Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-12-31
Page range: 5-62
Abstract views: 17
PDF downloaded: 0

How long do acarid mites live? A survey of lifespan in Acaridae (Sarcoptiformes: Astigmata)

Bioeconomy Science Institute; Manaaki Whenua – Landcare Research Group; 231 Morrin Road; Auckland 1072; New Zealand; School of Biological Sciences; University of Auckland; 3A Symonds Street; Auckland 1010; New Zealand
Bioeconomy Science Institute; Manaaki Whenua – Landcare Research Group; 231 Morrin Road; Auckland 1072; New Zealand
Bioeconomy Science Institute; Manaaki Whenua – Landcare Research Group; 231 Morrin Road; Auckland 1072; New Zealand; School of Biological Sciences; University of Auckland; 3A Symonds Street; Auckland 1010; New Zealand
Acari Acaridae life cycle development lifespan longevity

Abstract

Lifespan is a fundamental life-history trait that reflects ecological and evolutionary adaptations. However, information on the lifespan of mites (Acari) remains limited despite their remarkable diversity. As part of the series “How long do Acari live?”, this study compiles and analyses published data on the lifespan of mites in the family Acaridae (Acari: Sarcoptiformes: Astigmata). Literature was searched across major databases (up to 15 October 2025), and data on species identity, sex, temperature, humidity, diet, mean adult longevity, and total lifespan were extracted. Adult longevity and/or lifespan data were only found on 19 species across 7 genera, which are mostly agricultural or storage pests. Across species, adult longevity in Acaridae was generally short, overlapping with other astigmatid mites. Lifespan was highly plastic and primarily influenced by abiotic conditions and resource quality. Cooler temperatures prolonged development and adult longevity, while reduced relative humidity lowered survival. No consistent sex difference in longevity was detected, possibility reflecting interspecific variation in reproductive strategies and experimental design. By combining existing lifespan data, this study provides a foundation for comparative and evolutionary analyses of ageing in mites. Standardised methodologies and broader taxonomic coverage beyond pest species are needed to advance understanding of life-history evolution in this ecologically and economically important family.

References

  1. Abou El-Atta, D.A., Habashy, M.G., Mesbah, A.E. & Tawfik, A.A. (2017) Life history of Caloglyphus manure, Sancassania (Caloglyphus) berlesei and Tyrophagus putrescentiae (Acari: Acaridae) feeding on root-knot nematodes, Meloidogyne incognita. Journal of Plant Protection and Pathology, 8, 69–72.
  2. Abou El-Atta, D.A.E. & Osman, M.A. (2016) Development and reproductive potential of Tyrophagus putrescentiae (Acari: Acaridae) on plant-parasitic nematodes and artificial diets. Experimental and Applied Acarology, 68, 477–483.
  3. Abou El-Atta, D.A.E., Ghazy, N.A. & Osman, M.A. (2014) Effects of temperature on the life‐history traits of Sancassania (Caloglyphus) berlesei (Acari: Astigmatina: Acaridae) feeding on root‐knot nematodes, Meloidogyne spp. (Nematoda: Meloidogynidae). Experimental and Applied Acarology, 64, 299–307.
  4. Ahmed, N., Rady, G.H., Abdelnabby, H., Ma, W., Liu, S. & Wang, M. (2012) Damage effect of two storage mites (Acari: Acaridida) and their biology on the Shiitake mushroom (Lentinula edodes) at three constant temperatures. International Journal of Acarology, 38, 230–235.
  5. Ahmed, N., Wang, M. & Shu, S. (2016) Effect of commercial Bacillus thuringiensis toxins on Tyrophagus putrescentiae (Schrank) fed on wolfberry (Lycium barbarum L.). International Journal of Acarology, 42, 1–6.
