Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-07-31
Page range: 125-136
Abstract views: 381
PDF downloaded: 3

Riparian forests as dispersal corridors for adult European mayflies, stoneflies and caddisflies (EPTs)

Centro de Estudos Florestais; Instituto Superior de Agronomia; Universidade de Lisboa; Portugal
Department of Aquatic Ecology; Faculty of Biology; Duisburg-Essen University; Germany
Institute of Hydrobiology and Aquatic Ecosystem Management; University of Natural Resources and Life Sciences; Vienna; Austria; TIWAG-Tiroler Wasserkraft AG; Innsbruck; Austria
metacommunity freshwater macroinvertebrates riparian vegetation aerial dispersal

Abstract

Metacommunity theory connects the diversity patterns of the community across the landscape with the effects of ecological processes. As dispersal is one of the main factors driving the metacommunity structure, it is important to understand the interaction between landscape and dispersal to apply metacommunity theory. Herein, we summarize the main challenges of applying metacommunity theory to the mayfly, stonefly and caddisfly community (Ephemeroptera, Plecoptera and Trichoptera, or EPTs). Then, we attempt to solve some of the open questions regarding EPT dispersal and its relation with riparian forests. First, we investigate the diversity of functional dispersal traits of the European EPT species, analysing the existing empirical data and selecting a suitable functional index. Second, we assess the effect of riparian forest in landscape connectivity for EPTs, concluding that deciduous riparian forest can enhance dispersal. Third, we extend the study to four European regions, concluding that the role of native riparian forest as dispersal corridor differs between regions. We achieved three goals: First, we produced a theoretical and methodological framework to include dispersal in the study of EPT metacommunity, highlighting the role of riparian forest as a dispersal corridor. Second, we identify several aspects that require further investigation such as empirical dispersal studies or interactions between ecological stressors and dispersal. Third, we provide a new perspective for riverine and riparian ecosystems management, highlighting the need to consider riparian buffers as an integral part of the riverine ecosystems.

References

  1. Alba-Tercedor, J., Jáimez-Cuéllar, P., Álvarez, M., Avilés, J., Bonada, I., Caparrós, N., Casas, J., Mellado, A., Ortega, M., Pardo, I., Prat, N., Rieradevall, M., Robles, S., Sáinz-Cantero, C.E., Sánchez-Ortega, A., Suárez, M.L., Toro, M., Vidal-Abarca, R., Vivas, S. & Zamora-Muñoz, C. (2002) Caracterización del estado ecológico de ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP'). Limnetica, 21, 175–185. https://doi.org/10.23818/limn.21.24
  2. Alba-Tercedor, J., Sáinz-Bariáin, M., Poquet, J.M. & Rodríguez-López, R. (2017) Predicting river macroinvertebrate communities distributional shifts under future global change scenarios in the Spanish Mediterranean area. Plos one, 12, e0167904. https://doi.org/10.1371/journal.pone.0167904
  3. Bagge, P. (1995) Emergence and upstream flight of lotic mayflies and caddisflies (Ephemeroptera and Trichoptera) in a lake outlet, central Finland. Entomologica Fennica, 6 (2–3), 91–97. https://doi.org/10.33338/ef.83844
  4. Bauernfeind, E. & Moog, O. (2000) Mayflies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach. In: Jungwirth, M., Muhar, S. & Schmutz, S. (Eds.), Assessing the Ecological Integrity of Running Waters: Proceedings of the International Conference. Springer Netherlands, Dordrecht, pp. 71–83. https://doi.org/10.1007/978-94-011-4164-2_6
