Skip to main content Skip to main navigation menu Skip to site footer
Type: Review
Published: 2022-11-30
Page range: 58–114
Abstract views: 518
PDF downloaded: 8

A survey of development time, longevity, and lifespan in Phytoseiidae (Acari: Mesostigmata)

Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experiment Station of Crop Pest Guiyang, Ministry of Agriculture, Guiyang 550025, China
Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experiment Station of Crop Pest Guiyang, Ministry of Agriculture, Guiyang 550025, China
Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experiment Station of Crop Pest Guiyang, Ministry of Agriculture, Guiyang 550025, China
Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experiment Station of Crop Pest Guiyang, Ministry of Agriculture, Guiyang 550025, China, College of Tobacco Science, Guizhou University, Guiyang 550025, China
Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experiment Station of Crop Pest Guiyang, Ministry of Agriculture, Guiyang 550025, China
Manaaki Whenua – Landcare Research, Auckland, New Zealand, Centre for Biodiversity and Biosecurity, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
Neoseiulus Amblyseius biological control development time longevity

Abstract

Phytoseiidae is the most common and widespread mite family inhabiting plants all over the world. This review investigated the development time, longevity, and lifespan of the species in Phytoseiidae based on literature published from 1968 to 2022. We found 132 references including 571 datasets in 57 species of 12 genera, with a focus on sex-specific patterns. The majority of life history studies on phytoseiid mites were observed in recent three decades (116 references and 534 datasets) in the laboratory. The genus Neoseiulus had the highest number of data, followed by Amblyseius with 128 datasets. Neoseiulus californicus was the most studied, with 107 datasets collected from 23 references, and it was followed by Amblyseius swirskii, with 89 datasets also recorded from 20 references. Life history studies on phytoseiids appear to be much more on development time (380 datasets) and longevity (379 datasets) than lifespan (159 datasets). Only 114 datasets included data of all three parameters. For most species, the development time, longevity, or lifespan of females were similar to or longer than those of males.

References

  1. Abdallah, A.A., Zhang, Z.Q., Masters, G.J. & Mcneill, S. (2001) Euseius finlandicus (Acari: Phytoseiidae) as a potential biocontrol agent against Tetranychus urticae (Acari: Tetranychidae): Life history and feeding habits on three different types of food. Experimental and Applied Acarology, 25, 833–847.  https://doi.org/10.1023/A:1020431531446

  2. Abdelgayed, A.S., Abd El-Waheb, N.M., Ali, A.M. & Eraky, S.A. (2020) Food preference, predation efficiency and life table parameters of Euseius scutalis (Acari: Phytoseiidae) reared on Tenuipalpus punicae and Siphoninus phillyreae under constant conditions. SVU-International Journal of Agricultural Sciences, 2, 428–437.  https://doi.org/10.21608/svuijas.2020.45393.1043

  3. Abden, M.H., Abdallah, A.M. & Gaber, W.M. (2021) Biological aspects of Typhlodromus athisae Porath and Swirski when fed on red spider mite, Tetranychus urtica Koch and brown citrus mite, Eutetranychus orientalis (Klein). Egyptian Academic Journal of Biological Sciences. A, Entomology, 14, 141–145.  https://doi.org/10.21608/eajbsa.2021.157362

  4. Abou-Awad, B.A. (1983) Amblyseius gossipi [ Acarina : Phytoseiidae ] as a predator of the tomato erineum mite, Eriophyes lycopersici [ Acarina : Eriophyidae ]. Entomophaga, 28, 363–366.  https://doi.org/10.1007/BF02372189

  5. Abou-Setta, M.M., Fouly, A.H. & Childers, C.C. (1997) Biology of Proprioseiopsis rotendus (Acari: Phytoseiidae) reared on Tetranychus urticae ( Acari: Tetranychidae) or pollen. The Florida Entomologist, 80, 27–34. https://doi.org/10.2307/3495973

  6. Abou El-Nour, B. (2016) Efficiency of acaricides Ortus on some biological aspects of Tetranychus urticae Koch and its Predaceous mite, Euseius scutalis Athias-Henriot under laboratory conditions. Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 8, 19–26.  https://doi.org/10.21608/eajbsf.2016.17112

  7. Ahmed, M.M., Ibrahim, E.S. & Fahmy, M.A.M. (2021) Integration of certain acaricides with Phytoseiulus persimilis to control Tetranychus urticae on beans plants, and their sub-lethal effect on its life-table parameters. Journal of Plant Protection and Pathology, 12, 703–712. https://doi.org/10.21608/jppp.2021.97967.1041

  8. Al-Azzazy, M.M., Al-Rehiayani, S.M. & Abdel-Baky, N.F. (2018) Life tables of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) on two pest mites as prey, Aculops lycopersici and Tetranychus urticae. Archives of Phytopathology and Plant Protection, 51, 637–648.  https://doi.org/10.1080/03235408.2018.1507013

  9. Al-azzazy, M.M. & Alhewairini, S.S. (2020) Effect of temperature and humidity on development, reproduction, and predation rate of Amblyseius swirskii ( Phytoseiidae ) fed on Phyllocoptruta oleivora ( Eriophyidae ) and Eutetranychus orientalis ( Tetranychidae ). International Journal of Acarology, 46, 304–312.  https://doi.org/10.1080/01647954.2020.1773922

  10. De Albuquerque, F.A. & De Moraes, G.J. (2008) Perspectives for mass rearing of Iphiseiodes zuluagai Denmark & Muma (Acari: Phytoseiidae). Neotropical Entomology, 37, 328–333.  https://doi.org/10.1590/S1519-566X2008000300013

  11. Alinejad, M., Kheradmand, K. & Fathipour, Y. (2014) Sublethal effects of fenazaquin on life table parameters of the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). Experimental and Applied Acarology, 64, 361–373.  https://doi.org/10.1007/s10493-014-9830-y

  12. Alinejad, M., Kheradmand, K. & Fathipour, Y. (2016) Assessment of sublethal effects of spirodiclofen on biological performance of the predatory mite, Amblyseius swirskii. Systematic & Applied Acarology, 21, 375–384. https://doi.org/10.11158/saa.21.3.12

  13. Alinejad, M., Kheradmand, K. & Fathipour, Y. (2020) Demographic analysis of sublethal effects of propargite on Amblyseius swirskii (Acari: Phytoseiidae): Advantages of using age-stage, two sex life table in ecotoxicological studies. Systematic and Applied Acarology, 25, 906–917.  https://doi.org/10.11158/saa.25.5.11

  14. Amano, H. & Chant, D.A. (1978) Some factors affecting reproduction and sex ratios in two species of predacious mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius andersoni (Chant) (Acarina: Phytoseiidae). Canadian Journal of Zoology, 56, 1593–1607.  https://doi.org/10.1139/z78-221

  15. Amira, E.M., Ola, M.R. & Ahmed, I.A. (2019) Acaridida mites as a factor for mass production of predator mite, Amblyseius swirskii (Acari: Phytoseiidae). Egyptian Journal of Plant Protection Research Institute, 2, 134–141.