  6. Ai, H., Chen, Y., Miao, G., Zhong, S., Hu, Y., Xin, T., Xia, B. & Zou, Z. (2025) ROS elevation in early development extends Aleuroglyphus ovatus lifespan. Journal of Stored Products Research, 114, 102788. https://doi.org/10.1016/j.jspr.2025.102788
  7. Amirijami, A. & Karimi-Shahri, M. (2024) Life table of bulb mite Rhizoglyphus robini (Acari: Acaridae) on saffron corms infected with Fusarium oxysporum (Fungi: Nectriaceae). Persian Journal of Acarology, 13, 1–12.
  8. Bilde, T., Maklakov, A.A., Meisner, K., la Guardia, L. & Friberg, U. (2009) Sex differences in the genetic architecture of lifespan in a seed beetle: extreme inbreeding extends male lifespan. BMC Evolutionary Biology, 9, 33. https://doi.org/10.1186/1471-2148-9-33
  9. Boczek, J.H. & Davis, R. (1985) Effects of alternating temperatures on Acarus siro L. (Acari: Acaridae). Experimental and Applied Acarology, 1, 213–217.
  10. Bonato, O. & Chadoeuf, J. (2018) Arthropods life cycle and temperature: beyond isomorphy hypothesis. Journal of Thermal Biology, 75, 1–6.
  11. Cakmak, I., Ekmen, Z.I., Karagoz, M., Hazir, S. & Kaya, H.K. (2010) Development and reproduction of Sancassania polyphyllae (Acari: Acaridae) feeding on entomopathogenic nematodes and tissues of insect larvae. Pedobiologia, 53, 235–240.
  12. Cakmak, I., Karagoz, M., Ipek Ekmen, Z., Hazir, S. & Kaya, H.K. (2011) Life history of Sancassania polyphyllae (Acari: Acaridae) feeding on dissected tissues of its phoretic host, Polyphylla fullo (Coleoptera: Scarabaeidae): temperature effects. Experimental and Applied Acarology, 53, 41–49.
  13. Chen, W.H., Liu, Y.C. & Ho, C.C. (2002) The life cycle, distribution and host plants of bulb mite, Rhizoglyphus setosus Manson (Acari: Acaridae) in Taiwan. Plant Protection Bulletin, 44, 25–33.
  14. Chen, X., Zhang, K. & Zhang, Z.-Q. (2025) Effects of variable mating opportunity, delay, and male mating experience on the lifespan, female reproductive traits, and offspring traits of Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acarology, 94, 33. https://doi.org/10.1007/s10493-025-00999-8
  15. Chen, Y., Lin, Y. & Fan, Q.-H. (2006) Influences of foodstuffs on the development, reproduction and hypopus induction of bulb mite Rhizoglyphus echinopus (Acari: Acaridae). Entomological Journal of East China, 15, 250–252.
  16. Chen, Z., Khaiboullina, S.F., Baranwal, M., Rizvanov, A.A. & Liu, J. (2024) How long do ticks live? A survey of lifespan, life cycle and longevity in Ixodida (Acari: Parasitiformes). Zoosymposia, 25, 5–55.
  17. Comfort, A. (1961) The life span of animals. Scientific American, 205, 108–119.
  18. Cross, E.A. & Bohart, G.E. (1990) Notes on the life history of Sancassania boharti (Acari: Acaridae) and its relationship to the alkali bee, Nomia melanderi (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 63, 603–610.
  19. Cunnington, A.M. (1985) Factors affecting oviposition and fecundity in the grain mite Acarus siro L. (Acarina: Acaridae), especially temperature and relative humidity. Experimental and Applied Acarology, 1, 327–344.
  20. Daneshvar, H., Rodriguez, J.G. & Rodriguez, L.D. (1977) Monoxenic culture of Caloglyphus berlesei (Acarina: Acaridae) on fungi. Journal of Invertebrate Pathology, 30, 175–180.
  21. Danks, H.V. (2000) Measuring and reporting life-cycle duration in insects and arachnids. European Journal of Entomology, 97, 285–303.
  22. Davis, R. & Boczek, J. (1988) Thermal acclimation in the grain mite Acarus siro (Acari: Acaridae). Experimental and Applied Acarology, 5, 175–179.
