rigida and Ulva lacinulata (Ulvaceae, Chlorophyta) reveals the ongoing misapplication of names. European Journal of Phycology 57: 143–153.  https://doi.org/10.1080/09670262.2021.1914862

  27. Jeong, S.Y., Diaz-Pulido, G., Maneveldt, G.M., Gabrielson, P.W., Nelson, W.A., Won, B.Y. & Cho, T.O. (2022) Phymatolithopsis gen. nov. (Hapalidiales, Corallinophycidae, Rhodophyta) based on molecular and morpho-anatomical evidence. Journal of Phycology 58: 161–178.  https://doi.org/10.1111/jpy.13227

  28. Jesionek, M.B., Bahia, R.G., Hernández-Kantún, J., Adey, W.H., Yoneshigue-Valentin, Y., Longo, L.L. & Amado-Filho, G.M. (2016) A taxonomic account of non-geniculate coralline algae (Corallinophycidea, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil. Algae 31: 317–340.  https://doi.org/10.4490/algae.2016.31.11.16

  29. Jesionek, M.B., Bahia, R.G., Lyra, M.B., Leão, L.A.B., Oliveira, M.C. & Amado-Filho, G.M. (2020) Newly discovered coralline algae in Southeast Brazil: Tectolithon fluminense gen. et sp. nov. and Crustaphytum atlanticum sp. nov. (Hapalidiales, Rhodophyta). Phycologia 59: 101–115.  https://doi.org/10.1080/00318884.2019.1702320

  30. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166.  https://doi.org/10.1093/bib/bbx108

  31. Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.  https://doi.org/10.1093/molbev/mst010

  32. Kim, J.H., Chung, H., Choi, D.S. & Lee, I.K. (2004) A new melobesioid alga Synarthrophyton chejuensis sp. nov. (Corallinales, Rhodophyta), including comparison with Mesophyllum cystocarpideum. Phycologia 43: 501–520.  https://doi.org/10.2216/i0031-8884-43-5-501.1

  33. Kim, K.M., Yang, E.C., Kim, J.H., Nelson, W.A. & Yoon, H.S. (2015) Complete mitochondrial genome of a rhodolith, Sporolithon durum (Sporolithales, Rhodophyta). Mitochondrial DNA 26: 155–156.  https://doi.org/10.3109/19401736.2013.819500

  34. Kützing, F.T. (1858) Tabulae phycologicae; oder, Abbildungen der Tange. Gedruckt auf kosten des Verfassers (in commission bei W. Köhne), Nordhausen. 48 pp.

  35. Le Gall, L. & Saunders, G.W. (2007) A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red subalgal class Corallinophycidae. Molecular Phylogenetics and Evolution 43: 1118–1130.  https://doi.org/10.1016/j.ympev.2006.11.012

  36. Lee, J.M., Cho, C.H., Park, S.I., Choi, J.W., Song, H.S., West, J.A., Bhattacharya, D. & Yoon, H.S. (2016) Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BCM Biology 14: 75.  https://doi.org/10.1186/s12915-016-0299-5

  37. Lee, J.M., Song, H.J., Park, S.I., Lee, Y.M., Jeong, S.Y., Cho, T.O., Kim, J.H., Choi, H.G., Choi, C.G., Nelson, W.A., Fredericq, S., Bhattacharya, D. & Yoon, H.S. (2018) Mitochondrial and plastid genomes from coralline red algae provide insights into the incongruent evolutionary histories of organelles. Genome Biology and Evolution 10: 2961–2972.  https://doi.org/10.1093/gbe/evy222

  38. Li, D., Liu, C.M., Luo, R., Sadakane, K. & Lam, T.W. (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674–1676.  https://doi.org/10.1093/bioinformatics/btv033

  39. Liu, L.-C., Lin, S.-M., Caragnano, A. & Payri, C. (2018) Species diversity and molecular phylogeny of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from Taoyuan algal reefs in northern Taiwan, including Crustaphytum gen. nov. and three new species. Journal of Applied Phycology 30: 3455–3469.  https://doi.org/10.1007/s10811-018-1620-1

  40. Maneveldt, G.W., Jeong, S.Y., Cho, T.O., Hughey, J.R. & Gabrielson, P.W. (2020) Reassessment of misapplied names, Phymatolithon ferox and P. repandum (Hapalidiales, Corallinophycidae, Rhodophyta) in South Africa, based on DNA sequencing of type and recently collected material. Phycologia 59: 449–455.  https://doi.org/10.1080/00318884.2020.1800298

  41. Mason, L.R. (1953) The crustaceous coralline algae of the Pacific coast of the United States, Canada and Alaska. University of California Publications in Botany 26: 313–389.

