Abstract
Predators can affect prey both directly through consumption and indirectly through non-consumptive effects such as predation risk. The latter has been less studied than consumptive effects in predator-prey interactions, although many studies have shown that non-consumptive effects could significantly affect various life history traits of the prey (Clinchy et al. 2013; Gurr et al. 2017; Hawlena & Schmitz 2010; Hermann & Thaler 2014; McCauley et al. 2011; Peckarsky et al. 2002; Skelhorn et al. 2011; Stoks 2001; Zanette et al. 2011), such as development, reproduction and lifespan in mite prey-predator systems (Choh & Takabayashi 2010; Freinschlag & Schausberger 2016; Grostal & Dicke 1999; Li & Zhang 2019; Ristyadi et al. 2022; Škaloudová et al. 2007; Wei & Zhang 2019, 2022). Most published studies examined the short-term effects of predation risk on prey immature development, reproduction and behaviour (e.g. Abrams & Rowe 1996; Choh et al. 2010; Majchrzak et al. 2022; Oku et al. 2003; Oliveira & Moraes 2021; Rocha et al. 2020; Saavedra et al. 2022; Warkentin 1995). In this study, we examined the effects of predation risk on short-term as well as long-term traits such as fecundity and lifespan. In addition, we also compared the effects of exposure to predation risks for long versus short duration.
References
Abrams, P.A. & Rowe, L. (1996) The effects of predation on the age and size of maturity of prey. Evolution, 50, 1052–1061. https://doi.org/10.1111/j.1558-5646.1996.tb02346.x
Choh, Y. & Takabayashi, J. (2010) Predator avoidance by phytophagous mites is affected by the presence of herbivores in a neighboring patch. Journal of Chemical Ecology, 36, 614–619. https://doi.org/10.1007/s10886-010-9792-4
Choh, Y., Uefune, M. & Takabayashi, J. (2010) Predation-related odours reduce oviposition in a herbivorous mite. Experimental and Applied Acarology, 50, 1–8. https://doi.org/10.1007/s10493-009-9277-8
Clinchy, M., Sheriff, M.J. & Zanette, L.Y. (2013) Predator-induced stress and the ecology of fear. Functional Ecology, 27, 56–65. https://doi.org/10.1111/1365-2435.12007
Freinschlag, J. & Schausberger, P. (2016) Predation risk-mediated maternal effects in the two-spotted spider mite, Tetranychus urticae. Experimental and Applied Acarology, 69, 35–47. https://doi.org/10.1007/s10493-016-0014-9
Grostal, P. & Dicke, M. (1999) Direct and indirect cues of predation risk influence behavior and reproduction of prey: a case for acarine interactions. Behavioral Ecology, 10, 422–427. https://doi.org/10.1093/beheco/10.4.422
Gurr, G.M., Wratten, S.D., Landis, D.A. & You, M. (2017) Habitat management to suppress pest populations: progress and prospects. Annual Review of Entomology, 62, 91–109. https://doi.org/10.1146/annurev-ento-031616-035050
Hawlena, D. & Schmitz, O.J. (2010) Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proceedings of National Academy of Sciences of the United States of America, 107, 15503–15507. https://doi.org/10.1073/pnas.1009300107
Hercus, M.J., Loeschcke, V. & Rattan, S.I.S. (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology, 4, 149–156. https://doi.org/10.1023/A:1024197806855
Hermann, S.L. & Thaler, J.S. (2014) Prey perception of predation risk : volatile chemical cues mediate non ‑ consumptive effects of a predator on a herbivorous insect. Oecologia, 176, 669–676. https://doi.org/10.1007/s00442-014-3069-5
Jiao, R., Xu, C., Yu, L., He, X.Z., Qiao, G., He, L. & Li, L. (2016) Prolonged coldness on eggs reduces immature survival and reproductive fitness in Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology, 21, 1651–1661. https://doi.org/10.11158/saa.21.12.6
Li, G.-Y. & Zhang, Z.-Q. (2019) Development, lifespan and reproduction of spider mites exposed to predator-induced stress across generations. Biogerontology, 20, 871–882. https://doi.org/10.1007/s10522-019-09835-0
Majchrzak, Y.N., Peers, M.J.L., Studd, E.K., Menzies, A.K., Walker, P.D., Shiratsuru, S., McCaw, L.K., Boonstra, R., Humphries, M., Jung, T.S., Kenney, A.J., Krebs, C.J., Murray, D.L. & Boutin, S. (2022) Balancing food acquisition and predation risk drives demographic changes in snowshoe hare population cycles. Ecology Letters, 25, 981–991. https://doi.org/10.1111/ele.13975
McCauley, S.J., Rowe, L. & Fortin, M.-J. (2011) The deadly effects of “nonlethal” predators. Ecology, 92, 2043–2048. https://doi.org/10.1890/11-0455.1