  5. Baumgartner, K., Klar, R. & Aufleger, M. (2018) High-Resolution LiDAR Bathymetry Data for Alpine Rivers-Case Study on the River Mareit/Mareta, Italy. EPiC Series in Engineering, 3, 199–206. https://doi.org/10.29007/ch81
  6. Bell, G. (2001) Neutral macroecology. Science, 293 (5539), 2413–2418. https://doi.org/10.1126/science.293.5539.2413
  7. Blakely, T.J., Harding, J.S., McIntosh, A.R. & Winterbourn, M.J. (2006) Barriers to the recovery of aquatic insect communities in urban streams. Freshwater Biology, 51 (9), 1634–1645. https://doi.org/10.1111/j.1365-2427.2006.01601.x
  8. Böhmer, J., Rawer-Jost, C., Zenker, A., Meier, C., Feld, C.K., Biss, R. & Hering, D. (2004) Assessing streams in Germany with benthic invertebrates: Development of a multimetric invertebrate based assessment system. Limnologica, 34, 416–432. https://doi.org/10.1016/S0075-9511(04)80010-0
  9. Bonada, N. & Dolédec, S. (2018) Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions? Aquatic Sciences, 80, 1–11. https://doi.org/10.1007/s00027-017-0554-z
  10. Boumans, L., Hogner, S., Brittain, J. & Johnsen, A. (2017) Ecological speciation by temporal isolation in a population of the stonefly Leuctra hippopus (Plecoptera, Leuctridae). Ecology and Evolution, 7, 1635–1649. https://doi.org/10.1002/ece3.2638
  11. Briers, R.A., Cariss, H.M. & Gee, J.H.R. (2003) Flight activity of adult stoneflies in relation to weather. Ecological Entomology, 28, 31–40. https://doi.org/10.1046/j.1365-2311.2003.00480.x
  12. Brown, J.H. & Kodric-Brown, A. (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology, 58 (2), 445–449. https://doi.org/10.2307/1935620
  13. Brown, B.L., Sokol, E.R., Skelton, J. & Tornwall, B. (2017) Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia, 183, 643–652. https://doi.org/10.1007/s00442-016-3792-1
  14. Calles, O. & Greenberg, L. (2009) Connectivity is a two‐way street—the need for a holistic approach to fish passage problems in regulated rivers. River Research and Applications, 25 (10), 1268–1286. https://doi.org/10.1002/rra.1228
  15. Cañedo‐Argüelles, M., Boersma, K.S., Bogan, M.T., Olden, J.D., Phillipsen, I., Schriever, T.A. & Lytle, D.A. (2015) Dispersal strength determines meta‐community structure in a dendritic riverine network. Journal of Biogeography, 42 (4), 778–790. https://doi.org/10.1111/jbi.12457
  16. Chessman, B.C., Jones, H.A., Searle, N.K., Growns, I.O. & Pearson, M.R. (2010) Assessing effects of flow alteration on macroinvertebrate assemblages in Australian dryland rivers. Freshwater Biology, 55 (8), 1780–1800. https://doi.org/10.1111/j.1365-2427.2010.02403.x
  17. Cid, N., Bonada, N., Heino, J., Cañedo-Argüelles, M., Crabot, J., Sarremejane, R., Soininen, J., Stubbington, R. & Datry, T. (2020) A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience, 70 (5), 427–438. https://doi.org/10.1093/biosci/biaa033
  18. Collier, K.J. & Smith, B.J. (1997) Dispersal of adult caddisflies (Trichoptera) into forests alongside three New Zealand streams. Hydrobiologia, 361, 53–65. https://doi.org/10.1023/A:1003133208818
  19. Cortes, R.M.V., Peredo, A., Terêncio, D.P.S., Sanches Fernandes, L.F., Moura, J.P., Jesus, J.J.B., Magalhães, M.P.M., Ferreira, P.J.S. & Pacheco, F.A.L. (2019) Undamming the Douro River catchment: a stepwise approach for pPrioritizing dam removal. Water 2019, 11, 693. https://doi.org/10.3390/w11040693
  20. Coutant, C.C. (1982) Evidence for upstream dispersion of adult caddisflies (Trichoptera: Hydropsychidae) in the Columbia River. Aquatic Insects, 4 (2), 61–66. https://doi.org/10.1080/01650428209361082
  21. Cox, T.J. & Rutherford, C. (2000) Thermal tolerances of two stream invertebrates exposed to diurnally varying temperature. New Zealand Journal of Marine and Freshwater Research, 34, 203–208. https://doi.org/10.1080/00288330.2000.9516926