  42. May, D.I. & Woelkerling, W.J. (1988) Studies on the genus Synarthrophyton (Corallinaceae, Rhodophyta) and its type species, S. patena (J.D. Hooker et W.H. Harvey) Townsend. Phycologia 27: 50–71.  https://doi.org/10.2216/i0031-8884-27-1-50.1

  43. Molinari Novoam, E.A. in Guiry, M.D. & Guiry, G.M. (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org (searched 25 February 2022)

  44. Nelson, W.A., Sutherland, J.E., Farr, T.J., Hart, D.R., Neill, K.F., Kim, H.J. & Yoon, H.S. (2015) Multi-gene phylogenetic analyses of New Zealand coralline algae: Corallinapetra novaezelandiae gen. et sp. nov. and recognition of the Hapalidiales ord. nov. Journal of Phycology 51: 454–468.  https://doi.org/10.1111/jpy.12288

  45. Pardo, C., López, L., Peña, V., Hernández-Kantún, J., Le Gall, L., Bárbara, I. & Barreiro, R. (2014) A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR Maritime Area. PLoS ONE 9 (8): e104073.  https://doi.org/10.1371/journal.pone.0104073

  46. Peña, V., Adey, W.H., Riosmena-Rodriguez, R., Jung, M.-Y., Afonso-Carrillo, J., Choi, H.-G. & Bárbara, I. (2011) Mesophyllum sphaericum sp. nov. (Corallinales, Rhodophyta): a new maerl-forming species from the northeast Atlantic. Journal of Phycology 47: 911–927.  https://doi.org/10.1111/j.1529-8817.2011.01015.x

  47. Peña, V., De Clerck, O., Afonso-Carrillo, J., Ballesteros, E., Bárbara, I., Barreiro, R. & Le Gall, L. (2015) An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. European Journal of Phycology 50: 20–36.  https://doi.org/10.1080/09670262.2014.981294

  48. Peña, V., Vieira, C., Braga, J.C., Aguirre, J., Rösler, A., Baele, G., De Clerck, O. & Le Gall, L. (2020) Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Molecular Phylogenetics and Evolution 150: 106845.  https://doi.org/10.1016/j.ympev.2020.106845

  49. Peña, V., Bélanger, D., Gagnon, P., Richards, J.L., Le Gall, L., Hughey, J.R., Saunders, G.W., Lindstrom, S., Rinde, E., Husa, V., Christie, H., Fridriksen, S., Hall-Spencer, J.M., Steneck, R.S., Schoenrock, K.M.,Gitmark, J., Grefsrud, E.S., Anglès d’Auriac, M.B., Legrand, E., Grall, J., Mumford, T.F., Kamenos, N.A. & Gabrielson, P.W. (2021) Lithothamnion (Hapalidiales, Rhodophyta) in the changing Arctic and Subarctic: DNA sequencing of type and recent specimens provides a systematics foundation. European Journal of Phycology 56: 468–493. https://doi.org/10.1080/09670262.2021.1880643

  50. Pezzolesi, L., Peña, V., Le Gall, L.,Gabrielson, P.W., Kaleb, S., Hughey, J.R., Rodondi, G., Hernandez-Kantun, J.J., Felace, A., Basso, D., Cerrano, C. & Rindi, F. (2019) Mediterranean Lithophyllum stictiforme (Corallinales, Rhodophyta) ia a genetically diverse species complex: implications for species circumscription, biogeography and conservation of coralligenous habitats. Journal of Phycology 55: 473–492.  https://doi.org/10.1111/jpy.12837

  51. Puckree-Padua, C, Gabrielson, P.W., Hughey, J.R. & Maneveldt, G.W. (2020) DNA sequencing of type material reveals Pneophylllum marlothii comb. nov. from South Africa and P. discoideum comb. nov. (Chamberlanoideae, Corallinales, Rhodophyta) from Argentina. Journal of Phycology 56: 1625–1641.  https://doi.org/10.1111/jpy.13047

  52. Richards, J.L., Sauvage, T., Schmidt, W.E., Fredericq, S., Hughey, J.R. & Gabrielson, P.W. (2017) The coralline genera Sporolithon and Heydrichia (Sporolithales, Rhodophyta) clarified by sequencing type material of their generitypes and other species. Journal of Phycology 53: 1044–1059.  https://doi.org/10.1111/jpy.12562

  53. Richards, J.L., Gabrielson, P.W., Hughey, J.R. & Freshwater, D.W. (2018) A re-evaluation of subtidal Lithophyllum species (Corallinales, Rhodophyta) from North Carolina, USA, and the proposal of L. searlesii sp. nov. Phycologia 57: 318–330.  https://doi.org/10.2216/17-110.1

  54. Richards, J.L., Saunders, G.W., Hughey, J.R. & Gabrielson, P.W. (2021a) Reinstatement of Indian Ocean Porolithon coarctatum and P. gardineri based on sequencing type specimens, and P. epiphyticum sp. nov. (Corallinales, Rhodophyta), with comments on subfamilies Hydrolithoideae and Metagoniolithoideae. Botanica Marina 64: 363–377.  https://doi.org/10.1515/bot-2021-0041

