Skip to main content Skip to main navigation menu Skip to site footer
Type: Proceedings Papers
Published: 2022-11-30
Page range: 279-281
Abstract views: 203
PDF downloaded: 31

Review of predatory mites as biocontrol agents against thrips in China

Department of Entomology, College of Plant Protection, Shandong Agricultural University; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Taian, 271018, China
Department of Entomology, College of Plant Protection, Shandong Agricultural University; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Taian, 271018, China
Department of Entomology, College of Plant Protection, Shandong Agricultural University; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Taian, 271018, China
Department of Entomology, College of Plant Protection, Shandong Agricultural University; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Taian, 271018, China
Acari Predatory mites thrips biological control

Abstract

Thrips are one of the most destructive pests of vegetables, fruits, and ornamental crops worldwide (Wan et al., 2020; Davari et al., 2021). The more severe species include Frankliniella occidentalis, Frankliniella intonsa, Thrips tabaci, Thrips flavidulus, Pseudodendrotrips mori, Scirtothrips dorsalis, and Megalurothrips usitatus (You et al., 2007; Zheng et al., 2007; Saito et al., 2022). Many thrips have developed resistance to pesticides. For example, Frankliniella occidentalis developed different degrees of resistance to organochlorine, organophosphorus, carbamate, and pyrethroid insecticides and environmentally friendly insecticides (Broadbent and Pree, 1997; Sun et al., 2022). Tobacco thrips have developed resistance to pyrethroid and organic phosphate insecticides (Krob et al., 2022). Soybean thrips also developed varying degrees of resistance to emamectin benzoate, beta-cypermethrin, and imidacloprid (Tang et al., 2016). Therefore, searching and screening effective natural enemies for biological control of thrips is urgent.

 