  22. DeWalt, R.E. & South, E.J. (2015) Ephemeroptera, Plecoptera, and Trichoptera on Isle Royale National Park, USA, compared to mainland species pool and size distribution. ZooKeys, 532, 137–158. https://doi.org/10.3897/zookeys.532.6478
  23. DeWalt, R.E., Kondratieff, B.C. & Sandberg, J.B. (2015) Order Plecoptera. In: Thorp, J. & Rogers, D.C. (Eds.), Ecology and General Biology: Thorp and Covich's Freshwater Invertebrates. Academic Press, pp. 933–949. https://doi.org/10.1016/B978-0-12-385026-3.00036-X
  24. Dugdale, S.J., Malcolm, I.A., Kantola, K. & Hannah, D.M. (2018) Stream temperature under contrasting riparian forest cover: understanding thermal dynamics and heat exchange processes. Science of the Total Environment, 610, 1375–1389. https://doi.org/10.1016/j.scitotenv.2017.08.198
  25. Epele, L.B., Dos Santos, D.A., Sarremejane, R., Grech, M.G., Macchi, P.A., Manzo, L.M., Miserendino, M.L., Bonada, N. & Cañedo‐Argüelles, M. (2021) Blowin’in the wind: wind directionality affects wetland invertebrate metacommunities in Patagonia. Global Ecology and Biogeography, 30 (6), 1191–1203. https://doi.org/10.1111/geb.13294
  26. Farkas, A., Száz, D., Egri, A., Barta, A., Mészáros, A., Hegedüs, R., Horváth, G. & Kriska, G. (2016) Mayflies are least attracted to vertical polarization: a polarotactic reaction helping to avoid unsuitable habitats. Physiology & Behavior, 163, 219–227. https://doi.org/10.1016/j.physbeh.2016.05.009
  27. Feio, M.J., Alves, T., Boavida, M., Medeiros, A. & Graça, M.A.S. (2010) Functional indicators of stream health: a river‐basin approach. Freshwater Biology, 55 (5), 1050–1065. https://doi.org/10.1111/j.1365-2427.2009.02332.x
  28. Firmiano, K.R., Cañedo‐Argüelles, M., Gutiérrez‐Cánovas, C., Macedo, D.R., Linares, M.S., Bonada, N. & Callisto, M. (2021) Land use and local environment affect macroinvertebrate metacommunity organization in Neotropical stream networks. Journal of Biogeography, 48 (3), 479–491. https://doi.org/10.1111/jbi.14020
  29. Fonseca, A., Zina, V., Duarte, G., Aguiar, F.C., Rodríguez-González, P.M., Ferreira, M.T. & Fernandes, M.R. (2021) Riparian Ecological Infrastructures: Potential for Biodiversity-Related Ecosystem Services in Mediterranean Human-Dominated Landscapes. Sustainability, 13 (19), 10508. https://doi.org/10.3390/su131910508
  30. Geismar, J., Haase, P., Nowak, C., Sauer, J. & Pauls, S.U. (2015) Local population genetic structure of the montane caddisfly Drusus discolor is driven by overland dispersal and spatial scaling. Freshwater Biology, 60, 219–221. https://doi.org/10.1111/fwb.12489
  31. Gomes, P.G.S., Lima, E.L., Silva, S.R., Juen, L. & Brasil, L.S. (2022) Does land use and land cover affect adult communities of Ephemeroptera, Plecoptera and Trichoptera (EPT)? A systematic review with meta-analysis. Environmental Monitoring and Assessment, 194 (10), 697. https://doi.org/10.1007/s10661-022-10352-w
  32. Griffith, M.B., Barrows, E.M. & Perry, S.A. (1998) Lateral dispersal of adult aquatic insects (Plecoptera, Trichoptera) following emergence from headwater streams in forested Appalachian catchments. Annals of the Entomological Society of America, 91 (2), 195–201. https://doi.org/10.1093/aesa/91.2.195
  33. He, S., Wang, B., Chen, K. & Soininen, J. (2023) Patterns in aquatic metacommunities are associated with environmental and trait heterogeneity. Freshwater Biology, 68 (1), 91–102. https://doi.org/10.1111/fwb.14011
  34. Hering, D.M., Reich, M. & Platcher, H. (1993) Auswirkungen von gleichaltrigen Fichten-Monokulturen auf die Fauna von Mittelgebirgsbächen. Ökologie und Naturschutz, 2, 31–42.
