Skip to main content Skip to main navigation menu Skip to site footer
Type: Proceedings Papers
Published: 2022-11-30
Page range: 24–28
Abstract views: 150
PDF downloaded: 171

How mites surprise us

SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York, USA 13210
mites Acarology

Abstract

It truly is an honor to be included among the recipients of the James Allen McMurtry Award, bestowed by the Systematic & Applied Acarology Society. I am grateful to Dr. Zhi-Qiang Zhang and the selection committee, and especially to Dr. Maria Minor, who nominated me, wrote the associated biography with Dr. Valerie Behan-Pelletier (Minor & Behan-Pelletier 2022), and recorded my oral presentation. The award was unexpected, since my career as a soil biologist seems rather unrelated to Jim’s field of biological control. But while acarologists occasionally have surprised me, mites do it constantly. One need not look far. Even our follicle mites, which certainly surprised our mid-19th century ancestors by their form and presence, continue to surprise us today: they have the lowest number of protein-coding genes known in arthropods, according to Smith et al. (2022). Having been asked by Dr. Zhang to offer some reflections on my half-century in acarology, I can think of no better premise than to give some examples of the numerous times and ways in which my focal group—oribatid mites—surprised, even astonished me.

References

  1. Alberti, G., Norton, R.A. & Kasbohm, J. (2001) Fine structure and mineralisation of cuticle in Enarthronota and Lohmannioidea. In: Halliday R.B., Walter D.E., Proctor H.C., Norton R.A. & Colloff, M.J. (Eds) Acarology: Proceedings of the 10th International Congress. CSIRO Publishing, Melbourne, pp. 230–241.

  2. Archetti, M. (2021) Evidence from automixis with inverted meiosis for the maintenance of sex by loss of complementation. Journal of Evolutionary Biology (2022), 35, 40–50.  https://doi.org/10.1111/jeb.13975

  3. Bell, G. (1982) The Masterpiece of Nature: The Evolution and Genetics of Sexuality. The University of California Press, Oakland, 635 pp.

  4. Brückner, A., Raspotnig, G., Wehner, K., Meusinger, R., Norton, R.A. & Heethoff, M. (2017) Storage and release of hydrogen cyanide in a chelicerate (Oribatula tibialis). Proceedings of the National Academy of Sciences, 114(13), 3469–3472. https://doi.org/10.1073/pnas.1618327114

  5. Grandjean, F. (1941) Statistique sexuelle et parthénogenèse chez les Oribates (Acariens). Comptés rendus des séances de l’Académie des Sciences, 212, 463–467.

  6. Heethoff, M. (2012) Regeneration of complex oil-gland secretions and its importance for chemical defense in an oribatid mite. Journal of Chemical Ecology, 38, 1116–1123. https://doi.org/10.1007/s10886-012-0169-8

  7. Heethoff, M., Bergmann, P., Laumann, M. & Norton, R.A. (2013) The 20th anniversary of a model mite: a review of current knowledge about Archegozetes longisetosus (Acari, Oribatida). Acarologia, 53, 353–368. https://doi.org/10.1051/acarologia/20132108

  8. Heethoff, M., Norton, R.A., Scheu, S. & Maraun, M. (2009) Parthenogenesis in oribatid mites (Acari, Oribatida): Evolution without sex. In: Schön I., Martens K. & Dijk P. (Eds) Lost Sex. The Evolutionary Biology of Parthenogenesis. Springer-Science + Business Media B.V., Dordrecht, pp. 241–257. https://doi.org/10.1007/978-90-481-2770-2_12

  9. Maraun, M., Bischof P.S.P., Klemp F.L., Pollack J., Raab L., Schmerbach J., Schaefer I., Scheu S. & Caruso T. (2022) “Jack-of-all-trades” is parthenogenetic. Ecology and Evolution, 12, e9036, 10 pp.  https://doi.org/10.1002/ece3.9036