  16. Asgari, F., Moayeri, H.R.S., Kavousi, A., Enkegaard, A. & Chi, H. (2020) Demography and mass rearing of Amblyseius swirskii (Acari: Phytoseiidae) fed on two species of stored-product mites and their mixture. Journal of Economic Entomology, 113, 2604–2612.  https://doi.org/10.1093/jee/toaa187

  17. Bazgir, F., Shakarami, J. & Jafari, S. (2018) Life table and predation rate of Amblyseius swirskii (Acari: Phytoseiidae) fed on Eotetranychus frosti (Tetranychidae) and Cenopalpus irani (Tenuipalpidae). Systematic & Applied Acarology, 23, 1614–1626.  https://doi.org/10.11158/saa.23.8.11

  18. Bazgir, F., Shakarami, J. & Jafari, S. (2019) Life table and predation rate of Typhlodromus bagdasarjani (Acari: Phytoseiidae) fed on Eotetranychus frosti (Tetranychidae) on apple leaves. International Journal of Acarology, 45, 202–208.  https://doi.org/10.1080/01647954.2019.1584241

  19. Bellini, M.R., De Araujo, R.P., Silva, E.S., de Moraes, G.J. & Filho, E.B. (2010) Life cycle of Proprioseiopsis cannaensis (Muma) (Acari: Phytoseiidae) on different types of food. Neotropical Entomology, 39, 360–364. https://doi.org/10.1590/S1519-566X2010000300008

  20. Bonde, J. (1989) Biological studies including population growth parameters of the predatory mite Amblyseius barkeri [Acarina.: Phytoseiidae] at 25°C in the laboratory. Entomophaga, 34, 275–287. https://doi.org/10.1007/BF02372676

  21. Bouras, S.L. & Papadoulis, G.T. (2005) Influence of selected fruit tree pollen on life history of Euseius stipulatus (Acari: Phytoseiidae). Experimental and Applied Acarology, 36, 1–14.  https://doi.org/10.1007/s10493-005-2381-5

  22. Broufas, G.D. & Koveos, D.S. (2001) Development, survival and reproduction of Euseius finlandicus (Acari: Phytoseiidae) at different constant temperatures. Experimental & Applied Acarology, 25, 441–460. https://doi.org/10.1023/A:1011801703707

  23. Carrillo, D., de Moraes, G.J. & Peña, J.E. (2015) The Phytoseiidae (Acari: Mesostigmata) as biological control agents. Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms, 1–328. https://doi.org/10.1007/978-3-319-15042-0

  24. Carrillo, D., Peña, J.E., Hoy, M.A. & Frank, J.H. (2010) Development and reproduction of Amblyseius largoensis (Acari: Phytoseiidae) feeding on pollen, Raoiella indica (Acari: Tenuipalpidae), and other microarthropods inhabiting coconuts in Florida, USA. Experimental and Applied Acarology, 52, 119–129.  https://doi.org/10.1007/s10493-010-9360-1

  25. Chen, X., Sun, L., Zhang, Y.P., Zhang, Y.X. & Lin, J.Z. (2020) Responses of avermectin-resistant and susceptible strains of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) to Tetranychus urticae Koch (Acari: Tetranychidae) on sweet potato. Systematic and Applied Acarology, 25, 2286–2299.  https://doi.org/10.11158/saa.25.12.11

  26. Chen, X., Zhang, Y.X., Zhang, Y.P., Wei, H., Lin, J.Z., Sun, L. & Chen, F. (2017) Relative fitness of avermectin-resistant strain of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Systematic and Applied Acarology, 22, 184–192.  https://doi.org/10.11158/saa.22.2.3

  27. Chi, H., You, M., Atlýhan, R., Smith, C.L., Kavousi, A., Özgökçe, M.S., Güncan, A., Tuan, S.J., Fu, J.W., Xu, Y.Y., Zheng, F.Q., Ye, B.H., Chu, D., Yu, Y., Gharekhani, G., Saska, P., Gotoh, T., Schneider, M.I., Bussaman, P., Gökçe, A. & Liu, T.X. (2020) Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomologia Generalis, 40, 103–124.  https://doi.org/10.1127/entomologia/2020/0936

  28. Conceição, E.M., Demite, P.R., Rezende, J.M., Carniello, M.A. & Lofego, A.C. (2021) Phytoseiidae (Acari: Parasitiformes: Mesostigmata) inhabiting native plants from three biomes in Mato Grosso State, Brazil, with description of a new species. Systematic and Applied Acarology, 26, 2268–2286.  https://doi.org/10.11158/saa.26.12.6

  29. Dalia, A.W. (2016) Biological studies on the two predaceous mites, Phytoseiulus macropilis (Banks) and Typhlodrompis capisicum Mostafa. Acarines, 10, 45–48. https://doi.org/10.21608/ajesa.2016.164139

  30. Dameda, C., Berté, A.L.W., Silva, G.L. da, Johann, L. & Ferla, N.J. (2021) Euseius concordis (Chant) ( Acari: Phytoseiidae) as a potential agent for the control of yerba mate red mite Oligonychus yothersi (McGregor) (Acari: Tetranychidae). Phytoparasitica, 49, 377–383. https://doi.org/10.1007/s12600-020-00879-4

  31. Dameda, C., Toldi, M., Majolo, F. & Ferla, N.J. (2016) The effect of temperature on the biology of Phytoseiulus macropilis (Banks) (Phytoseiidae ) in applied biological control program. Acta Scientiarum, 38, 201–206.  https://doi.org/10.4025/actascibiolsci.v38i2.29087