  35. Hering, D., Meier, C., Rawer-Jost, C., Feld, C.K., Biss, R., Zenker, A., Sundermann, A., Lohse, S. & Böhmer, J. (2004) Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica, 34, 398–415. https://doi.org/10.1016/S0075-9511(04)80009-4
  36. Hershkovitz, Y. & Gasith, A. (2013) Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia, 719, 59–75. https://doi.org/10.1007/s10750-012-1387-3
  37. Huylenbroeck, L., Latte, N., Lejeune, P., Georges, B., Claessens, H. & Michez, A. (2021) What Factors Shape Spatial Distribution of Biomass in Riparian Forests? Insights from a LiDAR Survey over a Large Area. Forests, 12 (3), 371. https://doi.org/10.3390/f12030371
  38. Kail, J., Palt, M., Lorenz, A. & Hering, D. (2021) Woody buffer effects on water temperature: The role of spatial configuration and daily temperature fluctuations. Hydrological Processes, 35, e14008. https://doi.org/10.1002/hyp.14008
  39. Kelly, L.C, Rundle, S.D. & Bilton, D.T. (2002) Genetic population structure and dispersal in Atlantic Island caddisflies. Freshwater Biology, 47, 1642–1650. https://doi.org/10.1046/j.1365-2427.2002.00912.x
  40. Kriska, G., Horváth, G. & Andrikovics, S. (1998) Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. The Journal of Experimental Biology, 201 (15), 2273–2286. https://doi.org/10.1242/jeb.201.15.2273
  41. Kuusela, K. & Huusko, A.R.I. (1996) Post‐emergence migration of stoneflies (Plecoptera) into the nearby forest. Ecological Entomology, 21 (2), 171–177. https://doi.org/10.1111/j.1365-2311.1996.tb01184.x
  42. Levin, S.A. (1974) Dispersion and population interactions. The American Naturalist, 108 (960), 207–228. https://doi.org/10.1086/282900
  43. Li, F., Sundermann, A., Stoll, S. & Haase, P. (2016) A newly developed dispersal metric indicates the succession of benthic invertebrates in restored rivers. Science of the Total Environment, 569, 1570–1578. https://doi.org/10.1016/j.scitotenv.2016.06.251
  44. Li, Z., Wang, J., Meng, X., Heino, J., Sun, M., Jiang, X. & Xie, Z. (2019) Disentangling the effects of dispersal mode on the assembly of macroinvertebrate assemblages in a heterogeneous highland region. Freshwater Science, 38 (1), 170–182. https://doi.org/10.1086/701755
  45. Logue, J.B., Mouquet, N., Peter, H. & Hillebrand, H. (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends in ecology & evolution, 26 (9), 482–491. https://doi.org/10.1016/j.tree.2011.04.009
  46. Loicq, P., Moatar, F., Jullian, Y., Dugdale, S.J. & Hannah, D.M. (2018) Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data. Science of the Total Environment, 624, 480–490. https://doi.org/10.1016/j.scitotenv.2017.12.129
  47. Lorenz, A.W., Jähnig, S.C. & Hering, D. (2009) Re-meandering German lowland streams: qualitative and quantitative effects of restoration measures on hydromorphology and macroinvertebrates. Environmental management, 44, 745–754. https://doi.org/10.1007/s00267-009-9350-4
  48. Mac Nally, R., Molyneux, G., Thomson, J.R., Lake, P.S. & Read, J. (2008) Variation in widths of riparian-zone vegetation of higher-elevation streams and implications for conservation management. Plant Ecology, 198, 89–100. https://doi.org/10.1007/s11258-007-9387-5
  49. Macneale, K.H., Peckarsky, B.L. & Likens, G.E. (2005) Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshwater Biology, 50 (7), 1117–1130. https://doi.org/10.1111/j.1365-2427.2005.01387.x
  50. Malmqvist, B. (2000) How does wing length relate to distribution patterns of stoneflies (Plecoptera) and mayflies (Ephemeroptera)? Biological conservation, 93 (2), 271–276. https://doi.org/10.1016/S0006-3207(99)00139-1
  51. Masters, Z., Petersen, I., Hildrew, A.G. & Ormerod, S.J. (2007) Insect dispersal does not limit the biological recovery of streams from acidification. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 375–383. https://doi.org/10.1002/aqc.794
  52. Mc Conigley, C., Lally, H. & Kelly-Quinn, M. (2020) Investigating the feeding preferences of adult Leuctra inermis, for the pollen of typical riparian tree species. Biology and Environment: Proceedings of the Royal Irish Academy, 120 (3), 203–207. https://doi.org/10.3318/bioe.2020.19
  53. Mendl, H. & Müller, K. (1974) Die Plecopteren des Messauregebietes. Norsk Entomologisk Tidsskrift, 95, 129–147.
  54. Mouquet, N. & Loreau, M. (2002) Coexistence in metacommunities: the regional similarity hypothesis. The American Naturalist, 159 (4), 420–426. https://doi.org/10.1086/338996
  55. Nebeker, A.V. (1971) Effect of Water Temperature on Nymphal Feeding Rate, Emergence, and Adult Longevity of the Stonefly Pteronarcys dorsata. Journal of the Kansas Entomological Society, 44, 21–26.
