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ABSTRACT

Protoptilinae Ross, 1956, is the most diverse subfamily belonging to the saddle- or tortoise-case-making caddisfly family 

Glossosomatidae Wallengren, 1891. The subfamily has a disjunct distribution: 5 genera are known from the East Palae-

arctic and Oriental regions; the remaining 13 are restricted to the Nearctic and Neotropical regions. Monophyly of Pro-

toptilinae and each of 17 genera was tested using 80 taxa, 99 morphological characters, and mitochondrial DNA (COI). 

Additionally, homologies of morphological characters were assessed across genera and a standardized terminology for 

those structures was established. Mitochondrial DNA data were unavailable for 55 of the 80 taxa included in this study. 

To test the effects of the missing molecular data, 5 different datasets were analyzed using both parsimony and Bayesian 

methods. There was incongruence between the COI and morphological data, but results suggest the inclusion of COI data 

in a combined analysis, although incomplete, improved the overall phylogenetic signal. Bayesian and parsimony analyses 

of all 5 datasets strongly supported the monophyly of Protoptilinae. Monophyly of the following genera was also support-

ed: Canoptila Mosely, 1939; Culoptila Mosely, 1954; Itauara Müller, 1888; Mastigoptila Flint, 1967; Mortoniella Ulmer, 

1906; Protoptila Banks, 1904; and Tolhuaca Schmid, 1964. Several taxonomic changes were necessary for classification 

to reflect phylogeny accurately. Accordingly, Matrioptila Ross, 1938; Poeciloptila Schmid, 1991; Temburongpsyche Mal-
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icky, 1992; and Nepaloptila Kimmins, 1964, are designated new junior synonyms of Padunia Martynov, 1910. Addition-

ally, the endemic Caribbean genera Campsiophora Flint, 1964, and Cubanoptila Sykora, 1973, are designated new junior 

synonyms of Cariboptila Flint, 1964. Diagnoses and a key to the subfamilies of Glossosomatidae and world genera of 

Protoptilinae incorporating these taxonomic changes are provided.

Key words: taxonomy, identification key, male genitalia, female genitalia, morphology, COI, missing data, combined 

analyses

INTRODUCTION

Protoptilinae Ross, 1956, is 1 of 3 subfamilies belonging to the saddle-, or tortoise-case-making caddisfly family 

Glossosomatidae Wallengren, 1891. The other 2 subfamilies are Agapetinae Martynov, 1913 [1912] (~200 

species), containing Agapetus Curtis, 1834; Catagapetus McLachlan, 1884; and Electragapetus Ulmer, 1912 (6 

spp.), and known from the Nearctic, East and West Palaearctic, Australasian, Oriental, and Afrotropical 

biogeographic regions; and Glossosomatinae Wallengren, 1891 (~100 spp.), consisting of Anagapetus Ross, 1938, 

and Glossosoma Curtis, 1834, and known from the Nearctic, East and West Palaearctic, and Oriental regions 

(Morse 2013). Protoptilinae is the most diverse subfamily with 310 species (including 5 fossil spp.) and 17 genera 

(Holzenthal et al. 2007b, Morse 2013). The subfamily has a disjunct distribution (Fig. 1): 4 genera are known from 

the East Palaearctic and Oriental regions; the remaining 13 are restricted to the Nearctic and Neotropical regions 

(Morse 2013). Protoptilinae is the only glossosomatid subfamily to occur in the Neotropics, and it is there where 

the subfamily reaches its greatest diversity (280 species) and also exhibits a high degree of endemism at both the 

species and genus levels.

FIGURE 1. Approximate known distribution of Protoptilinae. The Neotropical region is the most diverse for this subfamily, 
with 280 out of 310 described species.

The objectives of this study were to 1) test the monophyly of Protoptilinae, 2) evaluate the monophyly of 

individual genera traditionally placed in Protoptilinae, and 3) infer relationships among genera. Additionally, 

homologies of morphological characters were assessed across genera and a standardized terminology for those 

structures was established. Generic boundaries were also delimited, resulting in new diagnoses and a key to the 

adults of world Protoptilinae. This was the first study to use modern cladistic and Bayesian methods in a 
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phylogenetic assessment of the subfamily, and was based on an analysis of 99 morphological characters and 80 

taxa, representing all 17 known genera. Furthermore, it was the first comprehensive study of Protoptilinae to 

incorporate molecular data. Results of this study imparts taxonomic stability and clarifies classification, provides a 

new phylogenetic framework to place new species, and provides insight into current distribution patterns, historical 

biogeography, and the evolution of certain adaptations and life history traits.

FIGURE 2. Adult. (A) Itauara species. (B) Mortoniella species. (C) Protoptila species.

General morphology and biology

Members of Protoptilinae are so minute (1.5–6.0 mm) that they were once thought to belong to Hydroptilidae, 

the microcaddisflies (Walker 1852). In general, adults have rather narrow wings, which are held “tent-like” at rest. 

Forewings have a long fringe of setae apically, and tend to be various shades of black or brown (Fig. 2A), although 

many species have conspicuous white transverse bars (Fig. 2B) or spots (Fig. 2C). Protoptilines have 3 ocelli (Fig. 

5), 5-segmented maxillary palps (Fig. 6E), and setal warts on the head and thorax (Fig. 5). Wing venation varies 
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widely among and sometimes even within genera, although all protoptilines have a row of stout setae along the 

Cu2 vein in the forewing (Figs. 7–14) which perhaps acts as a wing coupling device in concert with a fringe of 

setae along the costal margin of the hind wing (Stocks 2010). There has been an extreme diversification of male 

genitalia, possibly the result of sexual selection (Ward & Pollard 2002). Structures of the female genitalia also vary 

throughout the subfamily, although differences are much more conserved and tend to be internal.  

FIGURE 3. Larval cases. (A) Protoptila species. (B) Culoptila moselyi Denning. (C) Culoptila unispina Blahnik & 
Holzenthal. (Modified from Blahnik & Holzenthal 2006.)

Like other glossosomatid larvae, protoptilines graze on diatoms, periphyton, and fine organic particulates from 

the exposed surfaces of submerged rocks and other substrates (Wiggins 1996, 2004). Larvae are generally found in 

lotic habitats, with some species preferring large, warm rivers and others preferring small, cooler streams. 

Protoptiline larvae construct portable “tortoise” or “saddle” cases of small sand grains or pebbles, typical of other 

glossosomatids (Fig. 3) (Wiggins 1996, 2004). Within Protoptilinae, some slight variations occur to this basic case 

architecture. For example, Culoptila unispina Blahnik & Holzenthal, 2006, builds a more elongate case with a 

central open turret (Blahnik & Holzenthal 2006) (Fig. 3C). Other Culoptila species are known to construct partial 
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“collars” of silk fastened around the periphery of the anterior and posterior openings (Wiggins 1996). Cases of

Matrioptila jeanae (Ross, 1938) and Padunia alpina Kagaya & Nozaki, 1998, tend to be slightly flattened 

dorsoventrally (Kagaya & Nozaki 1998, Wiggins 1996). Many species use rather uniformly sized pieces of 

fragments throughout the case, although species of Protoptila affix a larger stone on each side (Fig. 3A) (Wiggins 

1996). Variation in the position of respiratory openings can be observed with some occurring on the dorsum near 

the posterior and anterior ends (Wiggins 1996), while in other species openings are irregularly spaced throughout 

the case (Flint 1964).

FIGURE 4. Culoptila species. (A) Metatarsal claw. (B) Head and thorax, dorsal. (C) Anal claw. (D) Larva, left lateral. (Figure 
modified from Holzenthal & Blahnik 2006.)
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Glossosomatid larvae have hypognathous mouthparts adapted to grazing. The mandibles have a uniform 

scraping edge lacking separate teeth, and the labrum has a membranous fringe (Wiggins 1996, 2004). Other typical 

glossosomatid larval characteristics include a heavily sclerotized pronotum with prominent prosternal sclerites, a 

lack of abdominal gills, segment IX bearing a dorsal sclerite, and the basal half of the anal prolegs fused with the 

abdomen (Wiggins 2004). Protoptilinae larvae (Fig. 4) differ from other glossosomatids by having 1) a mesonotum 

with 3 sclerites, 2) a metanotum with 2 small sclerites, 3) a V-shaped ventral apotome on the head, and 4) anal 

proleg claws with 4 or more accessory hooks (Morse & Holzenthal 2008, Wiggins 1996). However, immature 

stages have been described for only just over half of the protoptiline genera, and within those genera, very few 

species are known. Therefore, it is impossible to know if these characteristics are typical for the subfamily, certain 

genera, or are species specific. Among protoptilines whose larvae are known, variation occurs in the shape of the 

tarsal claws, shape of the mesonotal sclerites, and the number of accessory hooks on the anal claws.

Taxonomic history and previous phylogenetic treatments of Protoptilinae 

The first protoptiline species to be described, Protoptila tenebrosa (Walker, 1852), was described in Hydroptila

(Hydroptilidae). Banks (1904) later described the genus Protoptila in Hydroptilidae, but he noted that it differed 

from most other hydroptilids by lacking erect hairs on the wings and having 4 tibial spurs on the mesothoracic legs. 

Mosely (1937) suggested that Protoptila might be better placed in Rhyacophilidae than Hydroptilidae. 

Consequently, Ross (1938) transferred Protoptila to Glossosomatinae, then a subfamily of Rhyacophilidae, based 

on similarities of the immature stages, a lack of setation on the abdomen, and the general structure of the male and 

female genitalia. Later, in a posthumous work, Mosely (1954) transferred from Hydroptilidae to Glossosomatinae 

Antoptila Mosely, 1939 (junior synonym of Itauara Müller, 1888); Canoptila Mosely, 1939; Culoptila Mosely, 

1954; Mexitrichia Mosely, 1937 (junior synonym of Mortoniella Ulmer, 1906); and Mortoniella Ulmer, 1906. 

Mosely (1954) expressed his inclination to create a new subfamily within Rhyacophilidae to contain these 

“kindred” genera, but ultimately accepted the views of Ross (1938) and Ulmer (in a letter to Mosely partly quoted 

by Mosely 1954), that the immature stages of the Protoptila group showed a close relationship to Glossosomatinae. 

Subsequently, Ross (1956) elevated Glossosomatinae to family status and established Protoptilinae as a subfamily. 

Eventually, 2 other genera originally described in Hydroptilidae, Padunia Martynov, 1910, and Scotiotrichia

Mosely, 1934, and another originally placed in Sericostomatidae, Tolhuaca Schmid, 1964, were transferred to 

Protoptilinae (Flint 1967b, Marshall 1979, Schmid 1958). 

Historically, descriptions of new protoptiline species have tended to be rather regional in scope, and as a result, 

the taxonomic literature is somewhat scattered. Late 19th to early- through mid-20th century protoptiline workers 

included Müller: SE Brazil (1888, 1921); Ulmer: Ecuador (1906); Banks: United States (1904); Mosely: Argentina, 

Chile, SE Brazil, Mexico (1934, 1937, 1939, 1954); Martynov: Siberia (1910, 1929, 1934); Ross: United States: 

(1938, 1941, 1944, 1956); and Tsuda: Korea (1942). Contemporary workers have included Angrisano: Argentina, 

Uruguay (1993, 1997); Botosaneanu: Venezuela, Caribbean (1977, 1994, 1996, 1998); Bueno: Mexico (1983, 

1984); Bueno & Santiago: Mexico (1979, 1996); Flint: Caribbean, North, Central & South America (1963, 1964, 

1967a, 1968, 1971, 1974, 1981, 1983, 1991, 1992); Kagaya & Nozaki: Japan (1998); Kimmins: Nepal (1964); 

Kumanski: Cuba (1987); Malicky: Brunei (1995); Malicky & Chantaramongkol: Thailand (1992); Morse: United 

States (1988); Schmid: Argentina, Bolivia, Chile, India (Schmid 1958, 1959, 1964, 1990); Sykora: Bolivia, Cuba, 

Ecuador, Venezuela (Botosaneanu & Sykora 1973, Sykora 1999); Tian & Li: China (1986); and Wichard: 

Dominican amber fossils (Wichard 1989, 1995). Most recently, regional descriptions of protoptiline species have 

included works by Blahnik & Holzenthal: Central and South America (2006, 2008, 2011); Santos & Nessimian: 

Brazil (2009) Flint & Sykora: Dominican Republic (2004); Holzenthal: Chile (2004); Holzenthal & Blahnik: Costa 

Rica (2006); Rueda-Martín & Gibon: Argentina, Bolivia (2008); Malicky: Vietnam (2009); Malicky & 

Chantaramongkol: Thailand (2009, Malicky et al. 2006); Malicky & Silamon: Thailand (2012); Nishimoto & 

Nozaki: Japan (2007); Robertson & Holzenthal: Bolivia, Brazil, Guyana, Peru, Venezuela (2005, 2008, 2011); and 

Wichard: Dominican and Mexican amber fossils (2007, Wichard et al. 2006).

Very few published works exist regarding phylogenetic relationships among Protoptilinae genera. Ross (1956) 

provided 1 of the earliest reviews of the subfamily in which he proposed 2 major protoptiline lineages. Noting the 

ancestral features of Matrioptila (a monotypic genus from North America), Ross (1956) believed the genus 

represented the “first discovered step in protoptiline evolution” and eventually gave rise to the more widespread 
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Antoptila lineage in the Neotropics, culminating in Protoptila. Schmid (1990) discussed possible relationships 

between the Asian and American genera, concluding that it was impossible to determine from which continent the 

subfamily originated. Morse & Yang (1993) provided a useful table summarizing the wing venation of 15 

protoptiline genera. They also listed the following putative synapomorphies of Protoptilinae: 1) larval tarsal claw 

seta beside tarsal claw process, 2) larvae with 4 accessory hooks on anal claw, 3) adult foretibial spur absent, 4) 

forewing fork V absent, and 5) forewing crossveins aligned (Morse & Yang 1993). Five comprehensive revisions 

of individual protoptiline genera have been published, treating a total of 82 species. These revisions included 

discussions of possible phylogenetic relationships among genera. Blahnik & Holzenthal revised Culoptila (2006) 

and the Mexican and Central American species of Mortoniella (2008). Robertson & Holzenthal revised the genera 

Tolhuaca (2005), Canoptila (2006), and Itauara (2011). In a higher-level phylogenetic analysis of Trichoptera, 

Kjer et al. (2001) recovered a monophyletic Protoptilinae, although only 2 genera were represented. In another 

study, with 3 Protoptilinae genera represented, Kjer et al. (2007) again found a monophyletic Protoptilinae with the 

2 Neotropical representatives, Culoptila and Protoptila forming a clade. Holzenthal et al. (2007a) recovered 

Matrioptila as sister to a monophyletic Neotropical clade. Apart from these works, neither a further phylogenetic 

assessment of the subfamily nor a phylogeny have ever been published.

Overview of traditionally recognized genera of Protoptilinae

The following account is an overview of the historically recognized genera of Protoptilinae. The reader is directed 

to the section, “A phylogenetic framework for classification and diagnoses” (under Conclusions) for information 

regarding a revised taxonomic classification of the genera of Protoptiline based on the results of this research. 

Unless mentioned, immature stages and biology are unknown.

Campsiophora Flint, 1964

Four species for this genus are known, 1 each from Puerto Rico, Jamaica, Cuba, and quite curiously, Thailand. 

Flint (1964) remarked that Campsiophora was probably related to Culoptila and Cariboptila because of similarities 

in the male genitalia but established it as a new genus based on differences in wing venation, lack of enlarged 

tegulae, and the presence of a hair pencil in the forewing. Malicky & Silalom (2012) recently described a new 

monotypic genus, reportedly from Thailand, Muanpaipsyche areopagita. However, after comparing figures given 

by Malicky & Silamon (2012) with those of Flint (1964), we communicated to Dr. Malicky that this new genus was 

almost certainly Campsiophora pedophila because of nearly identical male genitalia and wing venation. Malicky 

later synonomized the genus, but retained the species (Malicky 2013). Larvae and pupae of Campsiophora are 

known to occur in large numbers on rocks in riffles of large lowland rivers and perhaps in smaller numbers in small 

mountain streams (Flint 1964, 1968). Larvae construct typical tortoise-shaped cases (Flint 1964, 1968). Females 

have been described for the 3 Caribbean species (Flint 1964, 1968). 