  32. Demite, P.R., Moraes, G.J. de, McMurtry, J.A., Denmark, H.A. & Castilho, R.C. (2022) Phytoseiidae database. Available from: https://www.lea.esalq.usp.br/phytoseiidae (accessed 12/11/2022)

  33. Van Dinh, N., Janssen, A. & Sabelis, M.W. (1988) Reproductive success of Amblyseius idaeus and A. anonymus on a diet of two-spotted spider mites. Experimental & Applied Acarology, 4, 41–51.  https://doi.org/10.1007/BF01213840

  34. Duso, C. & Camporese, P. (1991) Developmental times and oviposition rates of predatory mites Typhlodromus pyri and Amblyseius andersoni ( Acari: Phytoseiidae) reared on different foods. Experimental & Applied Acarology, 13, 117–128. https://doi.org/10.1007/BF01193662

  35. El-Banhawy, E.M. (1975) Biology and feeding behaviour of the predatory mite, Amblyseius brazilli [Mesostigmata: Phytoseiidae]. Entomophaga, 20, 353–360. https://doi.org/10.1007/BF02371588

  36. El-Khouly, N.M.A. & Abd-Elgayed, A.A. (2019) Host preference of the phytossid mite, Euseius scutalis (Athias-Henriot) on some pests. Egyptian Journal of Applied Science, 34, 41–52. https://doi.org/10.21608/ejas.2019.97914

  37. EL-Naggar, M., Awadalla, S., El-Serfi, H. & El-Mesawy, M. (2018) Biological studies on the phytosiid predator Amblyseius cucumeris (Oudemans) reared on the two spotted spider mite Tetranchus urtica Koch. Journal of Plant Protection and Pathology, 9, 339–342.  https://doi.org/10.21608/jppp.2018.41674

  38. El-Sharabasy, H.M.M. & El-Kawas, H.M.G. (2015) The phytoseiid mite, Phytoseiulus macropilis as a biological control agent against tetranychid mite species in Egypt (Phytoseiidae-Tetranychidae). Acarines, 9, 19–22. https://doi.org/10.21608/ajesa.2015.163972

  39. El-Sharkawy, H.M. (2015) Abating of Bemisia tabaci (Gennadies) using Amblyseius cydnodactylon (Shehta &Zoher) in the same ecological niche (Inseta, Aleyrodidae & Acari, phytoseiide). Life Science Journal, 12, 107–111.

  40. Eleawa, M. & Waked, D.A. (2015) Rearing the predaceous mite, Amblyseius swirskii (Athias-Henriot) (Phytoseiidae) on artificial diets. Acarines, 9, 37–40. https://doi.org/10.21608/ajesa.2015.163987

  41. Elhalawany, A.S., Abdel-Wahed, N.M. & Ahmad, N.F.R. (2017) Influence of prey type on the biology and life-table parameters of Neoseiulus californicus ( McGregor ) ( Acari : Phytoseiidae ). Acarines, 11, 15–20. https://doi.org/10.21608/ajesa.2017.164163

  42. Ersin, F., Turanli, F. & Cakmak, I. (2021) Development and life history parameters of Typhlodromus recki (Acari: Phytoseiidae) feeding on Tetranychus urticae (Acari: Tetranychidae) at different temperatures. Systematic and Applied Acarology, 26, 496–508.  https://doi.org/10.11158/saa.26.2.12

  43. Fadaei, E., Hakimitabar, M., Seiedy, M. & Sarraf, M.H. (2018) Effects of different diets on biological parameters of the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). International Journal of Acarology, 44, 341–346.  https://doi.org/10.1080/01647954.2018.1525428

  44. Farazmand, A., Amir-Maafi, M. & Atlihan, R. (2020) Temperature-dependent development of Amblyseius swirskii (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology, 25, 538–547.  https://doi.org/10.11158/saa.25.3.13

  45. Fatma, S.A. (1998) Life tables of Phytoseiulus macropilis (Banks) (Gamasida: Phytoseiidae) at different temperatures. Experimental & Applied Acarology, 22, 335–342. https://doi.org/10.1023/A:1024560924642

  46. Fouly, A.H. (1997) Effects of prey mites and pollen on the biology and life tables of Proprioseiopsis asetus (Chant) (Acari, Phytoseiidae). Journal of Applied Entomology, 121, 435–439.  https://doi.org/10.1111/j.1439-0418.1997.tb01431.x

  47. Fouly, A.H., Nassar, O.A. & Osman, M.A. (2013) Biology and life tables of Esieus scutalis (A.-H.) reared on different kinds of food. Journal of Entomology, 10, 199–206. https://doi.org/10.3923/je.2013.199.206

  48. Gadino, A.N. & Walton, V.M. (2012) Temperature-related development and population parameters for Typhlodromus pyri (Acari: Phytoseiidae) found in oregon vineyards. Experimental and Applied Acarology, 58, 1–10.  https://doi.org/10.1007/s10493-012-9562-9

  49. Gonçalves, D., da Cunha, U.S., de Andrade Rode, P., Toldi, M. & Ferla, N.J.  (2019) Biological features of Neoseiulus californicus (Acari: Phytoseiidae) feeding on Schizotetranychus oryzae (Acari: Tetranychidae) kept on rice leaves. Journal of Economic Entomology, 112, 2103–2108.  https://doi.org/10.1093/jee/toz138

  50. Gotoh, T., Yamaguchi, K. & Mori, K. (2004) Effect of temperature on life history of the predatory mite Amblyseius (Neoseiulus) californicus (Acari: Phytoseiidae). Experimental & Applied Acarology, 32, 15–30. https://doi.org/10.1023/B:APPA.0000018192.91930.49

  51. Gravandian, M., Fathipour, Y., Hajiqanbar, H., Riahi, E. & Riddick, E.W. (2022) Long-term effects of cattail Typha latifolia pollen on development, reproduction, and predation capacity of Neoseiulus cucumeris, a predator of Tetranychus urticae. BioControl, 67, 149–160.  https://doi.org/10.1007/s10526-021-10116-4

  52. Hashemi, S., Asadi, M. & Khanamani, M. (2021) How does feeding on different diets affect the life history traits of Neoseiulus californicus? International Journal of Acarology, 47, 367–373.  https://doi.org/10.1080/01647954.2021.1912175

  53. Havasi, M., Alsendi, A., Bozhgani, N.S.S., Kheradmand, K. & Sadeghi, R. (2021) The effects of bifenazate on life history traits and population growth of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Systematic and Applied Acarology, 26, 610–623.  https://doi.org/10.11158/saa.26.3.10

  54. Havasi, M., Kheradmand, K., Mosallanejad, H. & Fathipour, Y. (2019) Sublethal effects of diflovidazin on demographic parameters of the predatory mite, Neoseiulus californicus (Acari: Phytoseiidae). International Journal of Acarology, 45, 238–244.  https://doi.org/10.1080/01647954.2019.1607550

  55. Havasi, M., Kheradmand, K., Mosallanejad, H. & Fathipour, Y. (2020a) Influence of low-lethal concentrations of thiamethoxam on biological characteristics of Neoseiulus californicus (Acari: Phytoseiidae). Journal of Crop Protection, 9(1), 41–55.