  56. Palt, M., Le Gall, M., Piffady, J., Hering, D. & Kail, J. (2022) A metric-based analysis on the effects of riparian and catchment landuse on macroinvertebrates. Science of the Total Environment, 816, 151590. https://doi.org/10.1016/j.scitotenv.2021.151590
  57. Palt, M., Hering, D. & Kail, J. (2023) Context-specific positive effects of woody riparian vegetation on aquatic invertebrates in rural and urban landscapes. Journal of Applied Ecology, 60 (6), 1010–1021. https://doi.org/10.1111/1365-2664.14386
  58. Parkyn, S.M., Davies-Colley, R.J., Halliday, N.J., Costley, K.J. & Croker, G.F. (2003) Planted Riparian Buffer Zones in New Zealand: Do They Live Up to Expectations? Restoration Ecology, 11, 436–447. https://doi.org/10.1046/j.1526-100X.2003.rec0260.x
  59. Patrick, C.J., Anderson, K.E., Brown, B.L., Hawkins, C.P., Metcalfe, A., Saffarinia, P., Siqueira, T., Swan, C.M., Tonkin, J.D. & Yuan, L.L. (2021) The application of metacommunity theory to the management of riverine ecosystems. Wiley Interdisciplinary Reviews: Water, 8 (6), e1557. https://doi.org/10.1002/wat2.1557
  60. Peredo Arce, A., Hörren, T., Schletterer, M. & Kail, J. (2021) How far can EPTs fly? A comparison of empirical flying distances of riverine invertebrates and existing dispersal metrics. Ecological Indicators, 125, 107465. https://doi.org/10.1016/j.ecolind.2021.107465
  61. Peredo Arce, A., Palt, M., Schletterer, M. & Kail, J. (2023) Has riparian woody vegetation a positive effect on weak flyer mayfly, stonefly and caddisfly species in European streams? Science of the Total Environment, 879, 163137 https://doi.org/10.1016/j.scitotenv.2023.163137
  62. Peredo Arce, A., Kail, J., Tasser, E., Feio, M., Palt, M. & Schletterer, M. (submitted) The effect of riparian forest on landscape connectivity for the EPT community across European regions. Instituto Superior de Agronomia, Lisbon University.
  63. Poff, N.L., Olden, J.D., Vieira, N.K., Finn, D.S., Simmons, M.P. & Kondratieff, B.C. (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 25 (4), 730–755. https://doi.org/10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2
  64. Rebora, M., Lucentini, L., Palomba, A., Panara, F. & Gaino, E. (2005) Genetic differentiation among populations of Baetis rhodani (Ephemeroptera, Baetidae) in three Italian streams. Italian Journal of Zoology, 72 (2), 121–126. https://doi.org/10.1080/11250000509356662
  65. Rupprecht, R. (1968) Das trommeln der Plecopteren. Zeitschrift für vergleichende Physiologie, 59, 38–71. https://doi.org/10.1007/BF00298810
  66. Rupprecht, R. (1982) Drumming signals of Danish Plecoptera. Aquatic Insects, 4 (2), 93–103. https://doi.org/10.1080/01650428209361089
  67. Salavert, V., Zamora‐Muñoz, C., Ruiz‐Rodríguez, M., Fernández‐Cortés, A. & Soler, J.J. (2008) Climatic conditions, diapause and migration in a troglophile caddisfly. Freshwater Biology, 53, 1606–1617. https://doi.org/10.1111/j.1365-2427.2008.02000.x
  68. Sánchez-Montoya, M.M., Vidal-Abarca, M.R. & Suárez, M.L. (2010) Comparing the sensitivity of diverse macroinvertebrate metrics to a multiple stressor gradient in Mediterranean streams and its influence on the assessment of ecological status. Ecological Indicators, 10 (4), 896–904. https://doi.org/10.1016/j.ecolind.2010.01.008
  69. Sarremejane, R., Mykrä, H., Bonada, N., Aroviita, J. & Muotka, T. (2017) Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks. Freshwater Biology, 62 (6), 1073–1082. https://doi.org/10.1111/fwb.12926