Canoptila Mosely, 1939

Two species are described for this genus from the Atlantic Forest of southeastern Brazil. Mosely (1939) 

established Canoptila from a single species in Hydroptilidae, based on wing venation and male genitalic features, 

but later (Mosely 1954) transferred it to the Protoptila group of Glossosomatinae, then a subfamily within 

Rhyacophilidae. Putative synapomorphies supporting the monophyly of the genus include: 1) the presence of long, 

spine-like, posterolateral processes on tergum X, 2) the highly membranous digitate parameres on the endotheca, 

and 3) the unique combination of both forewing and hind wing venational features (Robertson & Holzenthal 2006). 

Robertson & Holzenthal (2006) suggested that Canoptila was most closely related to the more derived protoptiline 

genera based on structures of the mesothorax and wing venation. The immature stages and biology are unknown. 

The female was described for Canoptila williami Robertson & Holzenthal, 2006.

Cariboptila Flint 1964

Eleven species of Cariboptila are known from Cuba, Dominican Republic, Jamaica, and Puerto Rico. Flint 

(1964) noted similarities to Culoptila and Campsiophora, but established Cariboptila as a new genus based on 

differences in wing venation, lack of enlarged tegulae, and lack of a hair pencil on the forewing. Larvae construct 

typical tortoise-shaped cases (Flint 1964, 1968). Larvae and pupae are found on stones in small, clear, cool streams 
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at higher elevations (Flint 1964, 1968). Females have been described for several species (Botosaneanu 1996, Flint 

& Sykora 2004). 

Cubanoptila Sykora, 1973, in Botosaneanu & Sykora 1973

Five extant species have been described from Cuba, and a single species was described from Jamaica. Sykora 

(in Botosaneanu & Sykora 1973) distinguished Cubanoptila from other genera based on features of the male 

antennae, the structure of tergum VIII, and wing venation. Sykora (in Botosaneanu & Sykora 1973) also noted 

similarities in forewing venation to Culoptila and hind wing venation to some species of Protoptila. Immature 

stages and females have been described for several species (Botosaneanu & Sykora 1973, Botosaneanu 1977, 

1998). Four fossil species are known from Miocene amber from the Dominican Republic: C. grimaldii Wichard, 

1995; C. longiscapa Wichard, 2007; C. mederi Wichard, 1989; and C. poinari Wichard, 1989.

Culoptila Mosely, 1954

This genus contains 26 extant species, and is mostly endemic to Mexico and Central America, although several 

species occur in the southwestern United States and 1 in the eastern United States. Mosely (1954) first established 

Culoptila within the Protoptila group of Glossosomatinae, then a subfamily of Rhyacophilidae. He distinguished 

the genus based on the unusually enlarged male tegulae and associated concertina-shaped glandular structures, and 

differences in wing venation and male genitalic features (Mosely 1954). Blahnik & Holzenthal (2006) remarked in 

their recent revision that the genus probably is most closely related to the endemic Caribbean genera 

Campsiophora, Cariboptila, and Cubanoptila. Immature stages and females are known for several species 

(Blahnik & Holzenthal 2006). Culoptila spp. construct typical tortoise-shaped cases of small grains of sand or with 

larger lateral stones and are known to occur in large rivers, as well as small springs and seepages (Blahnik & 

Holzenthal 2006; Houghton & Stewart 1998a, 1998b; Wiggins 1996). Houghton & Stewart (1998a, 1998b) 

provided details of life history and case building behavior. A single fossil species, C. aguilerai Wichard, 2006, was 

described from Miocene amber from Chiapas, Mexico.

Itauara Müller, 1888

Itauara contains 22 species and is known from Argentina, Brazil, Guyana, Peru, and Venezuela (Robertson & 

Holzenthal 2011). Müller (1888) first used the name Itauara without any included species or illustrations but in a 

later work (Müller 1921) provided sketches of the female forewing venation and some larval parts. Based on 

similarities in wing venation and of cases and larval parts, Flint et al. (1999) made Antoptila a synonym of Itauara, 

designated A. brasiliana (Mosely, 1939) as the type species, and transferred the 3 other known species of Antoptila

to Itauara. Ross (1956) suggested that Itauara (then Antoptila) represented a point at the base of a lineage 

culminating in Protoptila. In our recent revision of the genus, we determined the homologies and established 

standardized terminology of the male genitalic structures among species (Robertson & Holzenthal 2011). 

Angrisano (1993) described the immature stages and female of the type species and females of I. guarani

(Angrisanno, 1993) and I. plaumanni (Flint, 1974). Larvae construct typical tortoise-shaped cases of large and 

small grains of sand and are known to occur in sandy bottom streams with scarce vegetation where they attach their 

cases to Characeae algae (Angrisano 1993). 

Mastigoptila Flint, 1967

Mastigoptila contains 9 species, all of which are endemic to Chile. Flint (1967b) established Mastigoptila as a 

new genus based on differences in wing venation and the asymmetrical form of the male genitalia. Valverde & 

Miserendino (1998) provided details of the immature stages and biology of M. longicornuta (Schmid, 1958). 

Although female allotypes have been designated for 3 species, none have been described.

Matrioptila Ross, 1956

This monotypic genus is restricted to the Appalachian Mountains of the southeastern United States. Its sole 

species, Matrioptila jeanae (Ross, 1938) was originally placed in Protoptila. Ross (1956) established Matrioptila

as a new genus based on wing venational features and the presence of distinct claspers in the male genitalia. He 

suggested that it represented an archaic genus at the base of protoptiline evolution. Ross (1938) described the 

female, and Flint (1962) and Wiggins (1996) described the immature stages and discussed biology. Matrioptila is 

known to occur in cold, clear, rapid mountain streams.
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Merionoptila Schmid, 1959

This genus contains a single species, Merionoptila wygodzinskyi Schmid, 1959, known from northern 

Argentina. Schmid (1959) established the genus based on its rather unusual morphology. Merionoptila has a large 

head, bulky thorax, hairy eyes, very long and hairy legs, and a relatively reduced abdomen (Schmid 1959). 

Additionally, the wings and venation of the male are extremely reduced while the female is completely 

brachypterous (Schmid 1959). As discussed by Schmid (1959), Merionoptila has been observed “skating” on the 

surface of small streams and he noted similarity of morphological features with those of other surface skaters, most 

notably Anomalopteryx Stein, 1874 (=Anomalopterygella Fischer, 1966), and Limnoecetis tanganicae Marlier, 

1955. Although Schmid (1959) recognized that Merionoptila belonged in Protoptilinae, he admitted that its 

placement within the subfamily was difficult to determine since the subfamily was poorly known at the time. 

Nonetheless, he suggested that Merionoptila was more closely related to Antoptila (=Itauara) than the other known 

protoptiline genera (Schmid 1959).

Mortoniella Ulmer, 1906

Mortoniella is the largest genus in the subfamily with 97 described species from Mexico, Central, and South 

America. Ulmer (1906) first established Mortoniella in Hydroptilidae for a single species, M. bilineata Ulmer, 

1906, from Ecuador. Mosely (1937) later described an additional genus, Mexitrichia, for a species from Mexico. 

Although he noted similarity between the 2 genera, Mosely (1937) differentiated Mexitrichia from Mortoniella

based on its absence of apical fork V in the hind wing and what he considered to be important male genitalic 

differences. Historically, Mortoniella consisted of species from South America, and was more narrowly defined 

than Mexitrichia, whose members were known from Mexico and Central America. In subsequent works, other 

authors (Flint 1963, Sykora 1999) continued to recognize the 2 as distinct genera based on their apparent 

differences in hind wing venation, male genitalia, and immature stages. However, Blahnik & Holzenthal (2008) 

determined that Mortoniella, as historically defined, was based on a plesiomorphic wing character, and therefore 

did not adequately meet the principal of reciprocal monophyly by modern cladistic standards. Additionally, they 

attested that the male genitalia of Mexitrichia and Mortoniella were very similar (Blahnik & Holzenthal 2008). 

Consequently, the 2 genera were synonomized and species originally placed in Mexitrichia were transferred to 

Mortoniella (Blahnik & Holzenthal 2008). Immature stages and females have been described for a few species 

(e.g., Blahnik & Holzenthal 2008, Botosaneanu & Alkins-Koo 1993, Flint 1963). Larvae are known to occur in fast 

flowing rivers and streams (Flint 1963). 

Nepaloptila Kimmins, 1964

This genus consists of 4 species and is known from Nepal and Thailand. Kimmins (1964) remarked that the 

type species resembled a small Agapetus but placed it in Protoptilinae based on its absence of mesoscutellar warts, 

presence of rounded warts on the mesoscutum, and presence of stout setae on Cu2 in the forewing. Kimmins 

(1964) noted similarities in wing venation and male genitalia to Matrioptila but suggested Nepaloptila had more 

primitive features because of its retention of apical fork V in the forewing. Female paratypes were designated for 

N. ruangjod Malicky & Chantaramongkol, 1992, but were neither illustrated nor described. 

Padunia Martynov, 1910

Padunia contains 16 species and is known from eastern and central Siberia, Mongolia, Japan, Korea, Thailand, 

and Vietnam. Martynov (1910) originally described the genus in Hydroptilidae based on the wing venation of the 

females of P. adelungi Martynov, 1910, and remarked that the genus was probably related (although not closely) to 

Agraylea Curtis, 1834, and Mortoniella. Martynov (1929) later provided an illustration of the male genitalia from 

the type species and the genitalia and head of P. lepnevae Martynov, 1929. Subsequently, Tsuda (1942) described a 

new genus, Uenotrichia in Hydroptilidae, which Fischer (1971) later mistakenly elevated as a senior synonym to 

Padunia. Interestingly, Ulmer (in a letter to Mosely partly quoted by Mosely 1954) and Mosely (1954) suggested 

that Padunia might in fact belong to the “Protoptila group,” but did not transfer it at the time. However, in her 

revision of the family Hydroptilidae, Marshall (1979) determined that the genus belongs to the Protoptilinae within 

Glossosomatidae based on similarities of the thorax, male genitalia, and wing venation to Matrioptila and 

Nepaloptila. Additionally, she correctly identified Padunia as the senior synonym to Uenotrichia based on date 

priority (Marshall 1979). Kagaya & Nozaki (1998) described the female and provided details of immature stages 
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and biology of Japanese Padunia. Larvae construct tortoise-shaped cases that are somewhat flattened 

dorsoventrally, and live in cold mountain streams (Kagaya & Nozaki 1998).

Poeciloptila Schmid, 1991 [1990] 

Poeciloptila is comprised of 7 species and is known from China, India, and Thailand. Schmid (1990) first 

established the genus based on features of the male genitalia, including: 1) membranous lateral faces of the Xth 

segment, and 2) a large ventral branch of the phallic apparatus. As for its position within Protoptilinae, Schmid 

stated simply, “Il n'est pas spécialement apparenté à Nepaloptila.” [“It is not especially related to Nepaloptia.” 

Translation from Schmid 1990]. Although Schmid (1990) designated female allotypes and paratypes for 2 species, 

he did not describe or illustrate the specimens.

Protoptila Banks, 1904

Protoptila currently contains 95 described species and has a distribution ranging from Canada through South 

America. Banks (1904) originally described the genus in Hydroptilidae; however, he noted that it differed from 

most hydroptilids by lacking erect hairs on the wings and having 4 tibial spurs on the mesothoracic legs. Mosely 

(1937) suggested that species of Protoptila might be more closely related to those of Glossosomatinae than 

Hydroptilidae. Subsequently, Ross (1938) transferred Protoptila to Glossosomatinae, then a subfamily of 

Rhyacophilidae. Morse (1988) and Blahnik & Holzenthal (2006) interpreted and homologized structures of the 

male genitalia. Distinctive features of the genus include: 1) an enlarged, flattened, phallic apodeme, and 2) a 

posteriorly projecting sternum VIII (Holzenthal & Blahnik 2006). Blahnik & Holzenthal (2008) suggested 

Protoptila was the likely sister taxon to Mortoniella because both have short, articulated, rod-like appendages 

arising from the posteroventral margin of the phallobase that fit into modified pockets. Immature stages and 

females have been described for several species (Ross 1944, Wiggins 1996). Larvae build typical tortoise-shaped 

cases, often with a large stone positioned on each side (Wiggins 1996). They are known to occur in clear, forested 

streams, but are particularly abundant in warm, lowland rivers (Holzenthal & Blahnik 2006, Flint 1968).

Scotiotrichia Mosely, 1934

This genus contains a single species, Scotiotrichia ocreata Mosely, 1934, and is known from Bariloche, 

Argentina, and adjoining areas in Chile. Mosely (1934) originally established the genus in Hydroptilidae, but noted 

that its wing venation was much more complete than typically found in the family. Schmid (1958) later transferred 

the genus to Protoptilinae. The female has not been described. 

Temburongpsyche Malicky, 1995

The genus is known from a single species, Temburongpsyche anakan Malicky, 1995, from Brunei. Malicky 

(1995) commented that the wing venation of Temburongpsyche matches that of Padunia and agrees with 

Poeciloptila. He also noted that the dorsal warts on the head and thorax correspond to those of Nepaloptila

(Malicky 1995). Nonetheless, Malicky (1995) established Temburongpsyche as a new genus based on several 

derived features of the male. These include 1) a broad, ring-like segment IX, 2) reduction of “various appendices” 

along the posterior margin of segment IX, 3) an “enormously large and thick phallus,” and 4) a tibial spur formula 

of 0,3,3. Malicky (1995) illustrated the female genitalia.

Tolhuaca Schmid, 1964

Tolhuaca contains 2 species, 1 known from Chile, the other from southeastern Brazil. Schmid (1964) originally 

placed the genus in Sericostomatidae, commenting on the similarity of the male genitalia to those of 

Brachycentrinae, at that time a subfamily within Sericostomatidae. Later, Flint (1967) transferred Tolhuaca to 

Protoptilinae, noting that the wing figures in the original description were transposed with those of Austrocentrus 

griseus Schmid, 1964 (Helicophidae). Schmid (1964) remarked that although Tolhuaca has complete wing 

venation, a primitive feature of Trichoptera, the male genitalia are very simple and derived, thus “…it is impossible 

to assign a phyletic position to the genus.” However, Robertson & Holzenthal (2005) determined that Tolhuaca

deserves a basal placement in Protoptilinae based on its retention of the foretibial spur, presence of mesoscutellar 

setal warts, and the oviscapt structure of the female genitalia.
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MATERIAL AND METHODS

Selection of Taxa

The taxa included in this study were chosen in an attempt to represent the overall morphological and taxonomic 

diversity of each genus within the subfamily Protoptilinae. Additionally, the taxa selected represented all 

biogeographical regions where Protoptilinae is known to occur. Head, thoracic, wing venation, and male genitalic 

characters are based on observations of individual species rather than groups of species or higher taxa (Prendini 

2001). When possible, multiple specimens of the same species were examined to account for possible intraspecific 

variation. Therefore, the material examined, listed in Table 1, includes for each species the name of the species, 

country localities, and number of specimens examined. Composite coding (Maddison 1993) was used for a single, 

family-level larval character and 3 female genitalic characters (discussed further under the section Characters and 

states for cladistic analysis). Larval descriptions are unavailable for most protoptiline species; however, based on 

the absence of exceptions among known species, all Glossosomatidae species probably build portable “tortoise” or 

“saddle”-shaped cases (Wiggins 1996, 2004). Descriptions of female genitalic morphology also are limited among 

Protoptilinae species. Morphology of the female genitalia is highly conserved at the generic level and above, with 

species differentiated by the shape of internal structures of the vaginal apparatus. The female genitalic characters 

chosen for this analysis are especially conserved and therefore composite taxon coding was used when females of 

certain species were unknown. In such cases, the data used to code a particular species may be based on a closely 

related species from the same biogeographic region where the female has been positively associated with the male 

(Table 2). A list of specimens used for DNA sequencing, including individual museum accession numbers and 

BOLD Barcode index numbers (BIN), is presented in Table 3.

TABLE 1. Material examined for phylogenetic analyses. For each species, the country locality, number of specimens 

examined, and type status. Numbers after species of Itauara and Mortoniella refer to accessions in database.