  23. da Silva, G.L., Esswein, I.Z., de Souza Radaelli, T.F., Rocha, M.S., Ferla, N.J. & da Silva, O.S. (2018) Influence of various diets on development, life table parameters and choice oviposition test of Tyrophagus putrescentiae (Acari: Acaridae): an illustration using scanning electron microscopy (SEM). Journal of Stored Products Research, 76, 77–84.
  24. Díaz, A., Okabe, K., Eckenrode, C.J., Villani, M.G. & O’Connor, B.M. (2000) Biology, ecology, and management of the bulb mites of the genus Rhizoglyphus (Acari: Acaridae). Experimental and Applied Acarology, 24, 85–113.
  25. Eales, N.B. (1917) The life history and economy of the cheese mites. Annals of Applied Biology, 4, 28–35.
  26. Fashing, N.J. (1975) Life history and general biology of Naiadacarus arboricola Fashing, a mite inhabiting water-filled treeholes (Acarina: Acaridae). Journal of Natural History, 9, 413–424.
  27. Fashing, N.J. & Hefele, W.J. (1991) Biology of Rhizoglyphus robini (Astigmata: Acaridae) reared on Bot and Meyer artificial medium. International Journal of Acarology, 17, 101–108.
  28. Gerson, U., Capua, S. & Thorens, D. (1983) Life history and life tables of Rhizoglyphus robini Claparede (Acari: Astigmata: Acaridae). Acarologia, 24, 439–448.
  29. Goldsmith, T. (2011) An Introduction to Biological Aging Theory. Azinet, Maine, 210 pp.
  30. Han, D., He, K., Chen, D., Yang, M., Zheng, A., Liu, J. & Zhang, Z. (2022) A survey of development time, longevity, and lifespan in Phytoseiidae (Acari: Mesostigmata). Zoosymposia, 21, 15–75.
  31. Han, X., Zhang, K., Xu, Y. & Zhang, Z.-Q. (2022) Prey requirement and development of a predatory mite under diet restriction: Phytoseiulus persimilis Athias-Henriot (Phytoseiidae) feeding on Tetranychus urticae Koch (Tetranychidae). Systematic and Applied Acarology, 27, 2103–2110.
  32. Hao, X., Wang, E., Yan, H., Zhao, P., Sheng, F., Ren, Q., Liu, M., Zhang, B. & Xu, X. (2024) Effects of heat stresses on fitness of three commercial predatory mites. Systematic and Applied Acarology, 29, 1673–1684.
  33. Hou, Z.Q., Liu, J.J., Li, H.P., Luo, X., Ma, L. & Qu, S.X. (2022) Biological parameters and host preference of Tyrophagus putrescentiae (Schrank) on different Pleurotus ostreatus cultivars. Systematic and Applied Acarology, 27, 1–8.
  34. Ismail, E., Abdelhady, M., El-Basiony, M. & AbdElKarim, S. (2023) Effect of different food types on development and life table parameters of Tyrophagus tropicus Robertson. Sinai Journal of Applied Sciences, 12, 197–204.
  35. Jarošík, V., Honěk, A. & Dixon, A.F.G. (2002) Developmental rate isomorphy in insects and mites. The American Naturalist, 160, 497–510.
  36. Kasap, İ., Kök, Ş. & Pehlivan, S. (2023) Effect of temperature on the life history and development of Typhlodromus athiasae Porath and Swirski (Acari: Phytoseiidae) as a predator of Tetranychus urticae Koch (Acari: Tetranychidae). Systematic and Applied Acarology, 28, 1668–1677.
  37. Kasuga, S. & Amano, H. (2000) Influence of temperature on the life history parameters of Tyrophagus similis Volgin (Acari: Acaridae). Applied Entomology and Zoology, 35, 237–244.