  56. Havasi, M., Kheradmand, K., Mosallanejad, H. & Fathipour, Y. (2020b) Life history traits and demographic parameters of Neoseiulus californicus McGregor (Acari: Phytoseiidae) treated with the Biomite®. Systematic and Applied Acarology, 25, 125–138.  https://doi.org/10.11158/saa.25.1.10

  57. Hu, D. & Liang, L. (1989) Comparative studies on two similar species of Largoensis group, genus Amblyseius. Acta Agriculturae Universitatis Pekinensis, 15, 75–78.

  58. Ibrahim, Y.B. & Palacio, V.B. (1994) Life history and demography of the predatory mite, Amblyseius longispinosus Evans. Experimental & Applied Acarology, 18, 361–369. https://doi.org/10.1007/BF00116317

  59. Jafari, S. & Bazgir, F. (2015) Life history traits of predatory mite Typhlodromus (Anthoseius) bagdasarjani (Phytoseiidae) fed on Cenopalpus irani (Tenuipalpidae) under laboratory conditions. Systematic and Applied Acarology, 20, 366–374.  https://doi.org/10.11158/saa.20.4.2

  60. Jiang, C., Chen, L., Huang, T., Mumtaz, M. & Li, Q. (2021) Neoseiulus californicus (Acari: Phytoseiidae) shows good predation potential when reared on an artificial diet supplemented with Tetranychus cinnabarinus. Systematic and Applied Acarology, 26, 2229–2246.  https://doi.org/10.11158/saa.26.12.3

  61. Kadkhodazadeh, F., Asadi, M. & Khanamani, M. (2021) Suitability of different pollen grains and Tetranychus urticae as food for the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Persian Journal of Acarology, 10, 321–334.

  62. Kalmosh, F. (2020) Biological aspects and life table parameters of Phytoseiulus macropilis and Neoseiulus californicus (Acari: Phytoseiidae), feeding on eggs and immature stages of Tetranychus urticae (Acari: Tetranychidae) at different temperatures. Journal of Plant Protection and Pathology, 11, 303–308.  https://doi.org/10.21608/jppp.2020.112497

  63. Kazak, C., Yildiz, S. & Sekeroglu, E. (2002) Biological characteristics and life tables of Neoseiulus umbraticus Chant (Acari, Phytoseiidae) at three constant temperatures. Anzeiger fur Schadlingskunde, 75, 118–121.  https://doi.org/10.1046/j.1472-8206.2002.02034.x

  64. Khalil, A.M. (2017) Notes on the biological aspects of the phytoseiid mite, Typhlodromus tropicus (Mesostigmata: Phytoseiidae) when fed on two tetranychid mite prey at laboratory conditions. Annals of Agricultural Sciences, 55, 961–964.

  65. Khanamani, M., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017a) Biological and microbial control quantitative analysis of long-term mass rearing of Neoseiulus californicus (Acari: Phytoseiidae ) on almond pollen. Journal of Economic Entomology, 110, 1442–1450.  https://doi.org/10.1093/jee/tox116

  66. Khanamani, M., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017b) Evaluation of different artificial diets for rearing the predatory mite Neoseiulus californicus (Acari: Phytoseiidae): diet-dependent life table studies. Acarologia, 57, 407–419. https://doi.org/10.1051/acarologia/20174165

  67. Khanamani, M., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017c) Linking pollen quality and performance of Neoseiulus californicus (Acari: Phytoseiidae) in two-spotted spider mite management programmes. Pest Management Science, 73, 452–461.  https://doi.org/10.1002/ps.4305

  68. Kishimoto, H. (2015) Development and oviposition of eight native phytoseiid species (Acari: Phytoseiidae) reared on eggs of the mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of the Acarological Society of Japan, 24, 71–76.  https://doi.org/10.2300/acari.24.71

  69. Kishimoto, H., Ohira, Y. & Adachi, I. (2014) Effect of different plant pollens on the development and oviposition of seven native phytoseiid species (Acari: Phytoseiidae) in Japan. Applied Entomology and Zoology, 49, 19–25.  https://doi.org/10.1007/s13355-013-0218-y

  70. Knapp, M., van Houten, Y., van Baal, E. & Groot, T. (2018) Use of predatory mites in commercial biocontrol: Current status and future prospects. Acarologia, 58, 72–82.  https://doi.org/10.24349/acarologia/20184275

  71. Kolokytha, P.D., Fantinou, A.A. & Papadoulis, G.T. (2011) Effect of several different pollens on the bio-ecological parameters of the predatory mite Typhlodromus athenas Swirski and Ragusa (Acari: Phytoseiidae). Environmental Entomology, 40, 597–604.  https://doi.org/10.1603/EN10276

  72. Kumari, M. & Sadana, G.L. (1991) Influence of temperature and relative humidity on the development of Amblyseius alstoniae (Acari: Phytoseiidae). Experimental & Applied Acarology, 11, 199–203.  https://doi.org/10.1007/BF01246091

  73. Laing, J.E. (1969) Life history and life table of Metaseiulus occidentalis. Annals of the Entomological Society of America, 62, 978–982.  https://doi.org/10.1093/aesa/62.5.978

  74. Lee, M.S. & Davis, D.W. (1968) Life history and behavior of the predatory mite Typhlodromus occidentalis in Utah. Annals of the Entomological Society of America, 61, 251–255.  https://doi.org/10.1093/aesa/61.2.251

  75. van Lenteren, J.C. (2012) The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57, 1–20. https://doi.org/10.1007/s10526-011-9395-1