Species Country # Specimens Type

Ptilocolepus granulatus Austria, Switzerland 2 –

Anagapetus debilis United States 2 –

Glossosoma alascense United States 2 –

Glossosoma intermedium United States 2 –

Agapetus rossi United States 2 –

Agapetus species (Australia) Australia 1 –

Tolhuaca cupulifera Chile 8 Holotype

Tolhuaca brasiliensis Brazil 3 Holotype

Nepaloptila coei Nepal 1 Holotype

Nepaloptila kanikar Thailand 3 Paratype

Nepaloptila jisunted Thailand 1 Paratype

Nepaloptila ruangjod Thailand 1 Paratype

Matrioptila jeanae United States 4 –

Padunia adelungi Mongolia 8 –

Padunia alpina Japan 2 Paratype

Padunia forcipata Japan 4 –

Padunia burebista Thailand 2 Paratype

Padunia lepnevae Russia 1 –

Padunia karaked Thailand 4 Paratype

Poeciloptila atyalpa India 2 Holotype

Poeciloptila falcata India 2 Holotype

Poeciloptila briatec Thailand 3 Paratype

......continued on the next page
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TABLE 1. (Continued)

Species Country # Specimens Type

Poeciloptila maculata China 1 –

Temburongpsyche anaken Brunei 1 Paratype

Scotiotrichia ocreata Argentina 4 Holotype

Merionoptila wygodzinskyi Argentina 2 Holotype

Campsiophora pedophila Puerto Rico 4 Paratype

Campsiophora arawak Jamaica 4 Paratype

Campsiophora mulata Cuba 3 Paratype

Cariboptila aurulenta Dominican Republic 3 Paratype

Cariboptila caab Dominican Republic 7 Paratype

Cariboptila hispanolica Dominican Republic 8 Paratype

Cariboptila jamaicensis Jamaica 3 Paratype

Cariboptila orophila Puerto Rico 4 Paratype

Cubanoptila botosaneanui Cuba 3 Paratype

Cubanoptila cubana Cuba 9 Paratype

Cubanoptila muybonita Cuba 4 Paratype

Cubanoptila purpurea Cuba 5 Paratype

Culoptila cascada Costa Rica 3 Holotype

Culoptila hamata Costa Rica 3 Holotype

Culoptila thoracica United States 3 –

Canoptila bifida Brazil 3 Holotype

Canoptila williami Brazil 9 Holotype

Itauara brasiliana Brazil 10+ Holotype

Itauara guarani Argentina 4 Holotype

Itauara plaumanni Brazil 4 Holotype

Itauara amazonica Brazil 6 Holotype

Itauara blahniki Brazil 3 –

Itauara emilia Brazil 1 –

Itauara rodmani Brazil 4 –

Itauara julia Brazil 10+ –

Itauara simplex Brazil 2 –

Itauara tusci Brazil 10+ –

Itauara flinti Brazil 1 –

Itauara jamesii Brazil 1 –

Itauara charlotta Brazil 1 –

Itauara alexanderi Brazil 1 –

Itauara stella Brazil 3 –

Itauara lucinda Brazil 2 –

Itauara unidentata Guyana 3 –

Itauara bidentata Guyana 2 –

Itauara guyanensis Guyana 4 –

Itauara ovis Guyana, Venezuela 6 –

Itauara peruensis Peru 6 –

......continued on the next page
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TABLE 2. List of taxa for which female data were unavailable. For each species, the composite taxon used is listed. 

Ingroup. The ingroup, Protoptilinae, included 74 species representing all 17 traditionally recognized genera in 

the subfamily. At least 3 species were chosen from each genus to represent morphological diversity. For monotypic 

genera or those with only 2 included species, all species were studied. These included Matrioptila jeanae (SE 

USA); Scotiotrichia ocreata (Argentina); Temburongpsyche anakan Malicky, 1995 (Brunei); Merionoptila 

wygodzinskyi (Argentina); Canoptila bifida Mosely, 1939, and C. williami (SE Brazil); and Tolhuaca cupulifera

Schmid, 1964 (Chile) and T. brasiliensis Robertson & Holzenthal, 2005 (SE Brazil). Mortoniella was sampled 

more rigorously than other genera (10 species) to account for its high species richness, morphological diversity, 

and wide distribution across the Neotropics. Additionally, a total of 21 Itauara species (including 17 recently 

described species) were sampled to test the monophyly of the genus. 

Outgroup. The outgroup consisted of 6 species, including representatives of Hydroptilidae and the 2 other 

subfamilies in Glossosomatidae, Glossosomatinae and Agapetinae. Taxa were chosen to represent the major 

lineages of each subfamily. Additionally, we examined several species of Rhyacophilidae but omitted them from 

the analysis because many male genitalic and wing venational features were too divergent to polarize states within 

Protoptilinae. 

TABLE 1. (Continued)

Species Country # Specimens Type

Mastigoptila bicornuta Chile 2 Holotype

Mastigoptila longicornuta Chile 4 Holotype

Mastigoptila ruizi Chile 4 Holotype

Mortoniella elongata Colombia 3 –

Mortoniella limona Venezuela 3 –

Mortoniella meralda Costa Rica, Mexico 4 –

Mortoniella teutona Brazil 4 –

Mortoniella bilineata Ecuador 4 –

Mortoniella denticulata Venezuela 4 –

Mortoniella roldani Colombia 4 –

Mortoniella marini Bolivia 10+ –

Mortoniella eduardoi Bolivia 2 –

Mortoniella froehlichi Brazil 4 –

Protoptila maculata United States 4 –

Protoptila bribri Costa Rica 4 Holotype

Protoptila diablita Bolivia 10+ Holotype

Species Composite taxon  

Poeciloptila briatec Poeciloptila atyalpa

Poeciloptila maculata Poeciloptila atyalpa

Canoptila bifida Canoptila williami

Itauara emilia Itauara stella

Itauara flinti Itauara simplex

Itauara jamesii Itauara stella

Itauara charlotta Itauara simplex

Itauara alexanderi Itauara stella

Itauara ovis Itauara guyanensis
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TABLE 3. List of specimens sequenced for DNA and associated University of Minnesota Insect Collection (UMSP) 

accession numbers and University of Guelph BOLD Barcode Index Numbers (BIN), when applicable.

Depositories

Material examined for this study is deposited at The Natural History Museum, London, UK (BMNH); National 

Museum of Natural History, Washington, DC, USA (NMNH), Canadian National Collection of Insects, Arachnids, 

and Nematodes, Ottawa, Canada (CNC); Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenas 

Aires, Argentina (MACN), University of Minnesota Insect Collection, Saint Paul, USA (UMSP), and Universiteit 

van Amsterdam, Instituut voor Taxonomische Zoologie, Zoologisch Museum, Amsterdam, The Netherlands 

(ZMUA). Additionally, Dr. Hans Malicky, Lunz am See, Austria, generously donated several specimens from his 

private collection to UMSP. All specimens or lots of alcohol specimens examined in this study were affixed with a 

barcode label with a unique 9 digit alphanumeric code starting with the prefix UMSP. This prefix indicates that the 

specimen has been databased at UMSP, but it is not meant to imply possession by UMSP. Specimen-level 

taxonomic, locality, and other information, are stored in the University of Minnesota Insect Collection Biota 

Trichoptera Database using the software program Biota (Colwell 2003). 

Morphology

Specimen preparation and observation

To observe certain structural features of the male and female genitalia, soft tissues were cleared using a lactic 

acid method outlined in detail by Holzenthal & Anderson (2004) and Blahnik et al. (2007). For some specimens, 

Species UMSP accession number BOLD BIN

Agapetus species (Australia) UMSP000116850 AAJ7155

Anagapetus debilis UMSP000084345 AAE5949

Cariboptila caab UMSP000210889 AAK2843

Cariboptila hispanolica UMSP000210890 AAR6920

Cubanoptila botosaneanui UMSP000124342 AAR4874

Cariboptila aurulenta UMSP000210891 AAW4343

Culoptila hamata UMSP000000468 AAR5515

Glossosoma alascense UMSP000210874 –

Glossosoma intermedium UMSP000208799 AAA9475

Itauara rodmani UMSP000081856 AAW9092

Itauara julia UMSP000082824 AAW9094

Itauara tusci UMSP000070956 AAW9093

Mastigoptila bicornuta UMSP000210870 AAK7595

Mastigoptila longicornuta UMSP000084060 AAJ1575

Mastigoptila ruizi UMSP000210822 AAF1190

Matrioptila jeanae UMSP000039624 –

Mortoniella marini UMSP000210892 AAX4548

Mortoniella eduardoi UMSP000210893 AAX4546

Mortoniella limona UMSP000073459 AAE4529

Mortoniella teutona UMSP000085401 AAG1493

Mortoniella froehlichi UMSP000086603 AAX4547

Mortoniella roldani UMSP000041301 AAE4524

Padunia lepnevae UMSP000107053 AAX1887

Protoptila diablita UMSP000210895 AAX8582

Tolhuaca cupulifera UMSP000115152 AAK2072
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the entire individual was cleared (after removing the wings) to more easily observe external structures obscured by 

setae, such as thoracic warts. Specimens that were over-cleared or lightly sclerotized were stained. Such specimens 

were immersed in a small watch-glass containing Chlorazole Black E (Sigma Chemical Co.) dissolved in glycerin 

for 15 minutes to several hours, depending on the size and condition of the specimen. Stained specimens were then 

rinsed in distilled water to remove any excess stain. Specimens were examined in a small watch-glass containing 

glycerin using an Olympus SZX12 dissecting microscope or Olympus BX41 compound microscope. To observe 

wing venation, wing mounts of each species were prepared following the protocols of Blahnik & Holzenthal 

(2004). Wing preparations were then digitally photographed using a Leica EC3 digital camera mounted on an 

Olympus SZX12 dissecting microscope. Digital images will be made available through Morphbank (www. 

morphbank.net). 

Morphological terminology

Morphological terminology for male and female genitalia was adapted from Blahnik & Holzenthal (2006, 

2008), Holzenthal (2004), Holzenthal & Blahnik (2006), Morse (1988), Nielson (1957, 1980), Nishimoto & 

Nozaki (2007), and Schmid (1990). Terminology for head, thoracic, and leg morphology follows that of Wiggins 

(1996). Wing venation terminology follows the Comstock-Needham system as interpreted by Ross (1956) and 

Schmid (1998).

Character sources and assessment

Most of the 99 morphological characters in this analysis are novel. However, some characters have been 

previously discussed in a phylogenetic context or analysis of other Trichoptera taxa in the literature. Sources where 

certain characters were previously coded and used in a phylogenetic analysis are listed after each character under 

the section “Characters and states for cladistic analysis.” Characters previously discussed in the literature in a 

phylogenetic analysis or assessment, but modified, reinterpreted, and coded to fulfill the purposes of this analysis, 

are noted by stating “in part” after the source.

Each character was evaluated in terms of ability to be interpreted and scored consistently and in terms of 

whether it is shared uniquely by 2 or more taxa. Characters were included in the analysis if their states could be 

discretely delimited and clearly determined based on a point of reference (e.g., characters 3, 8). Characters 

demonstrating continuous variation (e.g., wing length) or inconsistent scoring among taxa (e.g., wing color) were 

not used. Although not necessarily parsimony-informative, autapomorphic or constant characters were included in 

the character matrix because they are potentially informative at higher taxonomic levels.

Character coding

Character coding and homology assessment have strong implications for reconstructing phylogeny (Hawkins 

et al. 1997, Lee & Bryant 1999). Ideally, coding should reflect one’s observations and determinations of 

homologies of structures. In this study, characters were determined based on primary homology and confirmed 

through character congruence (Patterson 1982). The criteria for the determination of primary homology include 

similarity in position (topological connections), similarity in composition, and linkage by intermediate forms 

(transformation series) (Remane 1952). However, sometimes structures hypothesized to be homologous have 

diverged so greatly that they are absent in some taxa. Characters related to the details of a structure would be 

inapplicable for taxa in which the structure is missing. This creates a challenge for coding those characters since 

coding depends on assumptions of primary homology assessments, character independence, and hierarchical 

relationships between characters (Hawkins et al. 1997, Lee & Bryant 1999, Strong & Lipscomb 1999). Many 

different coding approaches have been proposed to deal with inapplicable characters including reductive, 

composite (multistate), non-additive binary, and presence-absence coding, among others (Hawkins et al. 1997, Lee 

& Bryant 1999, Maddison 1993, Pleijel 1995, Strong & Lipscomb 1999). 

To address inapplicable data in this study, reductive coding was used. A character was first coded to account 

for the presence or absence of a particular feature and additional character(s) were coded to address variations of 

the feature. Taxa coded as absent for the first character were assigned a dash (“–”) for subsequent inapplicable 

characters. Although the program PAUP* does not distinguish a dash from a question mark (? = missing data), but 

treats both as one of the other existing states (Strong & Lipscomb 1999), a dash has been assigned to indicate that 

the character is inapplicable rather than missing. However, the program MrBayes treats dashes as a separate 
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character state, and therefore dashes were changed to question marks in the character matrix used in Bayesian 

analyses. 

One critique of the reductive coding approach is that when a “?” is optimized into one of the other existing 

states, it may affect the optimization of the character at higher taxonomic levels to the detriment of local 

optimization of clades at lower levels (Maddison 1993, Strong & Lipscomb 1999). Nonetheless, reductive coding 

was preferred over other coding strategies for several reasons. First, 2 (or more) distinctly separate homologous 

conditions (transformation events) exist for many characters in this study, 1 relating to the presence or absence of a 

feature, and another (or more) relating to the details of the feature. The presence of a particular structure may be a 

synapomorphy for some taxa, while the details of that structure may be informative at more-refined taxonomic 

levels. By coding the conditions as separate characters, this phylogenetic information is retained. If the conditions 

were coded as a single multistate character (i.e., “composite coding,” Maddison 1993) taxa could be potentially 

grouped together based on conditions that are not applicable to them, rendering them informative in determining 

phylogenetic relationships when they should not (Strong & Lipscomb 1999). Additionally, absence coding and 

non-additive binary coding may assume incorrectly that absences are homologous, thereby resulting in artificial 

inflation (i.e., over-weighting) of the absence state (Strong & Lipscomb 1999). 

Composite, or multistate coding (Maddison 1993) was used in a few instances: 1) when the absence state was 

an autapomorphy for a single taxon (e.g., character 76), 2) if the absence of a character was assumed to be 

homologous among taxa (e.g., character 70), and 3) when the character transformational series are clear and 

absence is 1 condition of that series (e.g., character 61). 

To minimize a priori assumptions regarding evolution, rooting by outgroup comparison was used to determine 

the polarities of characters (Schuh & Brower 2009, Cassis & Schuh 2010). Therefore, no assumptions should be 

made as to the individual coding of a particular state. State 0 (or 1, 2, 3, etc.) may either be the plesiomorphic state 

or a derived state. 

Mitochondrial DNA 

Gene choice 
The phylogenetic usefulness of a particular gene for a particular level of relationships depends in part on its 

rate of evolution. Preferred genes are those that minimize the incidence of multiple nucleotide substitutions while 

maximizing the number of non-homoplasious, shared character states (Simon et al. 1994). In closely related 

species, nucleotide positions are less likely to vary, thus genes containing higher proportions of unconstrained sites 

are more appropriate (Simon et al. 1994). For more distantly related species, nucleotide positions can be expected 

to vary more, so genes with lower proportions of unconstrained sites are preferred (Simon et al. 1994). 

For this study we chose to use the “Folmer region” (Folmer et al. 1994) at the 5’ end of the cytochrome c 

oxidase subunit I mitochondrial gene region (COI), which has also been selected as the “barcode gene” for animals. 

Mitochondrial genes are considered to be more rapidly evolving than nuclear genes, and thus more appropriate for 

phylogenetic studies of closely related taxa (Simon et al. 2006). COI has most frequently been used to identify and 

assign unknown specimens to a species or reveal cryptic species diversity (Ball et al. 2005, Hebert et al. 2003, 

Hebert et al. 2004, Pauls et al. 2010). However, COI has also been shown to be useful in assigning species to 

genera (Hebert et al. 2003) and it has been used in resolving phylogenetic relationships among genera in insects 

(Nyman et al. 2006). In a higher-level phylogenetic analysis of Trichoptera, COI became saturated rapidly, 

although it might potentially be useful for resolving relationships among genera at the tips of the tree (Kjer et al. 

2001). That useful phylogenetic information is retained at the level of this study is confirmed by the fact that a 

monophyletic Protoptilinae (although only represented by 2 genera) was recovered by Kjer et al. (2001). 

COI was also chosen for practical reasons such as the fact that the COI fragment is easily amplified with 

primers developed specifically for caddisflies by Kjer et al. (2001). Some of the COI data were freely obtained 

from the Trichoptera Barcode of Life initiative in Guelph, to which we are major contributors. In addition, because 

it is protein coding with few insertions and deletions, it is relatively easy to align COI sequences (Hebert et al. 