  10. Maraun, M., Caruso T., Hense J., Lehmitz R., Mumladze L., Murvanidze M., Nae J., Schulz J., Seniczak A. & Scheu S. (2019) Parthenogenetic vs. sexual reproduction in oribatid mite communities. Ecology and Evolution, 9, 7324–7332. https://doi.org/10.1002/ece3.5303

  11. Minor, M. & Behan-Pelletier, V. (2022) Professor Emeritus Roy A. Norton and his outstanding contributions to our knowledge of systematics, evolution, morphology, ecology and behaviour of Oribatida and other mites. Systematic & Applied Acarology, 27, 1189–1206. https://doi.org/10.11158/saa.27.6.16

  12. Norton, R.A. & Behan-Pelletier, V.M. (1991) Epicuticular calcification in Phyllozetes (Acari: Oribatida). In: Dusbabek F. & Bukva V. (Eds) Modern Acarology, vol. 2. Academia, Prague, pp. 323–324.

  13. Norton, R.A. & Ermilov, S.G. (2022) Paedomorphosis and sexuality in Eulohmanniidae (Acari, Oribatida): surprising diversity in a relictual family of oribatid mites. Acarologia, 62, 989–1069. https://doi.org/10.24349/p0b0-usvs

  14. Norton, R.A. & Franklin, E. (2018) Paraquanothrus n. gen. from freshwater rock pools in the USA, with new diagnoses of Aquanothrus, Aquanothrinae, and Ameronothridae (Acari, Oribatida). Acarologia, 58, 557–627.  https://doi.org/10.24349/acarologia/20184258

  15. Norton, R.A. & Fuangarworn, M. (2015) Nanohystricidae n. fam., an unusual, plesiomorphic enarthronote mite family endemic to New Zealand (Acari, Oribatida). Zootaxa, 4027(2), 151–204. https://doi.org/10.11646/zootaxa.4027.2.1

  16. Norton, R.A. & Palmer, S.C. (1991) The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster R. & Murphy P.W. (Eds) The Acari - Reproduction, Development and Life-history Strategies. Chapman and Hall, London-New York, 107–136. https://doi.org/10.1007/978-94-011-3102-5_7

  17. Norton, R.A., Kethley, J.B., Johnston, D.E. & OConnor, B.M. (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch D.L. & Ebbert M.A. (Eds) Evolution and Diversity of Sex Ratio in Insects and Mites. Chapman and Hall, New York, pp. 8–99. https://doi.org/10.1007/978-1-4684-1402-8_2

  18. Palmer, S. & Norton, R.A. (1991) Taxonomic, geographic and seasonal distribution of thelytokous parthenogenesis in the Desmonomata (Acari: Oribatida). Experimental and Applied Acarology, 12, 67–81. https://doi.org/10.1007/BF01204401

  19. Palmer, S.C. & Norton, R.A. (1992) Genetic diversity in thelytokous oribatid mites (Acari, Acariformes, Desmonomata). Biochemical Systematics and Ecology, 20, 219–231. https://doi.org/10.1016/0305-1978(92)90056-J

  20. Pequeno, P.A.C.L., Franklin, E. & Norton R.A. (2022) Hunger for sex: Abundant, heterogeneous resources select for sexual reproduction in the field. Journal of Evolutionary Biology, 35, 1387–1395.  https://doi.org/10.1111/jeb.14091

  21. Pfingstl, T., Lienhard, A., Baumann, J. & Koblmüller, S. (2021) A taxonomist‘s nightmare – Cryptic diversity in Caribbean intertidal arthropods (Arachnida, Acari, Oribatida). Molecular Phylogenetics and Evolution, 163, 107240, 19 pp.  https://doi.org/10.1016/j.ympev.2021.107240

  22. Pfingstl, T., Schäffer S., Bardel-Kahr, I & Baumann, J. (2022) A closer look reveals hidden diversity in the intertidal Caribbean Fortuyniidae (Acari, Oribatida). Plos One, online, 22 pp.  https://doi.org/10.1371/journal.pone.0268964

  23. Raspotnig, G. (2006) Characterisation of monophyletic oribatid groups by oil gland chemistry - a novel systematic approach in Oribatida (Acari). Abhandlungen und Berichte des Naturkundemuseums Görlitz, 78, 31–46.