  38. Kheradmand, K., Kamali, K., Fathipour, Y. & Goltapeh, E.M. (2007) Development, life table and thermal requirement of Tyrophagus putrescentiae (Astigmata: Acaridae) on mushrooms. Journal of Stored Products Research, 43, 276–281.
  39. Klimov, P.B., Mwangi, E., Merckx, J., Duarte, M.V., Wäckers, F.L. & Vangansbeke, D. (2020) Thyreophagus plocepasseri sp. n., a new parthenogenetic species of acarid mites (Acariformes: Acaridae) from Kenya. Systematic and Applied Acarology, 25, 2250–2262.
  40. Klimov, P.B., Demard, E.P., Stinson, C.S., Duarte, M.V., Wäckers, F.L. & Vangansbeke, D. (2022) Thyreophagus calusorum sp. n. (Acari, Acaridae), a new parthenogenetic species from the USA, with a checklist of Thyreophagus species of the world. Systematic and Applied Acarology, 27, 1920–1956.
  41. Klimov, P.B., Kolesnikov, V.B., Demard, E.P., Stinson, C.S., Merckx, J., Duarte, M.V., Pedroso, L.G.A., Khaustov, A.A., Myers-Hansen, J.L., Wäkers, F.L. & Vangansbeke, D. (2023) Going Asexual: A survey of mites of the genus Thyreophagus (Acari: Acaridae) revealing a large number of new parthenogenetic species in the Holarctic Region. Life, 13, 2168. https://doi.org/10.3390/life13112168
  42. Knülle, W. (1991) Genetic and environmental determinants of hypopus duration in the stored-product mite Lepidoglyphus destructor. Experimental and Applied Acarology, 10, 231–258.
  43. Konvipasruang, P. & Fan, Q.-H. (2024) Description of a new species of Schwiebea (Sarcoptiformes: Acaridae) from Thailand. Systematic and Applied Acarology, 29, 1310–1328.
  44. Korghond, G.T., Sahebzadeh, N., Allahyari, H. & Ramroodi, S. (2021) Acute toxicity and sublethal effects of metal oxide nanoparticles against the bulb mite. Systematic and Applied Acarology, 26, 788–800.
  45. Li, G., Lam, W. & Zhang, Z.-Q. (2024) The indirect influence of potential mates on survival and reproduction of Tyrophagus curvipenis (Acari: Acaridae). Bulletin of Entomological Research, 114, 466–472.
  46. Li, G. & Zhang, Z.-Q. (2021a) Sex dimorphism of life-history traits and their response to environmental factors in spider mites. Experimental and Applied Acarology, 84, 497–527.
  47. Li, G. & Zhang, Z.-Q. (2021b) The costs of social interaction on survival and reproduction of arrhenotokous spider mite Tetranychus urticae. Entomologia Generalis, 41, 49–57.
  48. Li, W., Wang, H., Wang, C., Pan, Y., Hou, J., Kang, W., Shang, S. & Shi, S. (2024) Responses to temperature of population parameters of the pest mite Sancassania alfalfa fed on alfalfa. Acta Prataculturae Sinica, 33, 181.
  49. Liao, B., Zhang, J., Zhong, S., Zhang, Z., Xin, T., Xia, B. & Zou, Z. (2025) Impact of modified atmospheres enriched with carbon dioxide on the survival, biological, and physiological aspects of Aleuroglyphus ovatus (Troupeau, 1878). Journal of Stored Products Research, 110, 102484. https://doi.org/10.1016/j.jspr.2024.102484
  50. Liu, T. & Tzeng, A. (1994) Biological and damaging characteristics of bulb mite, Rhizoglyphus robini Claparede. Plant Protection Bulletin, 36, 177–187.
  51. Liu, T., Jin, D. & Guo, J. (2007) Laboratory population life table of Tyrophagus putrescentiae at different temperatures. Plant Protection, 33, 68–71.
  52. Murillo, P. & Aguilar, H. (2023) In vitro life table of the storage mite Tyrophagus putrescentiae (Acari: Acaridae). Cuadernos de Investigación UNED, 15, 119–129.