  76. Li, G.Y. & Zhang, Z.Q. (2021) Sex dimorphism of life-history traits and their response to environmental factors in spider mites. Experimental and Applied Acarology, 84, 497–527.  https://doi.org/10.1007/s10493-021-00632-4

  77. Li, Y., Liu, Q., Chang, J., Jia, Y. & Meng, R. (2019) Amblyseius andersoni ( Acari : Phytoseiidae ) fed with Tetranychus urticae. Acarologia, 59, 475–483. https://doi.org/10.24349/acarologia/20194344

  78. Li, Y.Y., Yuan, J.G., Liu, M.X., Zhang, Z.H., Zhou, H.W. & Liu, H. (2021) Evaluation of four artificial diets on demography parameters of Neoseiulus barkeri. BioControl, 66, 789–802.  https://doi.org/10.1007/s10526-021-10108-4

  79. Liu, J.F., Zhang, Z.Q. & Beggs, J.R. (2019a) Tri-partite complexity: Odour from a psyllid’s mutualist ant increased predation by a predatory mite on the psyllid. Pest Management Science, 75, 1317–1327.  https://doi.org/10.1002/ps.5246

  80. Liu, J.F., Zhang, Z.Q., Beggs, J.R. & Wei, X.Y. (2019b) Influence of pathogenic fungi on the life history and predation rate of mites attacking a psyllid pest. Ecotoxicology and Environmental Safety, 183, 109585.  https://doi.org/10.1016/j.ecoenv.2019.109585

  81. Liu, M.X., Chu, W.Q., Xu, C., Zheng, Q.M., Song, W. Bin, Li, Y.Y. & Liu, H. (2020) Extraguild prey availability reduced cannibalism and reciprocal intraguild predation of Neoseiulus barkeri (Acari: Phytoseiidae) and Scolothrips takahashii (Thysanoptera: Thripidae). Systematic and Applied Acarology, 25, 775–786.  https://doi.org/10.11158/saa.25.5.1

  82. Louni, M., Jafari, S. & Shakarami, J. (2014) Life table parameters of Phytoseius plumifer (Phytoseiidae) fed on Rhyncaphytoptus ficifoliae (Diptilomiopidae) under laboratory conditions. Systematic and Applied Acarology, 19, 275–282.  https://doi.org/10.11158/saa.19.3.3

  83. Ma, M., Fan, Q.H. & Zhang, Z.Q. (2018a) Morphological ontogeny of Amblydromalus limonicus (Acari: Phytoseiidae). Systematic and Applied Acarology, 23, 1741–1765.  https://doi.org/10.11158/saa.23.9.3

  84. Ma, M., Fan, Q.H. & Zhang, Z.Q. (2018b) Ontogenetic changes in the morphology of Eharius chergui (Acari: Phytoseiidae). Zootaxa, 4540 (1), 23–39.  https://doi.org/10.11646/zootaxa.4540.1.5

  85. Ma, M., Fan, Q.H. & Zhang, Z.Q. (2020a) Neoseiulus kikuyu sp. nov. (Mesostigmata: Phytoseiidae): Descriptions of all life stages from New Zealand. Systematic and Applied Acarology, 25, 2098–2114.  https://doi.org/10.11158/saa.25.11.13

  86. Ma, M., Fan, Q.H. & Zhang, Z.Q. (2020b) Ontogenetic changes in the morphology of Phytoseius leaki Schicha, 1977 (Acari: Phytoseiidae). International Journal of Acarology, 45(1–2), 56–68.  https://doi.org/10.1080/01647954.2018.1544664

  87. Ma, M., Zhang, B., Fan, Q.H. & Zhang, Z.Q. (2020c) Ontogenetic changes in the morphology of Neoseiulus barkeri (Acari: Phytoseiidae). Zootaxa, 4900(1), 5–19.  https://doi.org/10.11646/zootaxa.4900.1.4

  88. Ma, W.L. & Laing, J.E. (1973) Biology, potential for increase and prey consumption of Amblyseius chilenensis (Dosse)[Acarina: Phytoseiidae]. Entomophaga, 18, 47–60. https://doi.org/10.1007/BF02373013

  89. Majolo, F. & Ferla, N.J. (2014) Life history of Phytoseiulus macropilis (Acari: Phytoseiidae) feeding on Mononychellus planki (Acari: Tetranychidae) on common bean leaves (Phaseoulus vulgaris L.). International Journal of Acarology, 40, 332–336. https://doi.org/10.1080/01647954.2014.916749

  90. McMurtry, J.A. & Crof, B.A. (1997) Life-styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology, 42, 291–321.  https://doi.org/10.1103/PhysRevE.65.066410

  91. McMurtry, J.A., De Moraes, G.J. & Sourassou, N.F. (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18, 297–320.  https://doi.org/10.11158/saa.18.4.1

  92. Mercado, V.T., Valdivia, R.B. & Martínez, P.C. (2011) Biological parameters of Proprioseiopsis iorgius on Tetranychus desertorum (Acari: Phytoseiidae, Tetranychidae). Revista Colombiana de Entomología, 37, 62–66. https://doi.org/10.25100/socolen.v37i1.9040

  93. Metwally, A.M., Abou-Awad, B.A. & Al-Azzazy, M.M.A. (2005) Life table and prey consumption of the predatory mite Neoseiulus cydnodactylon Shehata and Zaher (Acari: Phytoseiidae) with three mite species as prey. Journal of Plant Diseases and Protection, 112, 276–286.

  94. Midthassel, A., Leather, S.R. & Baxter, I.H. (2013) Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae). Experimental and Applied Acarology, 61, 69–78.  https://doi.org/10.1007/s10493-013-9682-x

  95. Miranda, V.C., de Azevedo, E.B., da Cruz, W.P., Jorge, S.J., Pedro-Neto, M., de Campos Castilho, R., Tixier, M.S., de Moraes, G.J. & Sarmento, R.A. (2021) Potential of the predatory mite Amblydromalus zannoui to control pest mites on Jatropha curcas. BioControl, 66, 487–496.  https://doi.org/10.1007/s10526-021-10080-z

  96. Moghadasi, M., Allahyari, H., Saboori, A. & Zahedi Golpayegani, A. (2016) Life table and predation capacity of Phytoseiulus persimilis athias-henriot (Acari: Phytoseiidae) feeding on Tetranychus urticae Koch (Acari: Tetranychidae) on rose. Journal of Agricultural Science and Technology, 18, 1279–1288.

