Skip to main content Skip to main navigation menu Skip to site footer
Type: Proceedings Papers
Published: 2022-11-30
Page range: 98–100
Abstract views: 96
PDF downloaded: 0

Unveiling the diet of predatory mites through DNA metabarcoding—can abiotic factors affect prey detectability?

Postgraduate Program in Zoology, Institute of Biological Sciences – University of Brasília (UnB), Federal District, Brazil, CBGP, INRAE, CIRAD, Institut Agro, IRD, Univ Montpellier, Montpellier, France. CBGP Centre de Biologie pour la Gestion des Populations (UMR CBGP), 755 avenue du Campus Agropolis, CS 30016, 34988 Montferrier sur Lez cedex, France, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, Brasília, DF 70770-917, Brazil
CBGP, Institut Agro, CIRAD, INRAE, IRD, Univ Montpellier, Montpellier, France
CBGP, Institut Agro, CIRAD, INRAE, IRD, Univ Montpellier, Montpellier, France
Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, Brasília, DF 70770-917, Brazil
CBGP, INRAE, CIRAD, Institut Agro, IRD, Univ Montpellier, Montpellier, France. CBGP Centre de Biologie pour la Gestion des Populations (UMR CBGP), 755 avenue du Campus Agropolis, CS 30016, 34988 Montferrier sur Lez cedex, France
Phytoseiidae high throughput sequencing biological control trophic interactions

Abstract

Despite the importance of predatory mites as biological control agents, the way that generalist species can maintain in agrosystems, the alternative prey they can feed on, the way they choose to eat one prey, or another are poorly known. For some phytoseiid predatory mite species, prey consumption has been characterized by lab tests (Cavalcante et al., 2015, 2017; Juan-Blasco et al., 2012; Oliveira et al., 2007). However, those approaches are sometimes difficult to perform, very time consuming and do not totally reflect interactions occurring in field conditions. New technologies that allow determining the diet of predatory mites in situ are highly desirable to supporting biological control programs. A promising avenue for deciphering the diet of predatory mites is offered by DNA metabarcoding. Although this approach has been used in the study of insects (Hosseini et al., 2008; Kaunisto et al., 2017; Paula et al., 2022), only starts to be applied to microarthropod biological control agents, as predatory mites (Navia et al., 2019). DNA metabarcoding was successfully applied to identify prey species of phytoseiid mites using group-specific primers. However, biotic and abiotic factors can affect the detectability of predatory mite preys through metabarcoding, as previously showed for studies using traditional molecular methods (=PCR Multiplex and Sanger sequencing) (Pérez-Sayas et al., 2015). This information is relevant to understanding the limits of using the methodology, to guide sample collection procedures, and to assure the correct interpretation of the results.

References

  1. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D, Koester, I, Kosciolek, T, Kreps, J, Langille, MGI, Lee, J., Ley, R., Liu, Y.X., Loftfield, E, Lozupone C., Maher M., Marotz C., Martin B.D., McDonald, D., McIver L.J., Melnik A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D, Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S. 2nd, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, PJ, Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R. & Caporaso, J.G.  (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857.  https://doi.org/10.1038/s41587-019-0209-9

  2. Cavalcante, A.C.C., Mandro, M.E.A., Paes, E.R. & Moraes, G.J. de (2017) Amblyseius tamatavensis Blommers (Acari: Phytoseiidae) a candidate for biological control of Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae) in Brazil. International Journal of Acarology, 43(1), 10–15.  https://doi.org/10.1080/01647954.2016.1225816

  3. Cavalcante, A.C.C., Santos, V.L.V. Dos, Rossi, L.C., & Moraes, G.J. de (2015) Potential of five brazilian populations of phytoseiidae (Acari) for the biological control of Bemisia tabaci (Insecta: Hemiptera). Journal of Economic Entomology, 108(1), 29–33.  https://doi.org/10.1093/jee/tou003

  4. Hosseini, R., Schmidt, O. & Keller, M.A. (2008) Factors affecting detectability of prey DNA in the gut contents of invertebrate predators: A polymerase chain reaction-based method. Entomologia Experimentalis et Applicata, 126(3), 194–202.  https://doi.org/10.1111/j.1570-7458.2007.00657.x

  5. Juan-Blasco, M., Qureshi, J.A., Urbaneja, A. & Stansly, P.A. (2012) Predatory mite, Amblyseius swirskii (Acari: Phytoseiidae), for biological control of Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Psyllidae). Florida Entomologist, 95(3), 543–551.  https://doi.org/10.1653/024.095.0302

  6. Kaunisto, K.M., Roslin, T., Sääksjärvi, I.E. & Vesterinen, E.J. (2017) Pellets of proof: First glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Ecology and Evolution, 7(20), 8588–8598.  https://doi.org/10.1002/ece3.3404

  7. Navia, D., Tixier, M., Ferragut, F. & Jean-François Martin. (2019) Unveiling the diet of predatory mites through DNA metabarcoding.  IOBC Vienna 2019 Working Group “Integrated Control of Plant-Feeding Mites.”

  8. Oliveira, H., Janssen, A., Pallini, A., Venzon, M., Fadini, M. & Duarte, V. (2007) A phytoseiid predator from the tropics as potential biological control agent for the spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Biological Control, 42(2), 105–109.  https://doi.org/10.1016/j.biocontrol.2007.04.011

  9. Paula, D.P., Barros, S.K.A., Pitta, R.M., Barreto, M.R., Togawa, R.C. & Andow, D.A. (2022) Metabarcoding versus mapping unassembled shotgun reads for identification of prey consumed by arthropod epigeal predators. GigaScience, 11, 1–13.  https://doi.org/10.1093/gigascience/giac020

  10. Pérez-Sayas, C., Pina, T., Gómez-Martínez, M.A., Camañes, G., Ibáñez-Gual, M.V., Jaques, J.A. & Hurtado Ruiz, M.A. (2015) Disentangling mite predator-prey relationships by multiplex PCR. Molecular Ecology Resources, 15(6), 1330–1345.  https://doi.org/10.1111/1755-0998.12409

  11. R Core Team. (2021) R: A language and environment for statistical computing. (URL https://www.R-project.org/). R Foundation for Statistical Computing.

  12. Zinger, L., Lionnet, C., Benoiston, A. S., Donald, J., Mercier, C., & Boyer, F. (2021) metabaR: An r package for the evaluation and improvement of DNA metabarcoding data quality. Methods in Ecology and Evolution, 12(4), 586–592.  https://doi.org/10.1111/2041-210X.13552