  53. Novikov, E.A., Demchenko, E.E., Zadubrovskaya, I.V., Zadubrovskiy, P.A., Matskalo, L.L., Nazarova, G.G., Novikova, E.V., Potapov, M.A., Potapova, O.F. & Proskurnyak, L.P. (2023) What determines the life span of a species? Biology Bulletin Reviews, 13, 383–396.
  54. Okabe, K. (1993) Developmental period and fecundity of Histiogaster sp. (Acari: Acaridae) on three fungi. Applied Entomology and Zoology, 28, 479–487.
  55. Okabe, K. & OConnor, B.M. (2001) Thelytokous reproduction in the family Acaridae (Astigmata). In: Halliday, R.B., Walter, D.E., Proctor, H.C., Norton, R.A. & Colloff, M.J. (Eds.), Acarology. Proceedings of the 10th International Congress of Acarology. CSIRO Publishing, Melbourn, pp. 170–175.
  56. Okabe, K. & OConnor, B.M. (2003) Factors affecting the observed sex ratio in parthenogenetic Schwiebea elongata (Acari: Acaridae) in Japan. International Journal of Acarology, 29, 243–250.
  57. Osman, M.A., Khairy, D.M. & Mostafa, F.A. (2016) Food as paramount factor on the biology and life table of Tyrophagus putrescentiae (Schmnk) (Astigmata: Acaridae). Acarines: Journal of the Egyptian Society of Acarology, 10, 19–23.
  58. Parkinson, C.L., Barron, C.A., Barker, S.M., Thomas, A.C. & Armitage, D.M. (1991) Longevity and fecundity of Acarus siro on four field and eight storage fungi. Experimental and Applied Acarology, 11, 1–8.
  59. Pfingstl, T. & Schatz, H. (2021) A survey of lifespans in Oribatida excluding Astigmata (Acari). Zoosymposia, 20, 7–27. https://doi.org/10.11646/zoosymposia.20.1.4
  60. Phillipsen, W.J. & Coppel, H.C. (1977) Actyledon formosani sp. n. associated with the Formosan sub-terranean termite, Coptotermes formosanus Shiraki (Acarina: Acaridae-Isoptera: Rhinotermitidae). Journal of the Kansas Entomological Society, 50, 399–409.
  61. Pillai, P. & Winston, P.W. (1969) Life history and biology of Caloglyphus anomalus Nesbitt (Acarina: Acaridae). Acarologia, 11, 295–303.
  62. Puspitarini, R.D., Fernando, I., Widjayanti, T., Purwanti, R.A., Munthe, S.S., Aini, E.N. & Wildaniyah, U. (2021a) Development and reproduction of Rhizoglyphus robini Claparéde (Astigmata: Acaridae), an emerging pest in Indonesia, on six host plants. International Journal of Acarology, 47, 695–700.
  63. Puspitarini, R.D., Fernando, I., Widjayanti, T., Ramadhatin, A. & Husna, N.L. (2021b) Physicochemical characteristics of stored products affect host preference and biology of Acarus siro (Acari: Acaridae). Journal of Crop Protection, 10, 281–293.
  64. Qu, S., Li, H., Ma, L., Song, J., Hou, L. & Lin, J. (2015) Temperature-dependent development and reproductive traits of Tyrophagus putrescentiae (Sarcoptiformes: Acaridae) reared on different edible mushrooms. Environmental Entomology, 44, 392–399.
  65. Qu, S., Li, H., Ma, L., Hou, L., Lin, J., Song, J. & Hong, X. (2015) Effects of different edible mushroom hosts on the development, reproduction and bacterial community of Tyrophagus putrescentiae (Schrank). Journal of Stored Products Research, 61, 70–75.
  66. Qu, S., Luo, X. & Ma, L. (2018) Effect of fungal species on the development and reproductive traits of the fungal-feeding mite Rhizoglyphus robini (Astigmata: Acaridae). Journal of Economic Entomology, 111, 154–158.