References

  1. Broadbent, A.B. & Pree, D.J. (1977) Resistance to insecticides inpopulations of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) from greenhouses in the Niagara Region of Ontario. The Canadian Entomologist, 129, 907–913. https://doi.org/10.4039/ent129907-5
    Chai, J.P., Xie, D.Y., Jiang, X.J., Ni, J., Da, A.S. & Luo, Y.J. (2013) Residue Dynamic Analysis of Jin in Soil of Shenyang Area. Proceedings of the 11th National Congress of Chinese Society for Plant Protection and 2013 Annual Meeting, p. 536.
    Cheng, X.M. (2012) The effects of insecticides and prey on the predatory mites. Huazhong Agricultural University, Wuhan, China, 28 pp.
    Davari, A., Parker. B.L., Sullivan, F.C., Ghalehgolabbehbahani, A., & Skinner, M. (2021). Biological control of Western flower thrips, Frankliniella occidentalis using a self-sustaining granular fungal treatment. Bulletin of Entomological Research, 111 (6), 688–693. https://doi.org/10.1017/S0007485321000365
    Dlamini, T.M., Allsopp, E. & Malan, A.P. (2019) Management of Frankliniella occidentalis (Western Flower Thrips), and the potential use of entomopathogenic nematodes: a South African perspective. African Entomology, 27 (2), 265–278. https://doi.org/10.4001/003.027.0265
    Ding, C.X. (2011) Occurrence of thrips in mango orchard and studies on the biological and chemical control of Frankliniella intonsa. Huazhong Agricultural University, Wuhan, China, 13 pp.
    Han, Y.H., Meng, R.X., Dong, Z., Wei, C.G., Yi, W.D. & Zhang, Q.W. (2016) Evaluating the control potential of six cultivated Sui mites on Frankliniella occidentalis with the life table of experimental population. Chinese Journal of Applied Entomology, 53 (5), 996–1004.
    Huang, J.H., Luo, R.H., Qin, W.J., Huang, S.J., Qin, H.G. & Fu, Z.F. (2012) Predation Efficacy of Amblyseius barkeri on Asparagus Thrips, Thrips tabaci. Chinese Journal of Biological Control, 28 (3), 353–359. https://doi.org/10.16409/j.cnki.2095-039x.2012.03.010
    Huang, W. C., Ji, J., Guo, J.Y., Fu, Q.D., Huang, G.S. & Luo, F. (2022) Functional response and field control effect of Acanthonychus pasteuricus to common thrips. Chinese Melons and Vegetables. 35 (3), 92–98. https://doi.org/10.16861/j.cnki.zggc.2022.0072
    Krob, J.K., Stewart, S.D., Brown, S.D., Kerns, D., Graham,S.H., Perkins,C., Huseth,S.H., Kennedy, G.G., Reisig, D.D., Taylor,S.V., Towles,T.B., Kerns, D.L., Thrash, B.C., Lorenz, G.M., Bateman, N.R., Cook, D.R., Crow, W.D., Gore, J., Catchot, A.L., Musser, F.R. & Catchot, B. (2022) Standardized Field Trials in Cotton and Bioassays to Evaluate Resistance of Tobacco Thrips (Thysanoptera: Thripidae) to Insecticides in the Southern United States, Journal of Economic Entomology, 115 (5), 1693–1702. https://doi.org/10.1093/jee/toac136
    Lv, Y.B., Zhang, Z.J., Wu, Q.J., Du, Y.Z., Zhang, H.R., Yu, Y., Wang, E.D., Wang, M.H., Wang, M.S., Tong, X.L., Lv, L.H., Tan, X.Q.& Fu, W.D. (2011) Research and demonstration on the control technology of invasive pest thrips. Chinese Journal of Applied Entomology, 48 (3), 488–496.
    Li, Y.Y. (2019) Optimization of Feeding Prey and Evaluation Effect on Bradysia odoriphaga of Lasioseius japonicas. Shandong Agricultural University, Taian, China, 4 pp.
    Saito, T.& Brownbridge, M. (2022) The generalist predatory mite Anystis baccarum (Acari: Anystidae) as a new biocontrol agent for western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Experimental and Applied Acarology, 86 (3), 357–369. https://doi.org/10.1007/s10493-022-00690-2
    Sun, L.N., Shen, X.J., Cao, L.J., Chen, J.G., Ma, L.J., Wu, S.A., Anthony, H.A. & Wei, S.J. (2022) Increasing Frequency of G275E Mutation in the Nicotinic Acetylcholine Receptor α6 Subunit Conferring Spinetoram Resistance in Invading Populations of Western Flower Thrips in China. Insects, 2022, 13 (4). https://doi.org/10.3390/insects13040331
    Su, X.M. (2017) Occurrence and Control of Vegetable Thrips in Solar Greenhouse in Wafangdian Area. Liaoning Agricultural Sciences, 91–92.
    Sun, Y.H., Zhi, J.R., Li, J.Z. & Yuan, C.M. (2009) The role of pollen in the control of western flower thrips by Fusarium cucurbitum. Journal of Mountain Agricultural Biology, 28 (3), 260–263.
    Tang, L.D., Zhao, H.Y., Fu, B.L., Han, Y., Yan, K.L., Qiu, H.Y., Liu, K., Wu, J.H. & Li, P. (2016) Monitoring the insecticide resistance of the field populations of Megalurothrips usitatus in Hainan area. Journal of Environmental Entomology, 38 (5), 1032–1037.
    Wan, Y., Hussain, S., Merchant, A., Xu, B., Xie, W., Wang, S., Zhang, Y.J., Zhou, Q.J. & Wu, Q. (2020). Tomato spotted wilt orthotospovirus influences the reproduction of its insect vector, western flower thrips, Frankliniella occidentalis, to facilitate transmission. Pest management science, 76 (7), 2406–2414. https://doi.org/10.1002/ps.5779
    Wang, C.L. (2019) The Impact of Sublethal Effect and Related Genes of Chlorfenapyr and Chlorpyrifos on Blattisocius dentriticus. Southwest University. Chongqing, China, 4 pp.
    Wang, J.Y., Lan, B.Y., Fang, C., Hu, H.X., Yang, R.T., Mu, K.Q., Su, J., Lu, Y.H. & Zhang, J.P. (2022) Evaluation on the predation and control of the two tailed new small Sui mite on thrips. Chinese Journal of Biological Control, 1–17. https://doi.org/10.16409/j.cnki.2095-039x.2022.01.020
    Wu, S.Y., Xu, X.N. & Wang, E.D. (2009) Comparison of functional responses of Suisui martensii and Neopaeonius cucumerinus to newly hatched nymphs of western thrips. Chinese journal of Biological Control, 25 (4), 295–298. https://doi.org/10.16409/j.cnki.2095-039x.2009.04.002
    Yang, Q.Q. (2020) Developing SCAR makers and qRT-PCR to study predation on Tetranychus urticae and Frankliniella occidentalis by Neoseiulus californicus. Hefei, China, Anhui Agricultural University, 15 pp.
    Yu, Y.C., Zhi, J.R., Zeng, G., Yue, W.B. & Ye, M. (2019) The functional predatory response of Amblyseius swirskii to Frankliniella occidentalis and Megalurothrips usitatus nymphs. Chinese Journal of Applied Entomology, 56 (6), 1317–1323.
    You, Z.H., Lu, H., Zhang, X.S., Feng, J.N., Shi, B.C., Gong, Y.J. & Huang, D.W. (2007) Molecular identifcation of the introduced western flower thrips, Frankliniella occidentalis (Pergande)and other eight common thrips species. Acta Entomologica Sinica, (7), 720–726. https://doi.org/10.16380/j.kcxb.2007.07.007.
    Zhang, X.R., Wu S.Y., Reitz, S.R. & Gao, Y.L. (2021) Simultaneous application of entomopathogenic Beauveria bassiana granules and predatory mites Stratiolaelaps scimitus for control of western flower thrips, Frankliniella occidentalis. Journal of Pest Science, 94, 119–127. https://doi.org/10.1007/s10340-020-01227-5
    Zheng, C.Y., Liu, Y.H., Zhang, N.Q. & Zhao, X.L. (2007) Invaded insect pest Frankliniella occidentalis. first reported in Shandong province. Journal of Qingdao Agricultural University (Natural science), 24 (3), 172–174.
    Zheng, L.J., Chen, Y.Y., Wang, K.Q., Fu, Y.G. & Zhang, C.H. (2019) Study on Life Table of Laboratory. Population of Amblyseius cucumeris Oudemans Preying on Scirtothrips dorsalis Hood. Guangdong Agricultural Sciences, 46 (6), 93–98. https://doi.org/10.16768/j.issn.1004-874X.2019.06.013
    Zheng, Q.M. (2021) Effect of Amblyseius swirskii on the interspecific interaction between Thrips tabaci and. Tetranychus urticae. Southwest University, Chongqing, China, 3 pp.
    Zhou, Y. (2020) Evaluation of the adaptability and control effect of Neoseiulus barkeri Hughes on Scirtothrips. dorsalis Hoodof Mango. Hainan University, Hainan, China, 3 pp.
    Zhu, A.D., Wang, Y.S., Fang, C., Hu, H.X., Wang, J.Y., Su, J., Li, H.Q. & Zhang, J.P. (2022) Functional response of predatory mite Neoseiulus bicaudus on western flower thrips, Frankliniella occidentalis at different temperatures. Journal of Environmental Entomology, 44 (2), 430–439.