2003).
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DNA extraction, amplification, and sequencing

DNA was extracted from pinned or 70–80%-ethanol-preserved museum specimens. In a few cases, DNA was 

extracted from specimens less than 1 year old and preserved in 95% ethanol. For most specimens, the head, thorax, 

and legs were taken; however, in instances where specimens were limited or only available from type material, a 

single leg was taken. In all cases, the wings and genitalia were retained as vouchers and the specimen data were 

entered into the University of Minnesota Insect Collection (UMSP) Biota Trichoptera Database. For most 

specimens, DNA was extracted and sequenced while visiting the laboratory of Dr. Karl Kjer, Rutgers University. 

However, in an effort to obtain more complete sequence data, some specimens, along with aliquots taken from 

stock samples at Rutgers were sent to the University of Guelph, Ontario, Canada (Guelph) for sequencing. 

Standard barcoding protocols for DNA extraction, amplification, and sequencing at Guelph followed those detailed 

by deWaard et al. (2008), Hajibabaei et al. (2005), and Ivanova et al. (2006). At Rutgers, DNA was extracted using 

the DNeasy Tissue Kit (QIAGEN Inc.) with 20 µl of Proteinase K (10 ml) (QIAGEN Inc.). The “Folmer region” 

(Folmer et al. 1994) at the 5’ end of the cytochrome c oxidase subunit I mitochondrial region (COI) was then 

amplified using polymerase chain reaction (PCR) with Taq Master Mix Kit (QIAGEN, Inc.) and the primers listed 

in Table 4. The PCR mix was preheated to 94ºC followed by 35 or 40 cycles (95ºC, 3 min.; 94ºC, 30 sec.; 50ºC, 30 

sec.; 72ºC, 30 sec.; 72C, 7 min.; 4ºC, 4 min). The QIAquick PCR purification kit (QIAGEN, Inc.) was used to 

clean PCR products. DNA concentrations were estimated by UV visualization of ethidium bromide stained 1% 

agarose gel with Tris-acetate-EDTA (TAE) electrophoresis buffer using standard techniques. Sequences were 

visualized and recorded using the Applied Biosystems 3100 Automated DNA Sequencer at the School for 

Environmental and Biological Sciences Sequencing Facility at Rutgers University. Each DNA fragment was 

sequenced from both directions. 

Sequence alignment

Both forward and reverse sequence fragments were aligned using the program ABI Prism Sequence Navigator 

(ver. 1.0.1, Mac OS; Applied Biosystems). Consensus sequences were then aligned using ClustalX, ver. 2.0.11, 

Mac OS (Larkin et al. 2007) and MacClade, ver. 4.06, Mac OS (Maddison & Maddison 2000). Ambiguous 

nucleotides were coded as missing (?). There were no gaps. 

TABLE 4. Primers used in polymerase chain reactions for this study.

Phylogenetic analysis 

Treatment of morphological characters 

Ninety-nine morphological characters were included in the analysis, including 62 binary characters and 37 

multi-state characters, with a total of 288 character states (Appendix 1). Seven characters were parsimony 

uninformative (autapomorphic or constant) but were included in the character matrix because they are potentially 

Primer Sequence (5’ to 3’) Reference

COI 1709Fs TAATTGGAGGATTTGGAAATTG Zhou et al. 2007

COI 1709Fg TAATTGGAGGATTTGGWAAYTG Zhou et. al. 2007

COI 1751F GGATCACCTGATATAGCATTCCC Zhou et. al. 2007

COI 2191R CCYGGTAAAATTAAAATATAAACTTC Zhou et. al. 2007

COI 2355R GCTCGTGTATCWACGTCTAT K. Kjer, personal communication

LepF1 ATTCAACCAATCATAAAGATATTGG Hebert et al. 2004

LepR1 TAAACTTCTGGATGTCCAAAAAATCA Hebert et al. 2004

LCO1490 GGTCAACAAATCATAAAGATATTGG Folmer et al. 1994

HCO2198 TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. 1994

MLepF1 GCTTTCCCACGAATAAATAATA Hajibabaei et al. 2006

MLepR1 CCTGTTCCAGCTCCATTTTC Hajibabaei et al. 2006
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informative at higher taxonomic levels. However, uninformative characters were excluded in parsimony analyses 

for the purpose of calculating tree statistics since their inclusion may artificially inflate values (Bryant 1995, Yeates 

1992). Since the likelihood model specified morphological characters as variable, for Bayesian analyses constant 

morphological characters were excluded from the data matrix (Lewis 2001a). Autapomorphic characters were 

included in the Bayesian analysis. All characters were treated as unordered (non-additive) (Fitch 1971) and equally 

weighted (Wilkinson 1992) to minimize the number of a priori assumptions regarding evolution. 

Data partitions. 

The complete data matrix included 80 taxa (Appendix 2). All taxa were scored for nearly all morphological 

characters; however, COI sequences were successfully obtained for only 25 taxa (including 10 of 18 protoptiline 

genera). Although it was not possible to include COI data for all genera, the major clades were adequately 

represented by these taxa. Nonetheless, the remaining 55 taxa (69%) were missing a significant portion of the data 

(87% of characters or 658 COI base pairs). It has been suggested that the inclusion of taxa lacking a proportion of 

characters may obscure relationships among taxa with complete data, decrease the probability of finding the correct 

tree, or lead to an increase in number of equally parsimonious trees and decrease in resolution (Huelsenbeck 1991, 

Wiens & Reeder 1995, Wilkinson 1995). However, other studies have suggested that including large amounts of 

missing data may actually improve phylogenetic accuracy, resolution, and placement of taxa (Egge & Simons 

2009, Kearney 2002, Wiens 1998, 2003a, 2003b, 2005, 2006, 2009).

To test the effects of including a large set of taxa with missing molecular data, 5 different datasets were 

analyzed, using parsimony and Bayesian methods. “TOTAL” datasets included all 80 taxa; “SUBSET” datasets 

excluded incomplete taxa: 

TOTAL COMBO: 80 taxa; morphology and COI

TOTAL MORPH: 80 taxa; morphology

SUBSET COMBO: 25 taxa; morphology and COI

SUBSET MORPH: 25 taxa; morphology

SUBSET COI: 25 taxa; COI 

Analyses 

Character matrices were constructed and character state transformations were mapped using MacClade 4.08 

(Maddison & Maddison 2000). Four datasets were analyzed using the principal of parsimony and also Bayesian 

inference to explore the data under different evolutionary assumptions and models. However, the SUBSET COI 

dataset was only analyzed using Bayesian inference because of the known failure of parsimony to correct for 

multiple changes at the same nucleotide site or to accommodate parallel changes on two long branches (i.e., long 

branch attraction) (Yang & Rannala 2012). Under the principal of parsimony, the preferred tree (hypothesis) is the 

one that requires the fewest number of evolutionary changes (=steps) or homoplasy (Kitching et al. 1998, Schuh 

2000, Swofford et al. 1996, Wiley 1981). Bayesian phylogenetic inference is a model-based likelihood approach 

that determines the probabilities of a group (clade) existing on a tree given the observed data, a probabilistic model 

of evolution, and an explicit probabilistic description of prior beliefs (Kolaczkowski & Thornton 2009, Lewis 

2001b). 

Parsimony. Parsimony analyses were implemented in PAUP* v. 4.0 beta (Swofford 2003). Heuristic searches 

were conducted using stepwise taxon addition with 1000 random addition sequences (RAS) and Tree-Bisection-

Reconnection (TBR) branch swapping, MULTREES option off. Heuristic searches were initially implemented with 

the MULTREES option in effect (the default command in PAUP* to save all minimal trees); however, this resulted 

in large numbers of trees and searches were not completed. Although the goal in parsimony analysis has long been 

to find each and every possible most parsimonious tree (MPT), it has been suggested that this is unnecessary in 

many cases. Since a strict consensus tree is created from all trees found, it may be more efficient to obtain the 

minimum number of trees needed to produce the same consensus tree that would be produced by all possible MPTs 

(Goloboff 1999, 2002). Saving multiple trees per TBR replication produces trees that are in the same local 

optimum, while trees from new, independent substitutions may be more likely to lead to different optima (Goloboff 

1999, 2002). Hence, it is more beneficial and computationally efficient to save fewer trees to allow for the 

completion of more RAS (Goloboff 1999, 2002). Castlebury et al. (2002) demonstrated that consensus trees 
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generated with MULTREES option implemented (MAXTREES set to 5000) were identical to the strict consensus 

of those generated with the MAXTREES option off. Non-parametric bootstrap analysis (Felsenstein 1985) for each 

dataset was conducted using 1000 pseudoreplicates, each with 100 RAS. Bremer support values (Bremer 1988), 

also known as the decay index (DI), were not calculated for these studies. As pointed out by a number of authors, 

the DI is not a statistical measure (Zander 2004) and can be misleading, since low values do not necessarily mean 

there is little support for a clade. The DI does not take into account the relative amounts of contradictory or 

favorable evidence for a particular group (Goloboff & Farris 2001) and is not comparable between trees or even 

between nodes on the same tree (DeBry 2001). 

Bayesian. Bayesian analyses were implemented in the program MrBayes 3.1.2 (Huelsenbeck & Ronquist 

2001, Ronquist & Huelsenbeck 2003) using Metropolis-coupled Markov Chain Monte Carlo sampling 

(MCMCMC), which explores possible tree topologies and parameter space in proportion to their posterior 

probabilities (Lewis 2001b, Ronquist et al. 2005). Using the Metropolis algorithm (Felsenstein 2004), a designated 

“cold” Markov chain can escape from an isolated low probability peak by swapping with a “heated” chain that may 

be on a higher probability peak (Lewis 2001b, Ronquist et al. 2005). Analyses using MrBayes were carried out on 

the BioHPC web interface of the Computational Biology Service Unit computer cluster, located at Cornell 

University (http://cbsuapps.tc.cornell.edu/index.aspx).

Parameters. Morphological datasets (TOTAL MORPH and SUBSET MORPH) were assigned the Markov k 

(Mk) model, which specifies equal rates of character state change and deemed appropriate for discrete 

morphological data (Lewis 2001a). The Mk model is similar to a Jukes-Cantor (JC) model used with molecular 

data, except that it has a variable number of states (2–10) (Ronquist et al. 2005). Because rates of evolution are 

assumed to vary among individual morphological characters (e.g., male genitalic characters may evolve faster than 

larval characters), coding parameters were set to “variable” (lset coding = variable) to allow for possible rate 

heterogeneity (Lewis 2001). As recommended by Lewis (2001a), a discrete gamma-shape (Γ) distribution 

parameter was invoked (lset rates = gamma). Recent studies have favored the inclusion of the gamma parameter for 

discrete morphological data based on Bayes Factor analysis (Bond & Hedin 2006, Müller & Reisz 2006, Nylander 

et al. 2004, among others). 

For the COI dataset (SUBSET COI), a General Time Reversal model with a gamma distribution and invariants 

model of rate heterogeneity (GTR + Γ + I) (lset nst = 6 rates = invgamma) was set as determined most appropriate 

by the program Modeltest v. 3.4 (Posada & Crandall 1998). Combined datasets (TOTAL COMBO and SUBSET 

COMBO) were analyzed using separate evolutionary models for each data partition (COI, GTR + Γ + I; 

morphology, Mk + Γ). 

For all datasets, with the exception of the TOTAL COMBO dataset, 2 parallel analyses, each with 12 chains 

(11 hot, 1 cold) were run for 1 x 107 generations, sampling trees every 1000th generation. The analysis for the 

TOTAL COMBO dataset used 4 chains (3 hot, 1 cold) because the analysis did not appear to be proceeding 

sufficiently upon examination of the progress file. Analyses were examined using the program Tracer v. 1.4.1 

(Rambaut & Drummond 2007) to ensure stationarity (convergence) was achieved between 2 tree samples and to 

determine appropriate burn-in (number of trees discarded). The program FigTree v. 1.2.3 (Rambaut 2007) was used 

to examine trees and posterior probability values.

Hypothesis testing 

When different datasets support different tree topologies, it is possible that 1 of the topologies simply 

represents a suboptimal version of the other (Larson 1994). To explore topological incongruence and conflicting 

topologies among the different data partitions, hypothesis testing was conducted under a Bayesian framework. A 

95% credible set of unique topologies for each dataset was compiled using the sumt command in MrBayes 

(Brandley et al. 2005, Buckley 2002, Buckley et al. 2002). These tree sets were then searched for congruent 

topological hypotheses using the CONSTRAINTS and FILTER option in PAUP*. The occurrence of any number of 

trees congruent with the constraint tree from the 95% credible interval indicates that the hypothesis of monophyly 

cannot be rejected (Buckley et al. 2002). 
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RESULTS

Results of phylogenetic analyses

Parsimony. The parsimony analysis of the TOTAL COMBO dataset (80 taxa, 757 characters) resulted in 20 equally 

parsimonious trees (Length: 1880) with the strict consensus shown on Fig. 33. The TOTAL MORPH dataset (80 

taxa, 90 characters) resulted in 2 equally parsimonious trees (Length: 463) (Fig. 35). A total of 2 equally 

parsimonious trees resulted from the SUBSET COMBO dataset (25 taxa, 757 characters) (Length: 1576) (Fig. 36). 

The SUBSET MORPH dataset (25 taxa, 99 characters) resulted in 12 equally parsimonious trees (Length: 218) 

(Fig. 38). Bootstrap (BS) support values ≥ 50% are indicated above internodes. 

Bayesian. Chain swapping was determined to be successful in analyses of all 5 datasets (tree universe was 

thoroughly sampled) upon examination of the log and the MCMCMC files. A total of 50% of the total samples 

(5000 trees) were discarded as burn-in as determined by inspecting the Tracer file (Rambaut & Drummond 2007). 

The remaining 50% (5000 trees) were used to calculate posterior probabilities. Majority-rule cladograms are 

presented for TOTAL COMBO (Fig. 32), TOTAL MORPH (Fig. 34), SUBSET MORPH (Fig. 39), and SUBSET 

COMBO (Fig. 37) datasets. A phylogram is presented for the SUBSET COI dataset (Fig. 40). Posterior probability 

(PP) values are indicated above internodes. 

Summary of analyses (Tables 5, 6)

Apart from some contradictory results obtained from the analysis of the SUBSET COI dataset (discussed below), 

topologies among different datasets analyzed under Bayesian and parsimony methods are fairly similar. 

Monophyly for the subfamily Protoptilinae was recovered for all datasets under both Bayesian and parsimony 

approaches. In all analyses and all datasets, except the SUBSET COI dataset, Tolhuaca is sister to all Protoptilinae, 

and is most strongly supported in analyses for the TOTAL MORPH and SUBSET MORPH datasets. In all datasets, 

under both Bayesian and parsimony analyses, the Asian taxa Nepaloptila, Padunia, Poeciloptila, and 

Temburongpsyche form a well-supported clade with the Nearctic monotypic genus Matrioptila nested within it, 

hereafter referred to as the Asian Clade. A monophyletic group consisting of all Neotropical taxa minus Tolhuaca

(= Neotropical Clade) was recovered with strongest support under Bayesian and parsimony analyses of the 

TOTAL COMBO and TOTAL MORPH datasets. The Neotropical Clade was recovered with weaker support under 

parsimony and Bayesian methods for the SUBSET COMBO dataset and Bayesian methods for the SUBSET 

MORPH dataset. Within the Neotropical Clade, the genera Campsiophora, Cariboptila, and Cubanoptila (= 

Caribbean Clade) was strongly supported in analyses of the TOTAL COMBO, TOTAL MORPH, SUBSET 

COMBO, and SUBSET MORPH datasets, and the Bayesian analysis of the SUBSET COI dataset.

Results from analyses of the 3 SUBSET datasets (MORPH, COMBO, COI), can neither refute nor support the 

monophyly of individual genera, due to limited sampling. Therefore, monophyly for individual genera must be 

assessed based on the 2 TOTAL datasets (MORPH, COMBO). Monophyly for the following genera was strongly 

supported under both analyses for both TOTAL datasets: 1) Tolhuaca, 2) Protoptila, 3) Mastigoptila, 4) Canoptila, 

and 5) Culoptila. A monophyletic Itauara was recovered in all analyses but most strongly supported in the 

Bayesian analyses. Mortoniella was recovered as a monophyletic group in both analyses of the TOTAL COMBO 

dataset, but in the TOTAL MORPH dataset, Mortoniella was paraphyletic. Monophyly for the monotypic genera 

Scotiotrichia and Merionoptila is neither refuted nor supported and their placement among the Neotropical 

protoptiline genera remains ambiguous.