  97. Mohamed, A.S.M., Abou-Shosha, M.A.A., Mowafi, M.H., Abd Allah, A.A. & Mahmoud, N.A. (2020) Comparative biology of Tetranychus urticae Koch (Acari: Tetranychidae) on three solanaceous plants and the predator Amblyseius hutu (Prichard & Baker) Acari: Phytoseiidae) as a potential biological control agent for Tetranychus urticae. Journal of Plant Protection and Pathology, 11, 477–483.  https://doi.org/10.21608/jppp.2020.118003

  98. Mohamed, M.E. (2017) Biological characters of predaceous mite, Typhlodromus pyri Schouten (Acari: Phytoseiidae) at different temperatures. Egyptian Journal of Agricultural Research, 95, 1107–1113.  https://doi.org/10.21608/ejar.2017.149593

  99. Mollaloo, M.G. Kheradmand, K., Sadeghi, R. & Talebi, A.A. (2017) Demographic analysis of sublethal effects of spiromesifen on Neoseiulus californicus (Acari: Phytoseiidae). Acarologia, 57, 571–580. https://doi.org/10.24349/acarologia/20174173

  100. de Moraes, G.J. & Lima, H.C. (1983) Biology of Euseius concordis (Chant) (Acarina: Phytoseiidae) A predator of the tomato russet mite. Acarologia, 24, 251–255.

  101. De Moraes, G.J., Da Silva, C.A.D. & Moreira, A.N. (1994) Biology of a strain of Neoseiulus idaeus (Acari: Phytoseiidae) from Southwest Brazil. Experimental & Applied Acarology, 18, 213–220.  https://doi.org/10.1007/BF00114168

  102. Muma, M.H. (1970) Natural control potential of Galendromus floridanus (Acarina: Phytoseiidae) on Tetranychidae on Florida citrus trees. Florida Entomologist, 79–88. https://doi.org/10.2307/3493450

  103. Negm, M.W., Matsuda, T., Kayukawa, T., Ho, C.C., Hsu, Y.T., Kongchuensin, M., Konvipasruang, P. & Gotoh, T. (2021) Morphological ontogeny and molecular analyses of geographic strains of two closely related neoseiulus species (Acari: Phytoseiidae). Acarologia, 61, 432–452.  https://doi.org/10.24349/acarologia/20214440

  104. Nguyen, D.T., Vangansbeke, D. & De Clercq, P. (2014) Solid artificial diets for the phytoseiid predator Amblyseius swirskii. BioControl, 59, 719–727.  https://doi.org/10.1007/s10526-014-9607-6

  105. Nguyen, T.V. & Shih, C.I.T. (2010) Development of Neoseiulus womersleyi (Schicha) and Euseius ovalis (Evans) feeding on four tetranychid mites (Acari: Phytoseiidae, Tetranychidae) and pollen. Journal of Asia-Pacific Entomology, 13, 289–296.  https://doi.org/10.1016/j.aspen.2010.06.010

  106. Ouyang, J., Tian, Y., Jiang, C., Yang, Q., Wang, H. & Li, Q. (2018) Laboratory assays on the effects of a novel acaricide , SYP-9625 on Tetranychus cinnabarinus ( Boisduval ) and its natural enemy , Neoseiulus californicus ( McGregor ). PLoS ONE, 13, e0199269. https://doi.org/10.1371/journal. pone.0199269

  107. Ozman-Sullivan, S.K. (2006) Life history of Kampimodromus aberrans as a predator of Phytoptus avellanae (Acari: Phytoseiidae, Phytoptidae). Experimental and Applied Acarology, 38, 15–23.  https://doi.org/10.1007/s10493-005-5786-2

  108. Ozman-Sullivan, S.K. & Sullivan, G.T. (2021) How long do eriophyoid mites live? Zoosymposia, 20, 35–70. https://doi.org/10.11646/zoosymposia.20.1.6

  109. Papadopoulos, G.D. & Papadoulis, G.T. (2008) Effect of seven different pollens on bio-ecological parameters of the predatory mite Typhlodromus foenilis (Acari: Phytoseiidae). Environmental entomology, 37, 340–7.  https://doi.org/10.1603/0046-225X(2008)37[340:EOSDPO]2.0.CO;2

  110. Pappas, M.L., Xanthis, C., Samaras, K., Koveos, D.S. & Broufas, G.D. (2013) Potential of the predatory mite Phytoseius finitimus (Acari: Phytoseiidae) to feed and reproduce on greenhouse pests. Experimental and Applied Acarology, 61, 387–401.  https://doi.org/10.1007/s10493-013-9711-9

  111. Park, H.H., Shipp, L. & Buitenhuis, R. (2010) Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). Journal of Economic Entomology, 103, 563–569.  https://doi.org/10.1603/EC09161

  112. Park, Y. & Lee, J. (2020) Temperature-dependent development and oviposition models and life history characteristics of Amblyseius eharai ( Amitai et Swirski ) ( Acari : Phytoseiidae ) preying on Tetranychus urticae ( Koch ) ( Acari : Tetranychidae ). Journal of Asia-Pacific Entomology, 23, 869–878.  https://doi.org/10.1016/j.aspen.2020.07.021

  113. Piyani, A.R., Shishehbor, P., Kocheili, F. & Riddick, E. (2021) Comparison of natural prey Tetranychus turkestani, date palm pollen, and bee pollen diets on development, reproduction, and life table parameters of the predator Amblyseius swirskii. Acarologia, 61, 890–900. https://doi.org/10.24349/G9ed-QB9h

  114. Rahman, V.J., Babu, A., Roobakkumar, A. & Perumalsamy, K. (2013) Life table and predation of Neoseiulus longispinosus (Acari: Phytoseiidae) on Oligonychus coffeae (Acari: Tetranychidae) infesting tea. Experimental & Applied Acarology, 60, 229–240. https://doi.org/10.1007/s10493-012-9649-3

  115. Ranabhat, N.B., Goleva, I. & Zebitz, C.P.W. (2014) Life tables of Neoseiulus cucumeris exclusively fed with seven different pollens. BioControl, 59, 195–203.  https://doi.org/10.1007/s10526-013-9556-5

