The phylogenetic position and taxonomic status of the Rainbow Tree Snake
*Gonyophis margaritatus* (Peters, 1871) (Squamata: Colubridae)

XIN CHEN1,2, ALEXANDER D. McKELVY1,2, L. LEE GRISMER3, MASAFUMI MATSUI4, KANTO NISHIKAWA4 & FRANK T. BURBRINK1,2

1Department of Biology, The College of Staten Island, The City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA. E-mail: xchen1@gcs.cuny.edu
2Department of Biology, The Graduate School and University Center, The City University of New York, 365 Fifth Ave., NY, NY 10016, USA
3Department of Biology, La Sierra University, 4500 Riverwalk Pkwy., Riverside, California 92515 USA
4Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, JAPAN

Abstract

Molecular phylogenies have provided strong evidence for clarifying the taxonomy of groups with ambiguous morphological traits, thus avoiding potentially misleading conclusions based on evolutionary convergence of these traits. For snakes, established molecular databases along with new sequences from rare species allows us to estimate phylogenies, to clarify the phylogenetic relationships and test the monophyly of most taxonomic groups. Using one mitochondrial gene and five nuclear loci, we evaluate the taxonomic status of a rare Southeast Asian serpent, the Rainbow Tree Snake *Gonyophis margaritatus* (Squamata: Colubridae) by inferring a molecular phylogeny of 101 snake species. Both maximum likelihood and time-calibrated Bayesian inference phylogenies demonstrate that *G. margaritatus* is sister to *Rhadinophis prasinus*, previously considered to be part of a radiation of Old World ratsnakes. This group is in turn sister to a group containing *Rhadinophis frenatus* and *Rhynchophis boulengeri* with the entire clade originating in the mid-Miocene (~16 Ma) in Southeast Asia. This group is sister to the genus *Gonyosoma* and together originated in the early Miocene (~20 Ma). We discuss three potential solutions towards eliminating polyphyly of the genus *Rhadinophis*, but recommend using the genus name *Gonyosoma* for all species within this clade, which currently contains all of the species within the genera *Gonyosoma, Gonyophis, Rhadinophis, and Rhynchophis.*

Key words: *Gonyophis, Gonyosoma,* molecular phylogeny, polyphyly, *Rhadinophis, Rhynchophis*

Introduction

The importance of using phylogenetic trees to uncover genealogical relationships and properly construct a taxonomy of organisms cannot be overstated (de Queiroz & Gauthier 1992). The development of DNA sequencing technology has increased the available genetic data for phylogenetic inference and the development of model-based statistical methods, such as maximum likelihood and Bayesian inference, which has enhanced the reliability of reconstructed phylogenies (Meyer & Zardoya 2003; Yang & Rannala 2012; Danforth et al. 2013). Using molecular data to examine phylogenetic relationships provides evidence to clarify systematic ambiguities from morphological characters and helps avoid misleading relationships due to convergence of morphology (Wiens et al. 2010). Therefore, an abundance of molecular data with information from independent loci is able to provide strong evidence to assess taxonomic composition and test monophyly (Hillis 1987; Mishler 1994; Townsend et al. 2008).

The last decade has seen an incredible rise in the use of molecular phylogenies to examine relationships in snakes, assess biogeographic origins, understand processes of adaptive radiation and ultimately correct taxonomy with regard to paraphyletic and polyphyletic groups at multiple levels (Wüster et al. 2008; Zaher et al. 2009; Pyron et al. 2011; Burbrink et al. 2012; Pyron et al. 2013). The phylogenetic position of groups at moderately deep levels (e.g., subfamily) appears to have stabilized with regard to content and relationships, however the inclusion of new...
University of New York High Performance Computing Center under NSF Grants CNS-0855217, CNS-0958379 and ACI-1126113, as well as The Japanese Society for the Promotion of Sciences (JSPS: Field Research, No. 20405014). We thank all of the researchers whose time and effort went in to producing sequence data. We thank H. Zhao for providing the photograph of Gonyosoma frenatum (Rhadinophis frenatus). We thank Dr. Jimmy A. McGuire for reviewing the manuscript and providing a picture of Gonyosoma.

References

http://dx.doi.org/10.1080/00222939109460437


http://dx.doi.org/10.1098/rspb.2012.1669

http://dx.doi.org/10.1016/j.ympev.2012.09.032

http://dx.doi.org/10.1016/j.ympev.2013.09.003

http://dx.doi.org/10.1146/annurev-ento-120811-153633

http://dx.doi.org/10.1038/nmeth.2109


http://dx.doi.org/10.1371/journal.pbio.0040088

http://dx.doi.org/10.1093/molbev/mss075

http://dx.doi.org/10.1093/nar/gkh340

http://dx.doi.org/10.1080/10635150390235520

http://dx.doi.org/10.1016/j.ympev.2013.03.008

http://dx.doi.org/10.1146/annurev.es.18.110187.000323

http://dx.doi.org/10.1080/02724634.1984.10011978


http://dx.doi.org/10.3724/SP.J.1245.2012.00038

http://dx.doi.org/10.1016/j.ympev.2005.07.016

http://dx.doi.org/10.1080/10635150119683

http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132351

http://dx.doi.org/10.1002/ajpa.1330940111


http://dx.doi.org/10.1016/j.ympev.2009.02.008

http://dx.doi.org/10.1111/j.1558-5646.2011.01437.x

http://dx.doi.org/10.1016/j.ympev.2010.11.006

http://dx.doi.org/10.1186/1471-2148-13-93

http://dx.doi.org/10.1146/annurev.es.23.110192.002313

http://dx.doi.org/10.4202/app.2008.0303


http://dx.doi.org/10.1016/0025-5564(81)90043-2


http://dx.doi.org/10.1093/bioinformatics/btl446

http://dx.doi.org/10.1093/sysbio/syn043-2

http://dx.doi.org/10.1016/j.ympev.2007.09.017


http://dx.doi.org/10.1093/sysbio/syq048