  70. Sarremejane, R., Cid, N., Stubbington, R., Datry, T., Alp, M., Cañedo-Argüelles, M., Cordero-Rivera, A., Csabai, Z., Gutiérrez-Cánovas, C., Heino, J., Forcellini, M., Millán, A., Paillex, A., Pařil, P., Polášek, M., de Figueroa, J.M.T., Usseglio-Polatera, P., Zamora-Muñoz, C. & Bonada, N. (2020) DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Scientific data, 7, 1–9. https://doi.org/10.1038/s41597-020-00732-7
  71. Schletterer, M., Füreder, L., Kuzovlev, V.V. & Beketov, M.A. (2010) Testing the coherence of several macroinvertebrate indices and environmental factors in a large lowland river system (Volga River, Russia). Ecological Indicators, 10, 1083–1092. https://doi.org/10.1016/j.ecolind.2010.03.004
  72. Schmidt-Kloiber, A. & Hering, D. (2015) www.freshwaterecology.info–An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators, 53, 271–282. https://doi.org/10.1016/j.ecolind.2015.02.007
  73. Schmölz, K., Bottarin, R., Felber, A., Lassacher, F., Lehne, F., Mark, W., Niederwanger, M., Niedrist, G.H., Oberarzbacher, S., Pelster, B., Peron, A., Persiano, S., Schletterer, M., Schwarzenberger, R., Scotti, A., Thaler, M., Walde, J., Wieser, J. & Tasser, E. (2022) A first attempt at a holistic analysis of various influencing factors on the fish fauna in the Eastern European Alps. Science of the Total Environment, 808, 151886. https://doi.org/10.1016/j.scitotenv.2021.151886
  74. Schröder, O., Schneider, J. V., Schell, T., Seifert, L. & Pauls, S.U. (2022) Population genetic structure and connectivity in three montane freshwater invertebrate species (Ephemeroptera, Plecoptera, Amphipoda) with differing life cycles and dispersal capabilities. Freshwater Biology, 67, 461–472. https://doi.org/10.1111/fwb.13854
  75. South, E.J., DeWalt, E.R. & Cao, Y. (2019) Relative importance of Conservation Reserve Programs to aquatic insect biodiversity in an agricultural watershed in the Midwest, USA. Hydrobiologia, 829 (1), 323–340. https://doi.org/10.1007/s10750-018-3842-2
  76. Sundermann, A., Stoll, S. & Haase, P. (2011) River restoration success depends on the species pool of the immediate surroundings. Ecological Applications, 21 (6), 1962–1971. https://doi.org/10.1890/10-0607.1
  77. Suzuki, Y. & Economo, E.P. (2021) From species sorting to mass effects: spatial network structure mediates the shift between metacommunity archetypes. Ecography, 44 (5), 715–726. https://doi.org/10.1111/ecog.05453
  78. Tachet, H., Richoux, P., Bournaud, M. & Usseglio-Polatera, P. (2010) Invertébrés d'eau douce: systématique, biologie, écologie. CNRS editions, Paris, 15, 89–10.
  79. Tonkin, J.D., Stoll, S., Sundermann, A. & Haase, P. (2014) Dispersal distance and the pool of taxa, but not barriers, determine the colonisation of restored river reaches by benthic invertebrates. Freshwater Biology, 59 (9), 1843–1855. https://doi.org/10.1111/fwb.12387
  80. Tonkin, J.D., Altermatt, F., Finn, D.S., Heino, J., Olden, J.D., Pauls, S.U. & Lytle, D.A. (2018) The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biology, 63 (1), 141–163. https://doi.org/10.1111/fwb.13037
  81. Vadas Jr, R.L., Hughes, R.M., Bae, Y.J., Baek, M.J., Gonzáles, O.C.B., Callisto, M., de Carvalho, D.R., Chen, K., Ferreira, M.T., Fierro, P., Harding, J.S., Infante, D.M., Kleynhans, C.J., Macedo, D.R., Martins, I., Silva, M.N., Moya, N., Nichols, S.J., Pompeu, P.S., Ruaro, R., Silva, D.S.O., Stevenson, R.J., de Freitas Terra, B., Thirion, C., Ticiani, D., Wang, L. & Yoder, C. O. (2022) Assemblage-based biomonitoring of freshwater ecosystem health via multimetric indices: A critical review and suggestions for improving their applicability. Water Biology and Security, 100054. https://doi.org/10.1016/j.watbs.2022.100054
  82. Whittaker, R. H. (1962) Classification of natural communities. The Botanical Review, 28, 1–239. https://doi.org/10.1007/BF02860872