  116. Rasmy, A.H., Momen, F.M., Zaher, M.A., Nawar, M.S. & Abou-Elella, G.M. (2002) Dietary influence on life history and predation of the phytoseiid mite, Amblyseius deleoni (Acari: Phytoseiidae). In: Bernini, F., Nannelli, R., Nuzzaci, G. & Lillo, E. (Eds.) Acarid Phylogeny and Evolution: Adaptation in Mites and Ticks,. Dordrecht, Springer, pp. 319–323.  https://doi.org/10.1007/978-94-017-0611-7_32

  117. Reichert, M.B., Toldi, M., Rode, P.A., Ferla, J.J. & Ferla, N.J. (2017) Desempenho biológico do ácaro predador Neoseiulus idaeus (Phytoseiidae): um candidato no controle de ácaros tetraniquídeos em soja brasileira. Brazilian Journal of Biology, 77, 361–366. https://doi.org/10.1590/1519-6984.14915

  118. Rezaie, M. (2017) Effect of three pollen grains on life table parameters of Neoseiulus californicus (Acari: Phytoseiidae). International Journal of Engineering and Applied Sciences, 21–24.

  119. Rezaie, M. & Askarieh, S. (2016) Effect of different pollen grains on life table parameters of Neoseiulus barkeri (Acari: Phytoseiidae). Persian Journal of Acarology, 5, 239–253.

  120. Riahi, E., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017a) Attempt to develop cost-effective rearing of Amblyseius swirskii (Acari: Phytoseiidae): Assessment of different artificial diets. Journal of Economic Entomology, 110, 1525–1532.  https://doi.org/10.1093/jee/tox172

  121. Riahi, E., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017b) Linking life table and consumption rate of Amblyseius swirskii (Acari: Phytoseiidae) in presence and absence of different pollens. Annals of the Entomological Society of America, 110, 244–253.  https://doi.org/10.1093/aesa/saw091

  122. Roshdy, O., Abou Zaid, W. & Refaei, G. (2019) Biological aspects and life table parameters of the predatory mite, Neoseiulus californicus McGregor (Acari: Phytoseiidae) reared on different diets. Journal of Plant Protection and Pathology, 10, 43–47. https://doi.org/10.21608/jppp.2019.40571

  123. Sabelis, M.W. & Janssen, A. (1994) Evolution of life-history patterns in the Phytoseiidae. In: Houck, M.A. (Ed), Mites. Boston, Springer, pp. 70–98.

  124. Saito, Y. (1990) Life-history and feeding habit of Typhlodromus bambusae, a specific predator of Schizotetranychus celarius (Acari: Phytoseiidae: Tetranychidae). Experimental & Applied Acarology, 10, 45–51. https://doi.org/10.1007/BF01193972

  125. Samaras, K., Pappas, M.L., Fytas, E. & Broufas, G.D. (2015) Pollen suitability for the development and reproduction of Amblydromalus limonicus (Acari: Phytoseiidae). BioControl, 60, 773–782.  https://doi.org/10.1007/s10526-015-9680-5

  126. Sarbaz, S., Goldasteh, S., Zamani, A.A., Solymannejadiyan, E. & Vafaei Shoushtari, R. (2017) Side effects of spiromesifen and spirodiclofen on life table parameters of the predatory mite, Neoseiulus californicus McGregor (Acari: Phytoseiidae). International Journal of Acarology, 43, 380–386.  https://doi.org/10.1080/01647954.2017.1325396

  127. Sarbaz, S., Goldasteh, S. & Zamni, A.A. (2018) Demographic analysis of the effect of spiromesifen and spirodiclofen on Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Journal Agriculture and Forestry, 66(2), 69–84.

  128. Sarwar, M. (2014) Influence of host plant species on the development, fecundity and population density of pest Tetranychus urticae Koch ( Acari : Tetranychidae ) and predator Neoseiulus pseudolongispinosus ( Xin , Liang and Ke ) ( Acari: Phytoseiidae ). New Zealand Journal of Crop and Horticultural Science, 42, 10–20.  https://doi.org/10.1080/01140671.2013.817444

  129. Sarwar, M., Wu, K. & Xu, X. (2009) Evaluation of biological aspects of the predacious mite, Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) due to prey changes using selected arthropods. International Journal of Acarology, 35, 503–509.  https://doi.org/10.1080/01647950903468240

  130. Savi, P.J., de Moraes, G.J. & de Andrade, D.J. (2021) Effect of tomato genotypes with varying levels of susceptibility to Tetranychus evansi on performance and predation capacity of Phytoseiulus longipes. BioControl, 66, 687–700.  https://doi.org/10.1007/s10526-021-10096-5

  131. Seiedy, M., Soleymani, S. & Hakimitabar, M. (2017) Development and reproduction of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on Tetranychus urticae Koch (Acari: Tetranychidae) and Bemisia tabaci Gennadius (Heteroptera: Aleyrodidae). International Journal of Acarology, 43, 160–164.  https://doi.org/10.1080/01647954.2016.1248486

  132. Shahbaz, M., Khoobdel, M., Khanjani, M., Hosseininia, A. & Khederi, S.J. (2019) Sublethal effects of acetamiprid on biological aspects and life table of Amblyseius swirskii (Acari: Phytoseiidae) fed on Aleuroclava jasmini (Hemiptera: Aleyrodidae). Systematic and Applied Acarology, 24, 814–824.  https://doi.org/10.11158/saa.24.5.7

  133. Shakarami, J. & Bazgir, F. (2017) Effect of temperature on life table parameters of Phytoseius plumifer (Phytoseiidae) fed on Eotetranychus hirsti (Tetranychidae). Systematic and Applied Acarology, 22, 410–422. https://doi.org/10.11158/saa.22.3.7

  134. Shih, C.I., Poe, S.L. & Cromroy, H.L. (1979) Biology and predation of Phytoseiulus macropilis on Tetranychus urticae. The Florida Entomologist, 62, 48–53. https://doi.org/10.2307/3494042

  135. Da Silva Melo, J.W., Domingos, C.A., Galvão, A.S.A., Junior, M.G.C.G. & De Moraes, G.J. (2009) Biologia do ácaro predador Euseius alatus deleon (Acari: Phytoseiidae) em diferentes temperaturas. Acta Scientiarum - Agronomy, 31, 391–396. https://doi.org/10.4025/actasciagron.v31i3.466