Oku, K., Yano, S., Osakabe, M. & Takafuji, A. (2003) Spider mites assess predation risk by using the odor of injured conspecifics. Journal of Chemical Ecology, 29, 2609–2613. https://doi.org/10.1023/A:1026395311664
Oliveira, J.A. & Moraes, L.J.C.L. (2021) Mating behavior of Anolis punctatus ( Squamata : Dactyloidae ) in the Brazilian Amazonia. Phyllomedusa, 20, 185–190. https://doi.org/10.11606/issn.2316-9079.v20i2p185-190
Peckarsky, B.L., Mcintosh, A.R., Taylor, B.W. & Dahl, J. (2002) Predator chemicals induce changes in mayfliy life history traits: a whole-stream manipulation. Ecology, 83, 612–618. https://doi.org/10.1890/0012-9658(2002)083[0612:PCICIM]2.0.CO;2
Ristyadi, D., He, X.Z. & Wang, Q. (2022) Thermotolerance in a spider mite: implications in disinfestation treatment. Systematic and Applied Acarology, 27, 473–481. https://doi.org/10.11158/saa.27.3.6
Rocha, M.S., Celada, L.A., Rodrigues, E.N.L. & Costa-Schmidt, L.E. (2020) Under pressure: Predation risk defining mating investment in matured spider mite Tetranychus urticae. Systematic and Applied Acarology, 25, 1359–1372. https://doi.org/10.11158/saa.25.8.1
Saavedra, I., Tomás, G. & Amo, L. (2022) Assessing behavioral sex differences to chemical cues of predation risk while provisioning nestlings in a hole-nesting bird. bioRxiv, 482199. https://doi.org/10.1101/2022.03.14.482199
Škaloudová, B., Zemek, R. & Křivan, V. (2007) The effect of predation risk on an acarine system. Animal Behaviour, 74, 813–821. https://doi.org/10.1016/j.anbehav.2007.02.005
Skelhorn, J., Rowland, H.M., Delf, J., Speed, M.P. & Ruxton, G.D. (2011) Density-dependent predation in fl uences the evolution and behavior of masquerading prey. Proceedings of National Academy of Sciences of the United States of America, 108, 6532–6536. https://doi.org/10.1073/pnas.1014629108
Søvik, G. & Leinaas, H.P. (2003) Adult survival and reproduction in an arctic mite, Ameronothrus lineatus (Acari, Oribatida): Effects of temperature and winter cold. Canadian Journal of Zoology, 81, 1579–1588. https://doi.org/10.1139/z03-113
Stoks, R. (2001) Food stress and predator-induced stress shape developmental performance in a damselfly. Oecologia, 127, 222–229. https://doi.org/10.1007/s004420000595
Torson, A.S., Yocum, G.D., Rinehart, J.P., Kemp, W.P. & Bowsher, J.H. (2015) Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata. The Journal of Experimental Biology, 218, 1060–1068. https://doi.org/10.1242/jeb.113829
Warkentin, K.M. (1995) in hatching age: A response. Proceedings of National Academy of Sciences of the United States of America, 92, 3507–3510.
Wei, X. & Zhang, Z.-Q. (2022) Level-dependent effects of predation stress on prey development, lifespan and reproduction in mites. Biogerontology, 23, 515–527. https://doi.org/10.1007/s10522-022-09980-z
Wei, X. & Zhang, Z.Q. (2019) A modified Munger cell for testing long-Term effects of predator-induced stress on prey: An example using Tyrophagus putrescentiae (Acaridae) and its predator Neoseiulus cucumeris (Phytoseiidae). Systematic and Applied Acarology, 24, 2285–2289. https://doi.org/10.11158/saa.24.12.1
Wei, X.Y., Li, G.Y. & Zhang, Z.-Q. (2022a) Prey life stages modulate effects of predation stress on prey lifespan, development, and reproduction in mites. Insect Science. https://doi.org/10.1111/1744-7917.13124
Wei, X.Y., Liu, J.F. & Zhang, Z.-Q. (2022b) Predation stress experienced as immature mites extends their lifespan. Biogerontology. https://doi.org/10.1007/s10522-022-09990-x
Zanette, L.Y., White, A.F., Allen, M.C. & Clinchy, M. (2011) Perceived predation risk reduces the number of offspring songbirds produce per year. Science, 334, 1398–1401. https://doi.org/10.1126/science.1210908
Zhang, G.H., Li, Y.Y., Zhang, K.J., Wang, J.J., Liu, Y.Q. & Liu, H. (2016) Effects of heat stress on copulation, fecundity and longevity of newlyemerged adults of the predatory mite, Neoseiulus barkeri (Acari: Phytoseiidae). Systematic and Applied Acarology, 21, 295–306. https://doi.org/10.11158/saa.21.3.5
Zheng, J., Cheng, X., Ho, A.A., Zhang, B. & Ma, C. (2017) Are adult life history traits in oriental fruit moth a ff ected by a mild pupal heat stress ? Journal of Insect Physiology, 102, 36–41. https://doi.org/10.1016/j.jinsphys.2017.09.004