  67. R Core Team (2024) R: A language and environment for statistical computing, version 4.4.2. R Foundation for Statistical Computing, Vienna, Austria.
  68. Radwan, J. (1993) The adaptive significance of male polymorphism in the acarid mite Caloglyphus berlesei. Behavioral Ecology and Sociobiology, 33, 201–208.
  69. Radwan, J. (2001) Male morph determination in Rhizoglyphus echinopus (Acaridae). Experimental and Applied Acarology, 25, 143–149.
  70. Radwan, J. & Bogacz, I. (2000) Comparison of life-history traits of the two male morphs of the bulb mite, Rhizoglyphus robini. Experimental and Applied Acarology, 24, 115–121.
  71. Riddle, N.C., Biga, P.R., Bronikowski, A.M., Walters, J.R. & Wilkinson, G.S. (2024) Comparative analysis of animal lifespan. GeroScience, 46, 171–181.
  72. Rivard, I. (1961) Influence of temperature and humidity on longevity, fecundity, and rate of increase of the mite Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae) reared on mould cultures. Canadian Journal of Zoology, 39, 869–876.
  73. Rodriguez, J.G. & Stepien, Z.A. (1973) Biology and population dynamics of Caloglyphus berlesei (Michael) (Acarina: Acaridae) in xenic diet. Journal of the Kansas Entomological Society, 46, 176–183.
  74. Sánchez-Ramos, I., Alvarez-Alfageme, F. & Castañera, P. (2007a) Effects of relative humidity on development, fecundity and survival of three storage mites. Experimental and Applied Acarology, 41, 87–100.
  75. Sánchez-Ramos, I., Alvarez-Alfageme, F. & Castañera, P. (2007b) Reproduction, longevity and life table parameters of Tyrophagus neiswanderi (Acari: Acaridae) at constant temperatures. Experimental and Applied Acarology, 43, 213–226.
  76. Sánchez-Ramos, I. & Castañera, P. (2007) Effect of temperature on reproductive parameters and the longevity of Acarus farris (Acari: Acaridae). Journal of Stored Products Research, 43, 578–586.
  77. Sarwar, M., Xu, X. & Wu, K. (2010) Effects of different flours on the biology of the prey Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae) and the predator Neoseiulus pseudolongispinosus (Xin, Liang and Ke) (Acari: Phytoseiidae). International Journal of Acarology, 36, 363–369.
  78. Seeman, O.D. & Walter, D.E. (2023) Phoresy and mites: more than just a free ride. Annual Review of Entomology, 68, 69–88.
  79. Sherwani, A., Mukhtar, M., Maqsood, S., Mushtaq, T., Sofi, M.A. & Bano, P. (2023) Saffron bulb mite Rhizoglyphus robini (Claparéde): its occurrence, biology and chemical intervention tactics on saffron corms in Kashmir, India. International Journal of Plant and Soil Science, 35, 1588–1598.
  80. Sielezniew, M., Kostro-Ambroziak, A. & Kőrösi, Á. (2020) Sexual differences in age-dependent survival and life span of adults in a natural butterfly population. Scientific Reports, 10, 10394. https://doi.org/10.1038/s41598-020-66922-w
  81. Szlendak, E., Boczek, J., Bruce, W. & Davis, R. (1985) Effect of gamma-radiated males on egg production in Acarus siro. Florida Entomologist, 68, 286–290.
  82. Taha, H.A., Fawzy, M., El Ghobashy, A.E. & Abdel Salam, Z.E. (2016) Effect of different types of food on developmental stages, fecundity and life table parameters of the acarid mite Rhizoglyphus echinopus (Fumouze & Robin, 1868). Menoufia Journal of Plant Protection, 1, 59–65.
  83. Wei, X., Li, G. & Zhang, Z.-Q. (2023a) Prey life stages modulate effects of predation stress on prey lifespan, development, and reproduction in mites. Insect Science, 30, 844–856.