While some groups may have found strong support under only 1 method of analysis or in a single dataset, 

monophyly for most of the aforementioned clades was not contradicted, except in the analysis of the SUBSET COI 

dataset. The SUBSET COI dataset did not place Tolhuaca as sister to all Protoptilinae, but instead placed it within 

the Neotropical clade, nested within Mortoniella. 

Finally, since none of the datasets analyzed under parsimony or Bayesian methods were able to recover 

monophyletic groups for the following taxa, their current taxonomy is challenged. These are: 1) Nepaloptila, 2) 

Padunia, 3) Campsiophora, 4) Cariboptila, and 5) Cubanoptila.
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TABLE 5. Summary of results for evaluating the monophyly of various clades for morphology, COI, and combined 

datasets under Bayesian and parsimony phylogenetic analyses. Posterior probability (PP) and bootstrap (BS) support 

values are reported for various clades. Asterisks indicate strong support, dashes indicate analyses that did not recover a 

particular clade.

TABLE 6. Summary of results for evaluating the monophyly of different genera for morphology, COI, and combined 

datasets under Bayesian and parsimony phylogenetic analyses. Posterior probability (PP) and bootstrap (BS) support 

values are reported for each genus. Asterisks indicate strong support, dashes indicate analyses that did not recover a 

particular clade. 

Hypothesis testing

There was considerable topological incongruence between the COI and morphological datasets, mostly concerning 

the placement of Tolhuaca. Although Tolhuaca was recovered as sister to all other Protoptilinae in all datasets 

except the SUBSET COI, the inclusion of COI data in the COMBO datasets lowered both posterior probability and 

bootstrap values. Additionally, in the COI dataset, Tolhuaca was nested within the Neotropical clade with the Asian 

clade (Matrioptila and Padunia) as sister to all other protoptilines. To explore this apparent conflict in evidence, 

trees with differing topologies were constructed to represent each of the 2 hypotheses: 1) The Asian taxa 

constrained within Protoptilinae and Tolhuaca constrained to the outgroup [= (Tolhuaca (other Protoptilinae)), 

(Figs. 41A, 42A)], and 2) Tolhuaca constrained within Protoptilinae and the Asian taxa constrained to the outgroup 

Protoptilinae
(Tolhuaca 

(other Protoptilinae))

(Asian 

(other Protoptilinae))
Neotropical Caribbean

Dataset PP BS PP BS PP BS PP BS PP BS

TOTAL COMBO 1.00* 85* 0.88 60 1.00* 83* 1.00* 75* 1.00* 90*

TOTAL MORPH 1.00* 92* 1.00* 95* 0.87 70* 1.00* 90* 1.00* 94*

SUBSET COMBO 1.00* 98* 0.89 68 1.00* 100* 0.64 52 1.00* 94*

SUBSET MORPH 1.00* 98* 0.99* 98* 1.00* 99* 0.72 – 1.00* 98*

SUBSET COI 1.00* N/A – N/A 1.00* N/A – N/A 1.00* N/A

TOTAL COMBO TOTAL MORPH

Taxon PP BS PP BS

Campsiophora – – – –

Canoptila 1.00* 100* 1.00* 99*

Cariboptila – – – –

Cubanoptila – – – –

Culoptila 1.00* 97* 1.00* 98*

Itauara 0.98* 56 0.99* 55

Mastigoptila 1.00* 100* 0.99* 95*

Matrioptila – – – –

Merionoptila N/A N/A N/A N/A

Mortoniella 0.91 < 50 – –

Nepaloptila – – – –

Padunia – – – –

Poeciloptila – – – < 50

Scotiotrichia N/A N/A N/A N/A

Temburongsyche – – – –

Tolhuaca 1.00* 94* 0.99* 96*
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[= (Asian (other Protoptilinae)), (Figs. 41B, 42B)]. In the Bayesian tests, the constraint topology occurred at least 

once in each of the 95% confidence intervals, therefore failing to reject either hypothesis for all datasets (Table 7).

TABLE 7. Bayesian topological incongruence test results for alternative Protoptilinae hypotheses evaluated against 

morphology, COI, and combined datasets. The number and percentage of trees containing the constrained topology of 

interest from the 95% credible interval (CI) of trees from the posterior distribution from Bayesian analyses is reported. If 

a particular topology occurs in the 95% CI, that hypothesis cannot be rejected.

DISCUSSION

Effects of missing data in combined analysis

Approximately 70% of taxa from the TOTAL COMBO dataset are missing a significant portion of the data (87% of 

total characters or 658 COI base pairs). Including taxa with missing molecular data may obscure relationships 

among more complete taxa, decrease the probability of finding the correct tree, lead to an increase in number of 

equally parsimonious trees and decrease in resolution, or positively mislead model-based methods (Huelsenbeck 

1991, Lemmon et al. 2009, Wiens & Reeder 1995, Wilkinson 1995). Conversely, some studies suggest that 

including more taxa even though they are lacking large amounts of data may actually improve phylogenetic 

accuracy, resolution, and placement of taxa (Egge & Simons 2009; Kearney 2002; Wiens 1998, 2003a, 2003b, 

2005, 2006; Wiens 2009; Wiens & Reeder 1995).

Did the inclusion of COI characters with missing data obscure or improve the phylogenetic estimate for 

Protoptilinae? In the present study, including large amounts of missing COI data in the parsimony analysis 

increased the number of MPTs from 2 to 20, and resulted in a slight decrease in resolution when compared to the 

morphology-only tree (Figs. 33, 35). However, in the Bayesian analysis (Fig. 32), the resolution slightly increased 

when compared to the morphology-only tree (Fig. 34). Such differences in resolution may simply be an artifact of 

how the different analytical programs treat missing data. In MrBayes, missing characters are treated as missing 

data, and therefore do not contribute any phylogenetic information to the analysis (Ronquist et al. 2005). However 

in PAUP*, missing data are coded with a “?” and optimized as one of the other existing states (Strong & Lipscomb 

1994, Wiens 1998). Thus, in a parsimony analysis, taxa with missing entries may “bounce” to different positions on 

a tree, decreasing resolution and consequently lowering support measures (Dos Santos & Falaschi 2007, Kearney 

& Clark 2003, Wilkinson 2003). Nonetheless, the differences in resolution between the 2 analyses are minor, and 

none of the collapsing clades exhibited strong nodal support in the morphology tree. Therefore, the topologies 

resulting from analyses of the TOTAL MORPH and TOTAL COMBO are largely congruent.

It appears that the combined approach was better able to recover the monophyly of Mortoniella, despite the 

presence of a large portion of missing COI data for many taxa. Missing entries may not be as much of an issue 

when the overall number of characters is large (Wiens 2006), as was the case with this study. The independent 

datasets (COI or morphology alone) may have been too “noisy” as a result of possible convergence of 

morphological characters or multiple nucleotide substitutions in the COI data. The combination of these data may 

have provided just enough phylogenetic signal to allow an otherwise suboptimal tree (which included a 

monophyletic Mortoniella) to emerge as optimal. Although support measures were lower for some higher-level 

groups in the combined analyses, this may be more a result of character conflict (discussed below) rather than 

effects of missing data (Kearney & Clark 2003). The fact that trees resulting from analyses of the SUBSET 

(Tolhuaca (other Protoptilinae)) (Asian (other Protoptilinae))

Dataset Total # trees within CI # trees retained % trees retained # trees retained % trees retained

TOTAL COMBO 9502 8408 0.8848 1084 0.1140

TOTAL MORPH 9502 9474 0.9970 15 0.0015

SUBSET COMBO 4150 3718 0.8959 428 0.1031

SUBSET MORPH 8816 8741 0.9914 46 0.0052

SUBSET COI 3097 1 0.0003 3095 0.9993
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COMBO dataset (which did not contain missing data) were congruent with the TOTAL COMBO dataset is further 

evidence that the inclusion of missing data did not have detrimental effects in this study.

Conflicting evidence between morphological and COI datasets 

The consensus tree resulting from the analysis of the SUBSET COI data is not congruent with analyses of the other 

datasets (combined and morphology). Differences mostly involve the placement of Tolhuaca and the Asian Clade. 

Analyses of morphological data strongly place Tolhuaca as sister to all remaining protoptiline taxa (Figs. 38, 39), 

as do combined analyses, albeit with weaker support (Figs. 36, 37). Indeed, the morphology of Tolhuaca is 

considered to be very plesiomorphic (complete wing venation, presence of mesoscutellar warts, female oviscapt). 

However, when the COI data are analyzed separately, the Asian Clade (represented by Matrioptila jeanae and 

Padunia lepnevae), was found to be sister to all remaining Protoptilinae and Tolhuaca was placed within a 

paraphyletic Mortoniella (Fig. 40). Bayesian hypothesis testing failed to reject the possibility of both hypotheses in 

all datasets (Tab. 7). 

The mitochondrial COI gene, also known as the “DNA barcode,” is considered to be rapidly evolving and thus 

more appropriate for phylogenetic analyses of closely related taxa (Simon et al. 2006). In Trichoptera, COI has 

been found to be unreliable for resolving relationships deep in the tree and is potentially informative only at the tips 

of the Trichoptera tree, which were not tested (Kjer et al. 2001). In Protoptilinae, COI may be inappropriate for 

resolving relationships at among-genera or higher taxonomic levels. Divergence values among protoptiline genera 

may be too large, possibly resulting in numerous homoplasious substitutions at deeper levels of the tree. Although 

the COI data performed better at the species-level, grouping species of Mastigoptila and Itauara, it still failed to 

recover a monophyletic Mortoniella despite its supposed appropriateness for discerning relationships among 

closely related taxa. 

The poor phylogenetic performance of COI in discerning relationships among and within genera of 

Protoptilinae, may be the result of a combination of factors. The presence of long or uneven terminal branches 

separated by short internodes suggests that long-branch attraction (LBA) may be playing a role (Felsenstein 1978). 

Bayesian methods are not thought to be as susceptible to LBA because, unlike parsimony, model-based parametric 

methods can take into account branch lengths and unobserved substitutions, given an appropriate model of 

evolution (Heath et al. 2008, Swofford et al. 1996). However, a recent study demonstrated that Bayesian methods 

are not always immune to the effects of LBA, especially when nucleotide sites evolve heterogeneously 

(Kolaczkowski & Thornton 2009). 

Finally, although the SUBSET datasets were complete (no missing data), the analyses may have suffered from 

poor taxon sampling. Of the 25 taxa sampled in these datasets, only 9 of 17 protoptiline genera were represented, 

and for all but 4 of these genera, only a single species was represented. Insufficient taxon sampling can result in 

decreased phylogenetic accuracy, resolution, and clade support (Heath et al. 2008, Hedtke et al. 2006). 

Additionally, Mortoniella was sampled more densely, with 6 species included in the analyses. In sparsely sampled 

regions of the tree, less phylogenetic information is available, so more densely sampled sections of the tree 

(Mortoniella) will have longer branch lengths (Fitch & Bruschi 1987, Heath et al. 2008, Simon et al. 2006). The 

addition of more taxa can increase accuracy by dispersing homoplasy across the tree, thereby reducing the effects 

of LBA (Heath et al. 2008). 

Differing support measures between analyses for same datasets 

In this study, sometimes the same node was recovered in both the parsimony and Bayesian analyses for a particular 

dataset, but with differing support values. In general, posterior probability values were higher than corresponding 

bootstrap values when recovering several clades. For example, with Itauara, Bayesian analyses yielded stronger 

support than parsimony in both the TOTAL COMBO (PP: 0.98; BS: 56) and TOTAL MORPH (PP: 0.99; BS: 55) 

datasets. This is consistent to what other studies using both empirical and simulation data found (Alfaro et al. 2003, 

Erixon et al. 2003, Leach & Reeder 2002, Wilcox et al. 2002). Posterior probability values have been interpreted as 

being comparable to bootstrap values given the appropriate priors (Durbin et al. 1998, Efron et al. 1996, 

Huelsenbeck et al. 2001), and approximate equivalent values for comparing the 2 support measures have been 

proposed (Simmons et al. 2004, Zander 2004). However, just as Bayesian and parsimony methods of phylogenetic 
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inference have different underlying assumptions, so do their respective confidence measures. Posterior probability 

and bootstrap frequencies are not equivalent measures of confidence (Alfaro et al. 2003, Erixon et al. 2003), and as 

such, each value must be interpreted differently. Posterior probabilities measure confidence that the hypothesis is 

correct given the data and specified model (Alfaro et al. 2003, Lewis 2001a). Bootstrap values measure the 

sensitivity of the results to sampling error associated with collecting characters from hypothesized character 

distribution (Alfaro et al. 2003). Consequently, discrepancies between the 2 values can provide additional insight 

into the dataset being analyzed (Alfaro et al. 2003). 

Posterior probability values may be more sensitive to phylogenetic signal than bootstrapping. In Bayesian 

analysis, higher confidence can be assigned to short internodes with small amounts of character change, and so 

may have lower incidences of type II error (rejecting the correct hypothesis) (Alfaro et al. 2003, Erixon et al. 

2003). Bootstrapping, on the other hand, may require more data to obtain high confidence on short internodes, even 

if those nodes are correct (Alfaro et al. 2003, Erixon et al. 2003). However, PP may also be more susceptible to 

assigning high support values to very short incorrect internodes (type I errors) (Alfaro et al. 2003, Erixon et al. 

2003). Of course, bootstrapping with parsimony is not immune to type I error since it may be more sensitive to 

LBA, and in those situations more likely to assign high support values to incorrect internodes (Alfaro et al. 2003). 

In this study, clades with high PP and moderate BS values may indicate that the node in question 1) has a high 

probability of being correct (given the present data and a correct model of evolution), and 2) is highly sensitive to 

the underlying character matrix and may not be recovered when additional characters are added (Alfaro et al. 2003, 

Holder & Lewis 2003).

CONCLUSIONS 

Concluding remarks for the phylogenetic analysis 

This study was the first to test the monophyly of Protoptilinae and its included genera and the first to hypothesize 

generic relationships by incorporating a large morphological dataset (nearly 100 characters) and a thorough 

sampling of taxa including representatives of all traditionally recognized genera and from all biogeographic 

regions. Additionally, this study was the first to infer phylogenetic relationships within the family Glossosomatidae 

using molecular data. The inclusion of missing data in combined analyses did not pose much of a problem in this 

study. Analyses of the independent COI dataset may have suffered from a number of problems including long-

branch attraction, or incomplete taxon sampling. Although relying solely on COI data may have yielded spurious 

results, including these data in a combined analysis appears to have improved the overall phylogenetic signal. Had 

the COI been strongly contractictory to the morphological data, it would likely have influenced the topology of the 

combined data. 

As COI seemed to be inappropriate for reconstructing protoptiline phylogeny at the genus and higher levels, 

this study would benefit from the addition of other genes, especially those that are considered more conservative. 

For example, nuclear genes may prove to be more phylogenetically informative at deeper regions of the tree. 

Additionally, combining nuclear and mitochondrial data is useful because incongruence (or congruence) can reveal 

important aspects of species histories (e.g., whether or not shared ancestral polymorphisms are indeed a problem in 

Protoptilinae) (Simon et al. 1994, Simon et al. 2006). Additionally, increased taxon and character sampling may 

improve the overall accuracy and resolution of the analyses. 

Given the previous discussion, the Bayesian analysis of the TOTAL COMBO dataset (Fig. 32), represents the 

best approximation of protoptiline phylogeny. It contains the most data (both morphology and COI) and includes 

the most taxa. Additionally, the Bayesian analysis of the TOTAL COMBO dataset is more resolved and has higher 

support values for several clades than the parsimony analysis. Several taxonomic changes are needed to reflect this 

phylogeny accurately. As demonstrated by this study, several taxa do not meet the criterion of reciprocal 

monophyly. However, classification changes should reflect only clades that were strongly supported, not 

contradicted in other analyses, and had supporting morphological evidence. Such proposed changes are discussed 

in the following section.
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A phylogenetic framework for classification and diagnoses of genera 

Subfamily Protoptilinae Ross, 1956: 149

The monophyly of Protoptilinae has been corroborated by this study. Monophyly was recovered in all analyses of 

all datasets, and strongly supported in all except the parsimony analysis of the SUBSET COI dataset. This study 

corroborated 2 of the 5 putative synapomorphies of Protoptilinae identified by Morse & Yang (1993) including: 1) 

foretibial spur hair-like or absent (Fig. 6B) (character 17), 2) forewing crossveins forming a relatively straight line 

along anastomosis (Fig. 7A) (character 47). Morse & Yang (1993) also listed an absence of apical fork V in the 

forewing as a possible synapomorphy of Protoptilinae, but this analysis did not support that character. Additionally, 

since larval characters were not included in this study, we were unable to evaluate the putative larval characters 

(tarsal claw seta beside process; anal claw with 4 accessory hooks) suggested by Morse & Yang (1993). Another 

unique synapomorphy of Protoptilinae identified in this study is the presence of a row of erect setae along the Cu2 

in the forewing (Fig. 7A) (character 41).