  24. Raspotnig, G. (2010) Oil gland secretions in Oribatida (Acari). In: Sabelis M.W. & Bruin J. (Eds) Trends in Acarology, Proceedings of the XII International Congress of Acarology, Amsterdam (2006). Springer-Science + Business Media B.V., Dordrecht, pp. 235–239. https://doi.org/10.1007/978-90-481-9837-5_38

  25. Sakata, T. & Norton, R.A. (2001) Opisthonotal gland chemistry of early-derivate oribatid mites (Acari) and its relevance to systematic relationships of Astigmata. International Journal of Acarology, 27, 281–291. https://doi.org/10.1080/01647950108684268

  26. Sakata, T. & Norton, R.A. (2003) Opisthonotal gland chemistry of a middle-derivative oribatid mite, Archegozetes longisetosus (Acari: Trhypochthoniidae). International Journal of Acarology, 29, 345–350. https://doi.org/10.1080/01647950308684351

  27. Saporito, R.A., Donnelly, M.A., Norton, R.A., Garraffo, H.M., Spande, T.F. & Daly, J.W. (2007) Oribatid mites as a major dietary source for alkaloids in poison frogs. Proceedings of the National Academy of Sciences, 104, 8885–8890. https://doi.org/10.1073/pnas.0702851104

  28. Saporito, R.A., Norton, R.A., Garraffo, M.H. & Spande, T.F. (2015) Taxonomic distribution of defensive alkaloids in Nearctic oribatid mites (Acari, Oribatida). Experimental and Applied Acarology, 67, 317–333.  https://doi.org/10.1007/s10493-015-9962-8

  29. Schäffer, S., Kerschbaumer, M. & Koblmüller, S. (2019) Multiple new species: Cryptic diversity in the widespread mite species Cymbaeremaeus cymba (Oribatida, Cymbaeremaeidae). Molecular Phylogenetics and Evolution, 135, 185–192. https://doi.org/10.1016/j.ympev.2019.03.008

  30. Smith, G., Manzano-Marin, A., Reyes-Prieto, M., Antunes, C.S.R., Ashworth, V., Goselle, O.N., Jan, A.A.A., Moya, A., Latorre, A., Perotti, M.A. & Braig, H.R. (2022) Human follicular mites: Ectoparasites becoming symbionts. Molecular Biology and Evolution, 39, msac125. https://doi.org/10.1093/molbev/msac125

  31. Takada, W., Sakata, T., Shimano, S., Enami, Y., Mori, N., Nishida, R. & Kuwahara, Y. (2005) Scheloribatid mites as the source of pumiliotoxins in dendrobatid frogs. Journal of Chemical Ecology, 31, 2403–2415.  https://doi.org/10.1007/s10886-005-7109-9

  32. Wauthy, G., Leponce, M., Banai, N., Sylin, G. & Lions, J.C. (1997) Un Acarien qui saute et qui se met en boule. Comptés rendus des séances de l’Académie des Sciences, Paris, Sciences de la vie, 320, 315–317. https://doi.org/10.1016/S0764-4469(97)82773-4

  33. Wauthy, G., Leponce, M., Banai, N., Sylin, G. & Lions, J.C. (1998) The backward jump of a box moss mite. Proceedings of the Royal Society London, B, Biological Sciences, 265, 2235–2242. https://doi.org/10.1098/rspb.1998.0565

  34. Wrensch, D.L., Kethley, J.B. & Norton, R.A. (1994) Cytogenetics of holokinetic chromosomes and inverted meiosis: Keys to the evolutionary success of mites, with generalizations on Eucaryotes. In: Houck M.A. (Ed.) Ecological and Evolutionary Analyses of Life-history Patterns. Chapman and Hall, New York, pp. 282–343. https://doi.org/10.1007/978-1-4615-2389-5_11