  55. Richards, J.L., Schmidt, W.E., Fredericq, S., Sauvage, T., Peña, V., Le Gall, L., Mateo-Cid, L.E., Mendoza-González, A.C., Hughey, J.R. & Gabrielson, P.W. (2021b) DNA sequencing of type material and newly collected specimens reveals two heterotypic synonyms for Harveylithon munitum (Metagoniolithoideae, Corallinales, Rhodophyta) and three new species. Journal of Phycology 57: 1234–1253.  https://doi.org/10.1111/jpy.13161

  56. Ricker, R.W. (1987) Taxonomy and biogeography of Macquarie Island seaweeds. British Museum (Natural History), London. 344 pp.

  57. Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.  https://doi.org/10.1093/bioinformatics/btg180

  58. Rosanoff, S. (1866) Recherches anatomiques sur les Mélobésiées (Hapalidium, Melobesia, Lithophyllum et Lithothamnion). Mémoires de la Société Impériale des Sciences Naturelles de Cherbourg 12: 5–112.

  59. Saunders, G.W. (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B 360: 1879–1888.  https://doi.org/10.1098/rstb.2005.1719

  60. Saunders, G.W. & Moore, T.E. (2013) Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae 28: 31–43.  https://doi.org/10.4490/algae.2013.28.1.031

  61. Sciuto, K., Moschin, E., Alongi, G., Cecchetto, M., Schiaparelli, S., Caragnano, A., Rindi, F. & Moro, I. (2021) Tethysphytum antarcticum gen. et sp. nov. (Hapalidiales, Rhodophyta), a new non-geniculate coralline alga from Terra Nova Bay (Ross Sea, Antarctica): morpho-anatomical characterization and molecular phylogeny. European Journal of Phycology 56: 416–427.  https://doi.org/10.1080/09670262.2020.1854351

  62. Scott, F.J., Saunders, G.W. & Kraft, G.T (2013) Entwisleia bella gen. et sp. nov., a novel marine ‘batrachospermaceous’ red alga from southeastern Tasmania representing a new family and order in the Nemaliophycidae. European Journal of Phycology 48: 398–410.  https://doi.org/10.1080/09670262.2013.849359

  63. Seagrief, S.C. (1967) The Seaweeds of the Tsitsikama Coastal National Park. Johannesburg: National Parks Board of the Republic of South Africa, 147 pp.

  64. Sissini, M.N., Oliveira, M.C., Gabrielson, P.W., Robinson, N.M., Okolodkov, Y.B., Riosmena-Rodriguez, R. & Horta, P.A. (2014) Mesophyllum erubescens (Corallinales, Rhodophyta)--so many species in one epithet. Phytotaxa 190: 299–319.  https://dx.doi.org/10.11646/phytotaxa.190.1.18

  65. Townsend, R.A. (1979) Synarthrophyton, a new genus of Corallinaceae (Cryptonemiales, Rhodophyta) from the southern hemisphere. Journal of Phycology 15: 251–259.  https://doi.org/10.1111/j.0022-3646.1979.00251.x

  66. Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J. & Smith, G.F. (Eds.) (2018) International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile, 159, [i]–xxxviii, 1–253. Koeltz Botanical Books, Glashütten. 253 pp.  https://doi.org/10.12705/Code.2018

  67. Twist, B.A., Neill, K.F., Bilewitch, J., Jeong, S.Y., Sutherland, J.E. & Nelson, W.A. (2019) High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research. PLOS One 14: 12 e0225645.  https://doi.org/10.1371/journal.pone.0225645

  68. Van der Merwe, E., Miklasz, K., Channing, A., Maneveldt, G.W. & Gabrielson, P.W. (2015) DNA sequencing resolves species of Spongites (Corallinales, Rhodophyta) in the Northeast Pacific and South Africa, including S. agulhensis sp. nov. Phycologia 54: 471–490.  https://doi.org/10.2216/15-38.1

  69. Woelkerling, W.J. (1988) The Coralline Red Algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. British Museum (Natural History) & Oxford University Press, London & Oxford. 268 pp.

  70. Womersley, H.B.S. (1996) The marine benthic flora of southern Australia - Part IIIB - Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Australian Biological Resources Study with assistance from the State Herbarium of South Australia, Canberra & Adelaide. 392 pp.

  71. Yoon, H.S., Hackett, J.D. & Bhattacharya, D. (2002) A single origin of the peridinin- and fucoxanthin- containing plastids in dinoflagellates through tertiary endosymbiosis. Proceedings of the National Academy of Sciences 99: 11724–11729.  https://doi.org/10.1073/pnas.172234799