Diagnosis of Protoptilinae. Protoptilines are very minute caddisflies. As such, they may be confused with 

members of the family Hydroptilidae; however, protoptilines can easily be separated based on their presence of 

mesocutal setal warts. Perhaps the most identifiable feature of Protoptilinae is the absence of a foretibial spur, or a 

hair-like condition of this spur. Other distinctive features include the row of erect setae along Cu2 in the forewing, 

and the linear aspect of the forewing crossveins.

Adult. Length of forewing: 1.5–6 mm. Body, wings, and appendages pale brown, tawny brown, or fuscous, 

often intermingled with rufous or golden hairs. Wings often with few pale cream-colored or white hairs, specks or 

spots, and transverse line along anastomosis. Forewing with long fringe of setae along apical margin; hind wing 

with long fringe of setae along posterior margin. Head broader than long, vertex rounded. 3 ocelli. Mesal setal 

warts of pronotum widely spaced, not touching mesally. Mesoscutum with 2 pairs of setal warts; mesoscutellar 

setal warts usually absent, or if present, small and round. Maxillary palps 5-segmented, 1st and 2nd segments short; 

2nd segment bulbous; last 3 segments each nearly same length as 1st and 2nd segments combined. Tibial spur 

formula variable; foretibial preapical spur absent, foretibial apical spur either absent or hair-like. Fore- and hind 

wing venation variable, ranging from complete to extremely reduced. Forewing R1 unforked; crossveins, when 

visible, forming relatively straight line along anastomosis; row of stout, erect setae present along Cu2. Male 

genitalia extremely variable among genera and species. Preanal appendages absent.

Genus Canoptila Mosely, 1939

Canoptila Mosely, 1939: 218 [Type species: Canoptila bifida Mosely, 1939, by original designation].

All of the analyses recovered a strongly supported monophyletic Canoptila. A weak sister relationship between 

Scotiotrichia and Canoptila was recovered in the parsimony analysis of the TOTAL MORPH dataset. The analysis 

confirmed a putative unique synapomorphy identified by Robertson & Holzenthal (2006): the presence of 

membranous and digitate parameres (character 86) (Figs. 15B, D). However, the presence of long spine-like 

posterolateral process on tergum X and wing venational features were not found to be unambiguous 

synapomorphies of Canoptila. 

Diagnosis of Canoptila (Figs. 5B, 9A, 9B, 15, 31B). As noted by Robertson and Holzenthal (2006), the genus 

Canoptila is easily identified by the presence of certain structures of the male genitalia (Fig. 15): 1) a pair of long 

spine-like processes on the posterolateral margins of tergum X, and 2) paired, highly membranous digitate 

parameres arising basoventrally on the endotheca. Canoptila is most similar in forewing venation (Fig. 9A) to 

Cariboptila, Itauara, and Mastigoptia based on the presence of forks I, II, and III, the intersection of Cu1 and Cu2 

near anastomosis, and absence of A3. However, Canoptila can be distinguished from these species by the length of 

the stem of fork II: in Canoptila the stem is longer than the fork whereas in the other genera, the stem is shorter or 

no longer than the fork. Hind wing (Fig. 9B) venation of Canoptila is nearly identical to that of Scotiotrichia, and is 

very similar to those of Cariboptila and Protoptila having only apical fork II present and only 1 anal vein. 

Although indistinguishable from Scotiotrichia, the hind wings of Cariboptila and Protoptila are narrow and 

scalloped past the anastomosis, whereas in Canoptila, the margins are nearly parallel. Canoptila has telescopic 
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glandular structures (Fig. 5B) arising from the tegulae, as in many species of Culoptila. However, in Culoptila, 

these structures are “concertina-shaped” (Mosely 1954) and positioned posterolaterally, whereas in Canoptila, they 

are tubular in shape and arise more anteriorly. 

Adult. Body, wings, and appendages nearly uniformly fuscous or tawny brown, tibia and tarsi yellowish 

brown. Head (Fig. 5B) broader than long, vertex rounded, with large anteromesal setal wart, 2 distinct pairs of 

suboval anterior setal warts, small suboval posterior setal warts, suboval or triangular and bulging posterolateral 

setal warts. Ocelli present. Antennal scape less than or equal to 2 times length of pedicel. Maxillary palps 5-

segmented, 1st and 2nd segments short with elongate setae apically; 2nd segment bulbous; last 3 segments each 

nearly same length as 1st and 2nd segments combined. Prothorax with 2 large subtriangular or suboval pronotal 

setal warts. Mesothorax (Fig. 5B) wider than long, with paired telescopic tegular glands; mesoscutellum sparsely 

setose, without distinct setal warts. Forewing (Fig. 9A) relatively narrow, with margins nearly parallel, apex 

oblique. Male without apparent forewing callosity. Forewing venation incomplete, with apical forks I, II, and III 

present; Sc and R1 distinct along their entire lengths; fork I sessile; fork II petiolate, stem longer than fork; fork III 

petiolate, stem longer than fork; Cu1 complete, reaching wing margin; Cu1 and Cu2 intersecting near anastomosis; 

row of erect setae present below Cu2; A3 absent; crossveins forming relatively linear transverse cord; discoidal cell 

longer than Rs vein. Hind wing (Fig. 9B) margins nearly parallel, tapering only slightly past anastomosis; apical 

fork II present; Sc and R1 fused basally; A2 absent. Tibial spurs 1,4,4, foretibial spur extremely reduced and hair-

like. Sternum VI process (Fig. 15A) elongate and digitate, apex subacute, associated with weak oblique apodeme 

posteriorly.

Male genitalia (Fig. 15). Preanal and inferior appendages absent. Segment IX anterior margin fairly straight; 

tergum IX well developed, relatively broad, simple, without processes; sternum IX uniformly narrow, mesally, 

without modification. Tergum X completely fused to tergum IX forming ridge at line of fusion; dorsomesal margin 

bifid or subquadrate; dorsolateral margin with highly setose, rounded or subquadrate lobes; ventrolateral margin 

with paired very elongate, spine-like process directed inwardly. Parameres present, arising laterally from 

endotheca, membranous, bulbous, with sclerotized or asperous apices. Phallobase reduced, lightly sclerotized, with 

paired row or patches of setae ventrolaterally. Endophallus highly membranous, enlarged and convoluted when 

evaginated, bearing 1 to several pairs of large, pointed, sclerotized processes, lightly sclerotized apically or with 

terminal sclerite.

Female genitalia (Fig. 31B). (Female known only for C. williami.) Truncate posteriorly, not extensible. 

Abdominal segment VIII short, synscleritous, posterolateral margin slightly incised. Segments IX and X closely 

associated, with pair of small digitate cerci dorsolaterally.

Genus Cariboptila Flint, 1964

Cariboptila Flint, 1964: 17 [Type species: Cariboptila orophila Flint, 1964, by original designation] 
Campsiophora Flint, 1964: 14 [Type species: Campsiophora pedophila Flint, 1964, by original designation] new synonym

Cubanoptila Sykora, 1973, in Botosaneanu & Sykora 1973: 383 [Type species: Cubanoptila cubana Sykora, 1973, by new, 
subsequent designation] new synonym

Muangpaipsyche Malicky & Silalom, 2012: 22 [Type species: Muangpaipsyche areopagita Malicky & Silalom, 2012, by 
monotypy; Malicky 2013, as synonym of Campsiophora] new synonym

None of the analyses of any dataset in this study were able to recover a monophyletic Cariboptila as historically 

constituted. Flint (1964) established Cariboptila and Campsiophora in the same paper, and distinguished the 2 

genera based on 1) the level of branching of the apical forks 1 and 2 relative to each other in the forewing, and 2) 

the presence of a hair pencil on the inner surface of the forewing in Campsiophora. However, differences in the 

relative position of the apical forks are quite variable and homoplastic throughout the subfamily and 1 of the 2 

states must be plesiomorphic and thus not appropriate for defining taxa by cladistic standards. Additionally, the 

hair pencil in the forewing is not consistently found in all Campsiophora. Sykora (in, Botosaneanu & Sykora 

1973), distinguished Cubanoptila from other protoptiline genera based on features of the antennae, wing venation, 

and a plate-like tergum VIII. While the presence of small spines on the 3rd antennal article does appear to be 

unique to Cubanoptila, the other characters proposed for the establishment of Cubanoptila are not and, in these 

analyses, the Cubanoptila species are nested within Cariboptila, and thus the groups are not reciprocally 

monophyletic at the generic level. Furthermore, larval morphology of the 3 genera is not significantly different, 
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with all 3 possessing tarsal claws with a short and broad seta. Therefore, to reflect phylogeny accurately, the 

following species are hereby transferred to Cariboptila (all new combinations): from Campsiophora: C. arawak

(Flint), C. mulata (Botosaneanu), C. pedophila (Flint); and from Cubanoptila: C. botosaneanui (Kumanski), C. 

cubana (Sykora), C. madremia (Botosaneanu), C. muybonita (Sykora), C. purpurea (Sykora), C. tridens

(Botosaneanu). Although simultaneously published, as first revisers we prefer the name Cariboptila as the senior 

synonm over Campsiophora, despite “page priority.” The use of Cariboptila will impart more nomenclatural 

stability since fewer species need to be transferred. Furthermore, the name alludes to their occurrence in the 

Caribbean. 

Malicky & Silalom (2012) described a new monotypic genus, reportedly from Thailand, Muanpaipsyche 

areopagita. However, after we informed Dr. Malicky that this new genus is almost certainly Cariboptila pedophila

(Flint, 1964) because of nearly identical male genitalia and wing venation (compare figures given by Malicky & 

Silamon 2012, page 23 with our Figs. 8 & 18), Malicky synonomized the genus, but not the species (Malicky 

2013). We hereby designate the species C. arepagita, as a new junior synonom of C. pedophila. It is extremely 

doubtful that this single species would be found both in the Caribbean and Thailand, but is rather the likely result of 

a mislabeled specimen or other curatorial lapse. 

No type species was designated explicitly in the original description of Cubanoptila. Flint et al. (1999) erred in 

stating that Cubanoptila cubana is the type species by “original designation.” Cubanoptila cubana is here 

designated as the type species of Cubanoptila by “virtual tautonomy” in compliance with Recommendation 69A.2 

of the International Code of Zoological Nomenclature (1999).

Monophyly of the redefined Cariboptila was strongly supported in all analyses with the following 3 unique 

synapomorphies: 1) antennal scape greater than or equal to 3 times the length of the pedicel (Fig. 6A) (character 3), 

2) tergum IX dorsal lateral process bearing 1 or more elongate apical setae (Figs. 16A, C) (character 73), 3) inferior 

appendages present as broad, highly setose, prominent plate-like projections fused basoventrally to phallobase 

(Figs. 16A, B) (character 82). 

Diagnosis of Cariboptila (Figs. 6A, 7C, 7D, 8, 16–18). Perhaps the most distinctive feature of the genus 

Cariboptila is its extremely long antennal scape (Fig. 6A), which is often associated with androconia. Many 

species also have stout setae along the 3rd antennal segment, although this is not completely diagnostic for the 

genus. Another diagnostic feature is the short discoidal cell in the forewing. The males of 2 species of Padunia [P. 

falcata (Schmid, 1991) and P. phyllis (Malicky & Chantaramongkol, 2007)] also have a short discoidal cell, but in 

these species the wings are highly modified. Cariboptila is most similar in forewing venation to Canoptila,

Itauara, and Mastigoptia based on the presence of forks I, II, and III, the intersection of Cu1 and Cu2 near the 

anastomosis, and the absence of A3. However, Cariboptila can be distinguished from these genera based on its 

presence of a short discoidal cell in the forewing. The hind wing venation of Cariboptila is nearly identical to that 

of Canoptila, Scotiotrichia, and Protoptila, having only apical fork II and only a single anal vein, yet can be 

differentiated from these genera based on differences of the forewing. In the forewing of Protoptila, A3 is present; 

in Scotiotichia, fork III is absent; and Canoptila’s forewing has a short discoidal cell. 

Diagnostic characters of the male genitalia include the broad, highly setose plate-like inferior appendages, the 

digitate process of tergum IX, which usually bears 1 or more elongate apical setae, and the lateral branches of 

tergum X whose dorsolateral margins have sclerotized short, flattened, inwardly curved processes or irregular 

setose processes and ventrolateral margins bearing 1 or several large, highly sclerotized spines or spine-like setae. 

The male genitalia of Cariboptila are most similar to those of Culoptila in that both are completely lacking, or have 

a strap-shaped, sternum IX, and an enlarged phallobase. The 2 genera are easily differentiated by differences in the 

shapes of terga IX and X, the inferior appendages, and wing venation. The genera Tolhuaca and Scotiotrichia also 

have a reduced sternum IX and enlarged phallobase, but can be easily separated from Cariboptila by other genitalic 

features or differences in wing venation. Tolhuaca has complete forewing venation and the phallic apparatus lacks 

elongate spines or processes. In the forewing of Scotiotrichia, fork III is absent.

Adult. Body, wings, and appendages pale or tawny brown, often intermingled with rufous or golden hairs. 

Wings often with few pale cream-colored or white hairs, spots, or transverse line along anastomosis and small 

white specks or spots along apical margin. Head broader than long, vertex rounded, either with 1 distinct pair, 1 

divided pair, or 2 distinct pairs of suboval anterior setal warts, small or large suboval posterior warts, suboval or 

triangular and bulging posterolateral setal warts. Ocelli present. Antennal scape more than 3 times as long as 

pedicel, often with androconia; 3rd antennal segment occasionally with stout spine-like setae (Fig. 6A). Maxillary 

palps 5-segmented, 1st and 2nd segments short; 2nd segment bulbous; last 3 segments each nearly same length as 
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1st and 2nd segments combined. Prothorax with 2 large, subtriangular or suboval pronotal setal warts. Mesothorax 

wider than long, without apparent tegular glands; mesoscutum with pair of suboval, or occasionally elongate 

anteromesal setal warts, suboval posterolateral warts; mesoscutellum sparsely setose, without distinct setal warts. 

Forewing (Figs. 7C, 8A, 8C) relatively narrow, with margins nearly parallel, apex oblique. Males occasionally with 

hair pencil along anal margin (Fig. 8C) or callosity in anal or apical costal region of forewing. Forewing venation 

incomplete, with apical forks I, II, and III present; Sc and R1 distinct along their entire lengths; fork I sessile or 

only slightly petiolate with extremely short stem; fork II petiolate or sessile, but when petiolate, stem shorter or 

about as long as fork; fork III petiolate, stem usually longer than fork, occasionally same length; Cu1 complete, 

reaching wing margin; Cu1 and Cu2 intersecting near anastomosis, or completely fused; row of erect setae present 

along Cu2; A3 absent; crossveins forming relatively linear transverse cord; discoidal cell shorter than Rs vein. 

Hind wing (Figs. 7D, 8B, 8D) narrow and scalloped past anastomosis; apical fork II present; Sc and R1 fused 

basally; A2 absent. Tibial spurs either 0,4,4 or 1,4,4, foretibial spur extremely reduced and hair-like. Sternum VI 

process present, shape variable, ranging from flattened dorsoventrally, short and digitate, to thumb-like and 

prominent, apex also variable, either pointed, rounded, or subquadrate, often associated with weak oblique 

apodeme posteriorly.

