Abstract

ISSN 1178-9905 (print edition) ZOOSYMPOSIA

ISSN 1178-9913 (online edition)

https://doi.org/10.11646/zoosymposia.22.1.41

Biocontrol of Brevipalpus yothersi in Florida*

DANIEL CARRILLO¹, POLIANE SA ARGOLO², JAQUELINE F. DELLA VECHIA¹, DANIEL JUNIOR DE ANDRADE³, ALEXANDRA M. REVYNTHI¹, ISMAIL DÖKER⁴ & AMY L. RODA⁵

¹University of Florida, Tropical Research and Education Center, Homestead, FL, USA

²UNESP/São José do Rio Preto, SP, Rio Preto, Brazil

³São Paulo State University (Unesp), Jaboticabal, Brazil

⁴Çukurova University, Adana, Turkey

⁵USDA-APHIS-PPQ-S&T, Treatment and Inspection Methods Laboratory, Miami, FL, USA

Corresponding author: since dancar@ufl.edu; https://orcid.org/0000-0003-2291-1844

*In: Zhang, Z.-Q., Fan, Q.-H., Heath, A.C.G. & Minor, M.A. (Eds) (2022) Acarological Frontiers: Proceedings of the XVI International Congress of Acarology (1–5 Dec. 2022, Auckland, New Zealand). Magnolia Press, Auckland, 328 pp.

FIGURE 1. *Amblyseius largoensis* and *Hemicheyletia bakeri*, predators of *Brevipalpus yothersi* in Florida.

Brevipalpus yothersi is the main vector of Cileviruses (CiLV-C and CiLV-C2) that cause citrus leprosis disease in Brazil, Colombia, Mexico and other places in South and Central America. This mite is also present in Florida, where it was recently found vectoring a strain of Citrus leprosis virus 2 (CiLV-C2H) that infects hibiscus. Management of *B. yothersi* has been focused on chemical control, however, reports of *B. yothersi* resistance to acaricides indicate the need for an integrated pest management approach. We evaluated the biological control potential of four predatory mite species (*Neoseiulus longispinosus, N. californicus, Amblyseius largoensis*; Acari: Phytoseiidae) and *Hemicheyletia bakeri* (Acari: Cheyletidae)) that are naturally associated with *Brevipalpus* spp. in Florida citrus. In preliminary lab experiments phytoseiid mites preyed mostly upon immature

stages of *B. yothersi*, while *H. bakeri* preyed mainly on adults. In greenhouse experiments however, only *A. largoensis* effectively suppressed *B. yothersi* and reduced damage to citrus plants (Argolo *et al.* 2020). In order to incorporate biological control in the management of *B. yothersi* we investigated the selectivity of several conventional and biorational acaricides to *A. largoeinsis. Amblyseius largoensis* was compatible with horticultural oils and showed tolerance to some conventional acaricides. Our results suggest that *A. largoensis*, which is common on landscape hibiscus and citrus (Childers *et al.* 2022), could be an efficient biological control agent of *B. yothersi* and play an important role in IPM programs tailored to manage citrus leprosis and other diseases transmitted by this mite in Florida.

References

Argolo, P.S.P., Revynthi, A.M., Canon, M.A., de Moraes-Berto, M.G., Andrade, D.J., Doker, I.P., Roda, A. & Carrillo, D. (2020) Potential of predatory mites for biological control of *Brevipalpus yothersi* (Acari: Tenuipalpidae). *Biological Control*, 149, 104330.

https://doi.org/10.1016/j.biocontrol.2020.104330

Childers, C.C., Ueckermann, E.A. & De Moraes, G.J. (2022) Phytoseiidae on citrus in florida dooryard, varietal, and commercial trees between 1951 and 2014, and species recommendations for evaluation in Citrus Under Protective Screen (CUPS). *Florida Entomologist*, 105 (1), 27–36.