  84. Wei, X., Liu, J. & Zhang, Z.-Q. (2023b) Predation stress experienced as immature mites extends their lifespan. Biogerontology, 24, 67–79.
  85. Wei, X. & Zhang, Z.-Q. (2022) Level-dependent effects of predation stress on prey development, lifespan and reproduction in mites. Biogerontology (Dordrecht), 23, 515–527.
  86. Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
  87. Wolska, K.J. & Boczek, J. (1985) Effect of heterosis on quantitative characters of Tyrophagus putrescentiae (Schrank) (Acri: Acaridae). Genetica Polonica, 26, 255–259.
  88. Wu, J., Zhuo, M., Hu, C., Pan, R., Ding, L., Wu, X., Ye, C., Tao, X., Sun, E. & Liu, Y. (2024) Design and application of universal primers for mitochondrial genome sequencing of synanthropic mite species (Astigmatina: Acaridae). Systematic and Applied Acarology, 29, 550–558.
  89. Xia, B., Luo, D., Zou, Z. & Zhu, Z. (2009) Effect of temperature on the life cycle of Aleuroglyphus ovatus (Acari: Acaridae) at four constant temperatures. Journal of Stored Products Research, 45, 190–194.
  90. Xu, Y., Zhang, K. & Zhang, Z. (2023) The impact of conspecific presence on diet-induced developmental responses in a predatory mite. Systematic and Applied Acarology, 28, 1705–1715.
  91. Yan, H., Zhang, B., Li, Z., Wang, E., Wei, G. & Xu, X. (2022) Phenotypic plasticity of predatory mite Amblyseius orientalis in response to diet switch. Systematic and Applied Acarology, 27, 1098–1108.
  92. Zajitschek, F., Zajitschek, S. & Bonduriansky, R. (2020) Senescence in wild insects: key questions and challenges. Functional Ecology, 34, 26–37.
  93. Zeng, Z., Xie, S., Lin, L., Huang, J., Yu, D. & Ji, J. (2024) Development and reproductive potential of Oulenziella bakeri Hughes (Acari: Winterschmidtiidae) at different constant temperatures. Systematic and Applied Acarology, 29, 285–293.
  94. Zhang, J., Liu, J., Xu, W. & Zhao, Z.-Q. (1997) Studies on the biology of Caloglyphus fujianensis Zou, Wang et Zhang (Acarina: Acaridae). Wuyi Science Journal, 13, 221–228.
  95. Zhang, K. & Zhang, Z.-Q. (2025) Diet-induced developmental and morphological plasticity in a thelytokous predatory mite Amblyseius herbicolus (Chant) (Acari: Phytoseiidae). Ecology and Evolution, 15, e72280. https://doi.org/10.1002/ece3.72280
  96. Zhang, Z.-Q. (2021a) Introducing a survey of mite lifespans: how long do Acari live? Zoosymposia, 20, 1–5.
  97. Zhang, Z.-Q. (2021b) A survey of lifespan in Winterschmidtiidae (Sarcoptiformes: Astigmata). Zoosymposia, 20, 6–10.
  98. Zhang, Z.-Q. (2003) Mites of Greenhouses: Identification, Biology and Control. CABI Publishing, Wallingford, UK, 244 pp.
  99. Zhu, P., Yang, S., Yang, Y., Ai, H., Chen, M., Wang, X., Zhong, L., Xia, B. & Zou, Z. (2023) Effect of temperature on the life table parameters and high-temperature lethality of Tyrophagus putrescentiae. Journal of Stored Products Research, 101, 102094. https://doi.org/10.1016/j.jspr.2023.102094
  100. Zou, Z., Yang, Y., Chen, Y., Sun, W., Xi, J., Zhu, P., Min, Q., Wang, J., Wan, B. & Xin, T. (2023) Chronic lead exposure prolongs the immature stages of brown-legged grain mite, Aleuroglyphus ovatus, in a long-term population study. Environmental Pollution, 337, 122339. https://doi.org/10.1016/j.envpol.2023.122339