Male genitalia (Figs. 16–18). Preanal appendages absent. Tergum VIII occasionally forming dorsal plate 

subtending tergum IX and X (Fig. 17A, 17B). Sternum VIII without modification. Segment IX anterior margin 

rounded or fairly straight, posterolateral margin without lateral process or lobes; tergum IX well developed, 

relatively broad, with paired, dorsolateral, often digitate process usually bearing 1 or more elongate apical setae; 

sternum IX usually completely absent, or if present, consisting only of small ventral membranous strap. Tergum X 

subtended by tergum IX; dorsomesal margin bifid or subquadrate, or with single broad, plate-like process, or 

irregular with several small processes; dorsolateral margin with sclerotized short, flattened, inwardly curved 

process, or with irregular setose processes; ventrolateral margin bearing 1 or several large, highly sclerotized spines 

or spine-like setae, directed mesad. Inferior appendages present, ventrally as broad, highly setose, prominent plate-

like projection fused ventrobasally to phallobase, often invaginated apicomesally, with setose, elongate, broad and 

plate-like, or multilobed lateral appendages. Parameres absent. Phallobase extremely enlarged, sclerotized, and 

occupying nearly all of genital capsule, forming ventral portion of genitalia. Phallic apparatus with 1 to several 

pairs of elongate phallic spines and/or highly curving processes. Endophallus membranous, enlarged and 

convoluted when invaginated.

Female genitalia. (Females unknown for many species.) Truncate posteriorly, not extensible. Abdominal 

segment VIII broad or short, sometimes incomplete midventrally with elongate sclerite. Sternum IX often forming 

triangular lobes. Segments IX and X closely associated, with pair of small digitate cerci dorsolaterally.

Genus Culoptila Mosely, 1954

Culoptila Mosely, 1954: 336 [Type species: Culoptila aluca Mosely, 1954, by original designation].

Monophyly for Culoptila was strongly supported in all analyses with the following unique synapomorphies: 1) an 

incomplete Cu1 on the forewing (character 38), and 2) inferior appendages comprised of simple, paired, long or 

short process, fused to one another basally and to ventral surface of phallobase (character 82). Blahnik and 

Holzenthal (2006) hypothesized that Culoptila was most closely related to the Caribbean genera Campsiophora, 

Cariboptila, and Cubanoptila. In this study, a sister relationship between Culoptila and the Caribbean taxa was 

recovered with weak nodal support in the parsimony analysis of the TOTAL MORPH dataset, and in both analyses 

of the SUBSET MORPH dataset.

Diagnosis of Culoptila (Figs. 3B, 3C, 4, 7A 7B, 19). The genus Culoptila can be identified by both forewing 

and hind wing venation. In the forewing, only apical forks I–IV are present, fork V is absent. Additionally, Cu1 is 

incomplete, not reaching the wing margin. In the hind wing, only apical forks II and III are present. Another 

distinctive feature, although not completely diagnostic for the genus as already noted by Blahnik and Holzenthal 

(2006), is the presence of enlarged tegulae on the mesothorax of males, which accommodate an extensible 

concertina-like glandular structure. The genus Canoptila also possesses extensible glandular structures associated 

with the tegulae, but these differ in shape from those of Culoptila. 

Other diagnostic features of the genus occur in the male genitalia, most notably the absence or extreme small 
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size of sternum IX, and a greatly enlarged phallobase. As noted above, and in the works by Robertson & 

Holzenthal (2005) and Blahnik & Holzenthal (2006), the genera Cariboptila and Tolhuaca have similar reductions 

of the sterna and inflated phallobases; however, these genera can be easily separated from Culoptila based on 

differences in wing venation and other characters of the male genitalia. Terga IX and X are differently shaped in 

Cariboptila, and unlike Culoptila, Cariboptila lacks apical fork III in the hind wing. Tolhuaca has complete 

forewing venation and lacks elongate phallic spines. Another diagnostic feature of Culoptila is the presence of an 

apical phallotremal sclerite, although this structure is sometimes difficult to see and may not be easily identified 

(Blahnik & Holzenthal 2006). 

Adult. Body, wings, and appendages pale brown to fuscous. Wings often with white transverse line along 

anastomosis or conspicuous spot at the arculus. Head broader than long, vertex rounded, with pair of small 

anteromesal setal warts, pair of distinct, suboval anterior setal warts, small suboval posterior setal warts, suboval or 

triangular and bulging posterolateral setal warts. Ocelli present. Antennal scape less than or equal to 2 times length 

of pedicel. Maxillary palps 5-segmented, 1st and 2nd segments short; 2nd segment bulbous; last 3 segments each 

nearly same length as 1st and 2nd segments combined. Prothorax with 2 large subtriangular or suboval pronotal 

setal warts. Mesothorax shape variable, usually wider than long, but occasionally longer than wide to accommodate 

enlarged tegulae of males bearing paired concertina-shaped glandular processes; mesoscutum with pair of elongate 

anteromesal setal warts, suboval posterolateral warts; mesoscutellum sparsely setose, without distinct setal warts. 

Forewing (Fig. 7A) relatively narrow, with margins nearly parallel, apex oblique. Male without apparent forewing 

callosity. Forewing venation incomplete, with apical forks I, II, III, and IV present; Sc and R1 distinct along their 

entire lengths; fork I petiolate, but with extremely short stem; fork II petiolate or sessile, stem shorter than fork; 

fork III petiolate, stem longer than fork; fork IV petiolate, stem about as long as fork; Cu1 incomplete, not reaching 

wing margin; Cu1 and Cu2 intersecting near anastomosis; row of erect setae present along Cu2; A3 absent; 

crossveins forming relatively linear transverse cord; discoidal cell longer than Rs vein. Hind wing (Fig. 7B) narrow 

and scalloped past anastomosis; apical forks II and III present; Sc and R1 fused basally; A2 present, not looped. 

Tibial spurs 1,4,4, foretibial spur extremely reduced and hair-like. Sternum VI process present, short, often 

somewhat circular in lateral view, apex subquadrate or rounded, associated with weak oblique apodeme posteriorly.

Male genitalia (Fig. 19). Preanal appendages absent. Segment IX anterior margin rounded; tergum IX well 

developed, relatively broad, simple, without processes; sternum IX absent. Tergum X incompletely fused to tergum 

IX with membrane or lightly sclerotized region ventrolaterally; dorsomesal margin subquadrate; dorsolateral 

margin without processes; ventrolateral margin with paired elongate processes attached ventrolaterally to tergum 

IX and directed ventrad and sometimes anterad. Inferior appendages present (except in C. cantha Ross, 1938, and 

C. plummerensis Blahnik & Holzenthal, 2006), as simple, paired long or short appendages, fused to one another 

basally and to ventral surface of phallobase. Parameres absent. Phallobase extremely enlarged, lightly sclerotized, 

and occupying nearly all of genital capsule, with sclerotized, projecting apex posterodorsally. Phallic apparatus 

with 1 or 2 phallic spines of varying length and shape.

Female genitalia. (Females unknown for many species.) Truncate posteriorly, not extensible. Abdominal 

segment VIII short, usually synscleritous, but sometimes incomplete midventrally and laterally. Segments IX and 

X closely associated, with pair of small digitate cerci dorsolaterally.

Genus Itauara Müller, 1888

Itauara Müller, 1888: 275 [Type species: Antoptila brasiliana Mosely, 1939, subsequent selection by Flint et al. 1999].
Antoptila Mosely, 1939: 219 [Type species: Antoptila brasiliana Mosely, 1939, by original designation] Flint et al. 1999, to 

synonymy.

A monophyletic group consisting of 21 Itauara species was recovered in all analyses of this study. The unique 

synapomorphy of Itauara is the presence of a dorsal sheath covering a ventral membranous portion of the phallus 

(character 95). 

Diagnosis of Itauara (Figs. 9C, 9D, 20). The genus Itauara can be identified by features of the male genitalia. 

The phallic apparatus consists of a sclerotized dorsal sheath covering a very membranous ventral portion, an 

apparent posterior extension of the phallobase or phallicata. In some species, this sclerotized dorsal sheath seems to 

detach from the ventral membrane apically to reveal a single dorsomesal process or spine (e.g., I. amazonica Flint, 
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1971). Mortoniella has a similar dorsomesal process or spine, but in Mortoniella it arises internally from the 

phallobase, whereas in Itauara it appears to arise dorsobasally from this sclerotized sheath. In some species (I. 

guarani and I. plaumanni), the sheath produces a dorsolateral flange, although this character is not diagnostic for 

the genus. Another genitalic feature characteristic of Itauara is an extremely reduced phallobase. In most species, 

the phallobase is barely visible, consisting of a small, very lightly sclerotized, or entirely membranous structure. 

The genera Mastigoptila and Canoptila display similar reductions or absences of the phallobase, but can easily be 

separated from Itauara by other genitalic characters: Mastigoptila has an elongate, whip-like process arising from 

the membranes of the phallocrypt; Canoptila has highly membranous digitate parameres. When present (they are 

absent in many species), the inferior appendages are rather distinct for Itauara, consisting of a single or apically 

bifid process produced mesally and fused to the phallobase basoventrally. 

The forewing venation of Itauara is most similar to that of Cariboptila and Canoptila, with apical forks I–III 

and a lack of 3A. Canoptila can be differentiated from Itauara by having stout setae occurring below Cu2 whereas 

in Itauara the setae occur along the vein. Cariboptila can be differentiated from Itauara by the presence of a short 

discoidal cell, that of Itauara being long. The hind wing venation of Itauara is variable, with either apical forks II, 

III, and V or II and V or III only (I. amazonica) or II only.

Adult. Body, wings, and appendages pale or tawny brown, often intermingled with rufous or golden hairs, tibia 

and tarsi yellowish brown (Fig. 2A). Wings usually with partial white transverse line along anastomosis not 

reaching costal margin, or with conspicuous white spot at arculus (Fig. 2A). Head broader than long, vertex 

rounded, with pair of small anteromesal setal warts or with large anteromesal setal wart, either 1 distinct pair or 1 

divided pair of suboval anterior setal warts, small or large suboval posterior warts, suboval or triangular and 

bulging posterolateral setal warts. Ocelli present. Antennal scape less than or equal to 2 times length of pedicel. 

Maxillary palps 5-segmented, 1st and 2nd segments short; 2nd segment bulbous; last 3 segments each nearly same 

length as 1st and 2nd segments combined. Prothorax with 2 large subtriangular or suboval pronotal setal warts. 

Mesothorax wider than long, without apparent tegular glands; mesoscutum with pair of suboval anteromesal setal 

warts, suboval posterolateral warts; mesoscutellum sparsely setose, without distinct setal warts. Forewing (Fig. 9C) 

usually relatively narrow, with margins nearly parallel, occasionally narrowed past anastomosis or much reduced, 

apex oblique or rounded. Male occasionally with callosity present in apical costal region of forewing. Forewing 

venation incomplete, with apical forks I, II, and III present; Sc and R1 distinct along their entire lengths; fork I 

sessile or only slightly petiolate with extremely short stem; fork II petiolate or sessile, but when petiolate, stem 

length variable; fork III petiolate, stem variable in length; Cu1 complete, reaching wing margin; Cu1 and Cu2 

intersecting near anastomosis; row of erect setae present along Cu2; A3 absent; crossveins forming relatively linear 

transverse cord; discoidal cell longer than Rs vein. Hind wing (Fig. 9D) margins nearly parallel, tapering only 

slightly past anastomosis, or narrow and scalloped past anastomosis; venation variable, with either apical forks II, 

III, and V present or II and V present or III present (I. amazonica) or II present; Sc and R1 fused basally or 

converging near wing margin; A2 absent. Tibial spurs 1,4,4, rarely 1,3,4, foretibial spur extremely reduced and 

hair-like. Sternum VI process present, short and digitate or thumb-like and prominent, apex rounded or attenuate 

and pointed, usually associated with oblique apodeme posteriorly.

Male genitalia (Fig. 20). Segment IX anterior margin rounded, posterolateral margin without lateral processes 

or lobes; tergum IX usually not well developed, simple, and without processes; sternum IX without modification, 

except in I. brasiliana (Mosely, 1939), which bears 2 pairs of elongate, seta-like processes. Tergum X incompletely 

fused to tergum IX ventrolaterally or rarely (I. amazonica) completely fused and indistinguishable from tergum IX, 

shape extremely variable; dorsomesal margin may be simple without processes, bifid apicomesally with single 

broad plate-like process, or irregular with several small processes; dorsolateral margin either simple structure 

without processes, or more commonly with small paired lobes, elongate and down-turned and finger-like 

processes, or irregular setose processes; ventrolateral margin with paired elongate or broad flange-like processes 

directed ventrad and sometimes anterad, or with 1 or more irregular, paired, setose, digitate lobes directed posterad. 

Inferior appendages either present or absent; when present, consisting of single or apically bifid process produced 

mesally, broadest at base and fused to phallobase ventrobasally. Parameres present except in I. brasiliana, arising 

either ventrobasally from phallobase or laterally from endotheca, sclerotized, shape variable. Phallobase extremely 

small and difficult to discern. Phallic apparatus with sclerotized dorsal sheath covering membranous ventral 

portion, sometimes receding to a single dorsomesal process arising dorsobasally from phallobase, phallicata 

occasionally with dorsolateral flange, or occasionally with dorsomesal spine arising posterior of phallobase. 
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Endophallus highly membranous, enlarged and convoluted when evaginated, occasionally bearing small apical 

spine-like sclerites and processes.

Female genitalia. (Females unknown for many species.) Truncate posteriorly, not extensible. Abdominal 

segment VIII short, synscleritous, posterolateral margin slightly incised. Segments IX and X closely associated, 

with pair of small digitate cerci dorsolaterally.

Genus Mastigoptila Flint, 1967

Mastigoptila Flint, 1967: 49 [Type species: Mastigoptila curvicornuta Flint, 1967, by original designation].

Monophyly of Mastigoptila was supported in all analyses in this study. A synapomorphy of Mastigoptila is 

markedly asymmetrical inferior appendages, fused to the phallocrypt ventrobasally (character 82) (Fig. 20A).

Diagnosis of Mastigoptila (Figs. 12C, 12D, 21). The most distinctive feature of Mastigoptila is the profoundly 

asymmetrical aspect of the male genitalia. The phallic apparatus is tubular, asymmetrical, and often arcuate. The 

inferior appendages form an asymmetrical complex consisting of differently shaped and sized right and left setose 

appendages, which are fused together basally and ventrobasally with a lightly sclerotized phallocrypt. In some 

species, 1 of the inferior appendages also bears an elongate spinelike process. Another identifying feature is the 

presence of an elongate whiplike process arising from membranes of the phallocrypt on 1 side of the genitalia. The 

phallobase is also apparently absent.

The forewing venation of Mastigoptila is similar to that of Canoptila and identical to that of some species of 

Itauara. The forewing of Mastigoptila can be differentiated from that of Canoptila by having a sessile apical fork 

II. Unlike Mastigoptila, Itauara has symmetrical genitalia.

Adult. Body, wings, and appendages nearly uniformly fuscous. Wings sometimes with light spot at arculus and 

faint transverse line along anastomosis. Head broader than long, vertex rounded, pair of distinct, suboval anterior 

setal warts, small suboval posterior setal warts, suboval or triangular and bulging posterolateral setal warts. Ocelli 

present. Antennal scape less than or equal to 2 times length of pedicel. Maxillary palps 5-segmented, 1st and 2nd 

segments short with elongate setae apically; 2nd segment bulbous; last 3 segments each nearly same length as 1st 

and 2nd segments combined. Prothorax with 2 large subtriangular or suboval pronotal setal warts. Mesothorax 

wider than long, of some species with tegular glands; mesoscutum usually with pair of elongate anteromesal setal 

warts, although occasionally entire anteromesal region setose with no distinct patch, suboval posterolateral warts; 

mesoscutellum sparsely setose, without distinct setal warts. Forewing relatively narrow, with margins nearly 

parallel, apex oblique. Male without apparent forewing callosity. Forewing venation incomplete, with apical forks 

I, II, and III present; Sc and R1 distinct along their entire lengths; fork I sessile; fork II sessile; fork III petiolate, 

stem about as long as fork, occasionally slightly longer; Cu1 complete, reaching wing margin; Cu1 and Cu2 

intersecting near anastomosis; row of erect setae present below Cu2; A3 absent; crossveins forming relatively 

linear transverse cord; discoidal cell longer than Rs vein. Hind wing margins nearly parallel, tapering only slightly 

past anastomosis; apical forks II, III, and V present; Sc and R1 converging near wing margin; A2 absent. Tibial 

spurs either 0,4,4 or 1,4,4; foretibial spur extremely reduced and hair-like. Sternum VI process present, flattened 

laterally, apex attenuate and pointed, often associated with weak oblique apodeme posteriorly. Sternum VII 

occasionally with small mesal point.