  136. Singh, S., Kaur, P. & Bullar, M.B. (2019) Life cycle of Neoseiulus longispinosus (Evans) on Tetranychus urticae Koch. Agricultural Research Journal, 56, 683–687.  https://doi.org/10.5958/2395-146X.2019.00106.6

  137. Soltaniyan, A., Kheradmand, K., Fathipour, Y. & Shirdel, D. (2018) Suitability of pollen from different plant species as alternative food sources for Neoseiulus californicus (Acari: Phytoseiidae) in comparison with a natural prey. Journal of Economic Entomology, 111, 2046–2052.  https://doi.org/10.1093/jee/toy172

  138. Song, Z.W., Nguyen, D.T., Li, D.S. & De Clercq, P. (2019) Continuous rearing of the predatory mite Neoseiulus californicus on an artificial diet. BioControl, 64, 125–137.  https://doi.org/10.1007/s10526-019-09923-7

  139. Souza-Pimentel, G.C., Reis, P.R., Bonatto, C.R., Alves, J.P. & Siqueira, M.F. (2017) Reproductive parameters of Phytoseiulus macropilis (Banks) fed with Tetranychus urticae Koch (Acari: Phytoseiidae, Tetranychidae) in laboratory. Brazilian Journal of Biology, 77, 162–169.

  140. Su, J., Dong, F., Liu, S.M., Lu, Y.H. & Zhang, J.P. (2019) Productivity of Neoseiulus bicaudus (Acari: Phytoseiidae) reared on natural prey, alternative prey, and artificial diet. Journal of Economic Entomology, 112, 2604–2613.  https://doi.org/10.1093/jee/toz202

  141. Taj, H.F. El & Jung, C. (2012) Effect of temperature on the life-history traits of Neoseiulus californicus (Acari: Phytoseiidae) fed on Panonychus ulmi. Experimental & Applied Acarology, 56, 247–260.  https://doi.org/10.1007/s10493-012-9516-2

  142. Uddin, M.N., Alam, M.Z., Miah, M.R.U. & Mian, M.I.H. (2017) Life table parameters of an indigenous strain of Neoseiulus californicus McGregor (Acari: Phytoseiidae) when fed Tetranychus urticae Koch (Acari : Tetranychidae). Entomological Research, 47, 84–93. https://doi.org/10.1111/1748-5967.12202

  143. Ullah, M.S. & Gotoh, T. (2014) Life-table attributes of Neoseiulus womersleyi (Schicha) feeding on five tetranychid mites (Acari: Phytoseiidae, Tetranychidae). International Journal of Acarology, 40, 337–348.  https://doi.org/10.1080/01647954.2014.920045

  144. Vangansbeke, D., Nguyen, D.T., Audenaert, J., Verhoeven, R., Gobin, B., Tirry, L. & De Clercq, P. (2014a) Performance of the predatory mite Amblydromalus limonicus on factitious foods. BioControl, 59, 67–77.  https://doi.org/10.1007/s10526-013-9548-5

  145. Vangansbeke, D., Nguyen, D.T., Audenaert, J., Verhoeven, R., Gobin, B., Tirry, L. & De Clercq, P. (2016) Supplemental food for Amblyseius swirskii in the control of thrips: Feeding friend or foe? Pest Management Science, 72, 466–473.  https://doi.org/10.1002/ps.4000

  146. Vangansbeke, D., Tung, D., Audenaert, J., Verhoeven, R., Deforce, K., Gobin, B., Tirry, L. & De Clercq, P. (2014b) Diet-dependent cannibalism in the omnivorous phytoseiid mite Amblydromalus limonicus. Biological Control, 74, 30–35.  https://doi.org/10.1016/j.biocontrol.2014.03.015

  147. De Vasconcelos, G.J.N., De Moraes, G.J., Júnior, Í.D. & Knapp, M. (2008) Life history of the predatory mite Phytoseiulus fragariae on Tetranychus evansi and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) at five temperatures. Experimental and Applied Acarology, 44, 27–36.  https://doi.org/10.1007/s10493-007-9124-8

  148. Wu, S., Gao, Y., Xu, X., Wang, D., Li, J., Wang, H., Wang, E. & Lei, Z. (2015) Feeding on Beauveria bassiana-treated Frankliniella occidentalis causes negative effects on the predatory mite Neoseiulus barkeri. Scientific Reports, 5, 12033.  https://doi.org/10.1038/srep12033

  149. Yazdanpanah, S., Fathipour, Y., Riahi, E. & Zalucki, M.P. (2021) Mass production of Neoseiulus cucumeris (Acari: Phytoseiidae): an assessment of 50 generations reared on almond pollen. Journal of Economic Entomology 114, 2255–2263.

  150. Zhang, B., Ma, M. & Fan, Q.H. (2021) Morphological ontogeny of Neoseiulus zwoelferi (Acari: Phytoseiidae). Zootaxa, 5086, 7–28.  https://doi.org/10.11646/zootaxa.5086.1.4

  151. Zhang, G.H., Li, Y.Y., Zhang, K.J., Wang, J.J., Liu, Y.Q. & Liu, H. (2016) Effects of heat stress on copulation, fecundity and longevity of newly emerged adults of the predatory mite, Neoseiulus barkeri (Acari: Phytoseiidae). Systematic and Applied Acarology, 21, 295–306.  https://doi.org/10.11158/saa.21.3.5

  152. Zhang, K. & Zhang, Z.Q. (2021) The dried fruit mite Carpoglyphus lactis (Acari: Carpoglyphidae) is a suitable alternative prey for Amblyseius herbicolus (Acari: Phytoseiidae). Systematic and Applied Acarology, 26, 2167–2176.  https://doi.org/10.11158/saa.26.11.15

  153. Zhang, W. & Luo, Z. (1990) A laboratory study of the life cycle and biology of Amblyseius eharai [Acari: Phytoesiidae]. Chinese Journal of Biological Control, 6, 151–152.

  154. Zheng, X. & Jin, D. (2011) Effect of long-term exposure to simulated acid rain on the development and reproduction of the predatory mite, Euseius nicholsi (Ehara et Lee) (Acari: Phytoseiidae). Applied Entomology and Zoology, 46, 265–269. https://doi.org/10.1007/s13355-011-0040-3