Male genitalia. Preanal appendages absent. Segment IX anterior margin rounded, posterolateral margin 

without lateral process or lobes; tergum IX strap-like, simple, without processes; sternum IX uniformly narrow, 

mesally without modification. Tergum X incompletely fused to tergum IX, with membrane or lightly sclerotized 

region ventrolaterally; dorsomesal margin subquadrate or excavate; dorsolateral margin either hood-like, without 

processes or with 1 or more large, horn-like processes; ventrolateral margin usually simple, but occasionally 

bearing small lobes or processes. Inferior appendages present, markedly asymmetrical, consisting of elongate 

spine-like processes and setose lobes, sometimes bifid, fused to phallocrypt ventrobasally. Parameres absent. 

Phallobase apparently absent. Phallic apparatus asymmetrical, tubular and often arcuate with posteriorly projecting 

apex, sclerotized or rugose, with small membranous protuberances, highly convoluted internal membranes with 

occasional small spines.

Female genitalia. (Females unknown for most species.) Truncate posteriorly, not extensible. Abdominal 

segments VIII and IX not fused. 
 Zootaxa 3723 (1)  © 2013 Magnolia Press  ·  33REVISION OF PROTOPTILINAE



Genus Merionoptila Schmid, 1959

Merionoptila Schmid, 1959: 482 [Type species: Merionoptila wygodzinskyi Schmid, 1959, by original designation].

Schmid (1959) suggested that the monotypic genus Merionoptila was more closely related to Antoptila (=Itauara) 

than to the other known protoptiline genera. This study can neither refute nor support that possibility since the 

placement of Merionoptila remains unresolved. The following are apomorphies of Merionoptila: 1) stem of 

forewing fork I longer than fork (character 26) (Fig. 10A), 2) forewing crossvein r-m absent (character 45) (Fig. 

10A), 3) sternum VI mesal process absent, and 4) inferior appendage bulbous, fused ventromedially to the 

endotheca and projecting ventrad (character 82) (Fig. 22A, C). 

Diagnosis of Merionoptila (Figs. 10A, 10B, 22). This monotypic genus has quite distinctive morphology 

among protoptilines. Its thorax is quite broad, it has highly setose legs and eyes, and extremely reduced wings—all 

apparently adaptations for skating across the water surface, a behavior first reported by Wygodzinski in a letter to 

Schmid (1959). The forewing is reduced in size, but has rather typical venation, with apical forks I–III present, 

although fork I may be difficult to see. The hind wing is even more reduced, and it is nearly impossible to discern 

the venation. The male genitalia of Merionoptila are rather simple, with a sclerotized, tubular phallic apparatus, 

directed dorsally at the apex. Inferior appendages are quite distinct, consisting of a highly setose, bulblike process, 

projecting ventrad and fused basally to the ventral portion of the phallobase.

Adult. Body, wings, and appendages nearly uniformly fuscous. Head broader than long, vertex rounded, with 

pair of small anteromesal setal warts, pair of distinct, suboval anterior setal warts, small suboval posterior setal 

warts, suboval or triangular and bulging posterolateral setal warts. Ocelli present. Antennal scape less than or equal 

to 2 times length of pedicel. Eyes setose. Maxillary palps 5-segmented, 1st membranous and bulbous, 2nd segment 

very short; last 3 segments each nearly same length as 1st and 2nd segments combined. Thorax broad and robust. 

Prothorax with 2 large, subtriangular or suboval pronotal setal warts. Mesothorax wider than long, without 

apparent tegular glands; mesoscutum with pair of suboval anteromesal setal warts, suboval posterolateral warts; 

mesoscutellum sparsely setose, without distinct setal warts. Forewing (Fig. 10A) much reduced, apex rounded. 

Male without apparent forewing callosity. Forewing venation incomplete, with apical forks I, II, and III present, 

fork I very difficult to discern; Sc and R1 distinct along their entire lengths; fork I petiolate; fork II petiolate, stem 

longer than fork; fork III petiolate, stem longer than fork; Cu1 complete, reaching wing margin; Cu1 and Cu2 

completely fused; row of erect setae present along Cu2; A3 absent; crossveins difficult to discern, but apparently 

forming relatively linear transverse cord; discoidal cell longer than Rs vein. Hind wing (Fig. 10B) extremely 

reduced; apical forks not clearly identifiable; Sc and R1 fused basally; A2 absent. Mesothoracic legs extremely 

setose. Tibial spurs 0,2,4. Sternum VI process absent.

Male genitalia (Fig. 22). Preanal appendages absent. Segment IX anterior margin rounded; tergum IX 

uniformly narrow, simple, without processes; sternum IX uniformly narrow, mesally without modification. Tergum 

X fused to tergum IX dorsomesally, or "hinged"; dorsomesal margin divided or bifid apicomesally; dorsolateral 

margin with small paired lobes; ventrolateral margin with irregular, paired setose lobes. Inferior appendages 

present, bulbous, highly setose, fused ventromedially to endotheca and projecting ventrad. Parameres absent. 

Phallobase simple, subtriangular in lateral view. Phallic apparatus simple, tubular, projecting posterad, without 

spines or processes. Endophallus membranous, enlarged and convoluted when invaginated.

Female genitalia. (A female specimen for this monotypic genus has not been positively associated with the 

male. In the original description, Schmid reported that a single female was captured, but at a different locality from 

the type specimens captured. Thus, only basic female genitalic characters are briefly described.) Truncate 

posteriorly, not extensible.

Genus Mortoniella Ulmer, 1906

Mortoniella Ulmer, 1906: 95 [Type species: Motoniella bilineata, by monotypy].
Mexitrichia Mosely, 1937: 158 [Type species: Mexitrichia leroda, by original designation] Blahnik & Holzenthal 2008, to 

synonymy.
Paraprotoptila Jacquemart, 1963: 342 [Type species: Paraprotoptila armata, by monotypy] Flint et al. 1999, to synonymy with 

Mexitrichia.
ROBERTSON & HOLZENTHAL34  ·  Zootaxa 3723 (1)  © 2013 Magnolia Press



A monophyletic Mortoniella including a single undescribed species from Brazil was recovered with weak support 

in analyses of the TOTAL COMBO and SUBSET COMBO datasets. However, in analyses of the TOTAL MORPH 

and SUBSET MORPH datasets, Mortoniella was found to be paraphyletic, and in the SUBSET COI dataset, 

polyphyletic. Blahnik and Holzenthal (2008) synonomized Mexitrichia with Mortoniella based on similarities of 

the male genitalia and the fact that Mexitrichia was historically defined based on the presence of apical fork V in 

the hind wing, a plesiomorphic character for Trichoptera. It is perhaps the retention of this and other primitive 

characters (e.g., an unmodified tergum X and sternum VIII), that accounts for the difficulty in recovering its 

monophyly in some datasets. We sampled species from both Mortoniella and Mexitrichia, as previously defined. 

Based on morphological evidence, and the fact that a monophyletic Mortoniella that included the Mexitrichia

species was recovered in combined analyses, the decision by Blahnik and Holzenthal (2008) to synonymize 

Mexitrichia with Mortoniella is justified by this study. A synapomorphy of Mortoniella is that the inferior 

appendages form a composite structure consisting of paired processes fused together basally and to the ventral 

margin of the phallic apparatus and ventrolaterally to the endotheca, with associated articulated appendages fitting 

into pockets (character 82) (Figs. 23A, D).

Diagnosis of Mortoniella (Figs. 2B, 11A, 11B, 23). The genus Mortoniella is diagnosed based on several 

unique structures of the male genitalia, termed the “phallic ensemble” by Blahnik and Holzenthal (2008). The male 

genitalia are characterized by the presence of a dorsomesal spine or process arising internally from the phallobase, 

which varies in shape among species. The dorsomesal spine or process articulates with the phallicata, which 

sometimes bears a dorsolateral process that may function as a guide for the spine (Blahnik & Holzenthal 2008). 

Tergum X is usually excavated dorsomesally to accommodate the spine. Some species of Itauara have a similar 

dorsomesal spine, but in this genus, the spine arises posteriorly as an apparent extension of the phallobase. The 

inferior appendages of Mortoniella are also distinct among protoptilines. They are fused to one another basally and 

to the ventral part of endotheca, and enclose a pair of sclerotized pockets on the mesal surface. These pockets are 

associated with pair of small, digitate, articulated appendages arising from the posteroventral part of the 

phallobase. Members of the genus Protoptila also bear the small articulated appendages that fit into associated 

pockets. However, in Protoptila, the inferior appendages are apparently absent. The 2 genera can also be separated 

based on differences in the shape of tergum X, the lack of a dorsomesal spine in Protoptila, and an unmodified 

sternum VIII, which is posteriorly projecting in Protoptila. 

The forewing venation of Mortoniella is most similar to that of Protoptila, with apical forks I, II, and III 

present, a completely fused Cu1 and Cu2, and the presence of 3A (although in some species of both genera, 3A is 

absent). However, Mortoniella can sometimes be distinguished by the row of erect setae, which is positioned only 

slightly below the Cu2 vein in Mortoniella, but far below the Cu2 vein in Protoptila. The hind wing venation of 

Mortoniella is quite variable, with either apical forks II, III, and V or II and III only or II only present. 

Adult. Body, wings, and appendages nearly uniformly fuscous or tawny brown. Wings often with white 

transverse line along entire length of anastomosis (Fig. 2B). Head broader than long, vertex rounded, either 1 

distinct pair or 1 divided pair of suboval anterior setal warts, large suboval posterior setal warts, suboval or 

triangular and bulging posterolateral setal warts. Ocelli present. Antennal scape less than or equal to 2 times length 

of pedicel. Maxillary palps 5-segmented, 1st and 2nd segments short; 2nd segment bulbous; last 3 segments each 

nearly same length as 1st and 2nd segments combined. Prothorax with 2 large subtriangular or suboval pronotal 

setal warts. Mesothorax wider than long, without apparent tegular glands; mesoscutum with pair of suboval 

anteromesal setal warts, suboval posterolateral warts; mesoscutellum sparsely setose, without distinct setal warts. 

Forewing (Fig. 11A) shape variable, relatively broad past anastomosis in most species, more narrow in others, apex 

rounded, occasionally with scale-like setae. Male without apparent forewing callosity. Forewing venation 

incomplete, with apical forks I, II, and III present; Sc and R1 distinct along their entire lengths; fork I sessile; fork 

II sessile; fork III petiolate, stem variable in length; Cu1 complete, reaching wing margin; Cu1 and Cu2 completely 

fused; row of erect setae present slightly below Cu2; A3 when present, looped; crossveins forming relatively linear 

transverse cord; discoidal cell longer than Rs vein. Hind wing (Fig. 11B) shape variable, relatively broad past 

anastomosis in most species, more narrow with margins nearly parallel in other species; venation variable, either 

with apical forks II only, or II and III only, or II, III, and V present; Sc and R1 fused basally; A2 when present, 

looped. Tibial spurs either 0,4,4 or 1,4,4; foretibial spur extremely reduced and hair-like. Sternum VI process 

present, shape variable, subtriangular, elongate and digitate, short and digitate, or laterally flattened, apex rounded 

or attenuate and pointed, usually associated with oblique apodeme posteriorly.
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Male genitalia (Fig. 23). Preanal appendages absent. Segment IX anterior margin rounded, posterolateral 

margin without lateral process or lobes; tergum IX uniformly narrow, simple, without processes; sternum IX 

uniformly narrow, mesally without modification. Tergum X fused to tergum IX dorsomesally, or "hinged"; 

dorsomesal margin excavated, divided or bifid apicomesally, but sometimes with single, prominent, elongate 

process; dorsolateral margin without processes, as small paired lobes, or with irregular setose processes; 

ventrolateral margin without processes, with irregular, paired setose lobes, or with 1 or more irregular, paired, 

setose, digitate lobes directed posterad. Inferior appendages present, forming composite structure consisting of 

paired processes fused together basally, ventrolaterally to endotheca, and to ventral margin of phallobase associated 

with articulated appendages. Phallobase with small pair of articulated digitate, rod-like appendages with 

membranous apices, associated with modified pockets ventrobasally. Parameres present, arising dorsolaterally 

from endotheca, sclerotized, sinuous or mostly straight. Phallic ensemble with single dorsomesal spine or process 

emerging internally from phallobase. Endophallus membranous, enlarged and convoluted when invaginated, 

sometimes with sclerotized regions and spines.

Female genitalia. (Females unknown for many species.) Truncate posteriorly, not extensible. Abdominal 

segment VIII short, synscleritous, posterolateral margin slightly incised, dorsal and ventral margins sometimes 

invaginated posteromesally. Segments IX and X closely associated, with pair of small digitate cerci dorsolaterally.

 

Genus Padunia Martynov, 1910

Padunia Martynov, 1910: 425 [Type species: Padunia adelungi Martynov, 1910, by monotypy]
Matrioptila Ross, 1956: 164 [Type species: Protoptila jeanae Ross, 1938, by original designation] new synonym

Nepaloptila Kimmins, 1964: 37 [Type species: Nepaloptila coei Kimmins, 1954, by original designation] new synonym

Poeciloptila Schmid, 1991: 243 [Type species: Poeciloptila falcata Schmid, 1991, by original designation] new synonym

Temburongpsyche Malicky, 1995: 15 [Type species: Temburongpsyche anakan Malicky, 1995, by original designation] new 

synonym

Uenotrichia Tsuda, 1942: 228 [Type species: Uenotrichia fasciata Tsuda, 1942, by monotypy]; Fischer, 1971, as senior 
synonym of Padunia; Marshall, 1979, as junior synonym of Padunia.

The Asian Clade is comprised of genera from the East Palaearctic and Oriental regions (Padunia, Nepaloptila,

Poeciloptila, Temburongpsyche) and the Nearctic region (Matrioptila). In all the TOTAL datasets, a paraphyletic 

Nepaloptila is basal to a subclade containing these remaining genera. Within this subclade, Padunia as traditionally 

constituted, was recovered as a paraphyletic taxon in all analyses of the TOTAL datasets. Additionally, a sister 

relationship was consistently found between the type species, Padunia adelungi, and Matrioptila jeanae. 

Relationships of the remaining 5 Padunia species included in the analyses were either unresolved or paraphyletic, 

interspersed with species of Poeciloptila and Temburongpsyche. 

Kimmins (1964) remarked that the male genitalia of Nepaloptila resembled those of Matrioptila but 

differentiated the 2 genera based on Nepaloptila’s retention of fork V in the forewing. However, complete wing 

venation is plesiomorphic for Trichoptera and thus this character is not appropriate for defining Nepaloptila by 

current cladistic standards.

Likewise, Ross (1956) defined Matrioptila based on several plesiomorphic characters (retention of fork V in 

the hind wing, separate course of Cu2 in forewing, and distinct claspers in male genitalia). Although Matrioptila

can be distinguished from the other Asian genera by the absence of fork V in the forewing, this fork apparently has 

been lost independently several times in the evolution of Protoptilinae lineages and, at this taxonomic level, may 

simply be autapomorphic for the species.

Poeciloptila was primarily defined by 2 male genitalic features: 1) membranous lateral faces of segment X, 

which enables segment X to “rock downwards,” and 2) a large ventral branch of phallus (Schmid 1991). However, 

examination of Poeciloptila revealed the lateral faces of tergum X to be lightly sclerotized and immobile, rather 

than membranous, a characteristic that is not uncommon in other protoptiline genera. Furthermore, the ventral 

branch of the phallus is not unique to Poeciloptila, being present in some species of Padunia, Nepaloptila, and 

Matrioptila.

Malicky (1995) established Temburonpsyche as a new genus based on its broad, ring-like segment IX, 

reduction of various “appendices” in the form of “finger”-like processes along the margin of segment IX, a large 

phallus, and tibial spur formula 0,3,3. Yet, a broad ring-like segment IX is plesiomorphic in Trichoptera. 
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Additionally, many of these genera have a somewhat enlarged phallus and the various finger-like processes along 

the margin of segment IX are most likely homologous to similar processes in some species of the other genera, 

which have also apparently undergone a reduction. Finally, Matrioptila shares the 0,3,3 spur formula, so this 

character is not unique to Temburongpsyche. Furthermore, Malicky (1995) also remarked that the wing venation of 

Temburongpsyche corresponds closely to that of Padunia and Poeciloptila, and the head and thoracic warts are 

similar to those of Nepaloptila. 

To sum, many of these genera were defined solely on plesiomorphic characters or features that are not unique 

to the particular taxon. Although the larvae of Nepaloptila, Poeciloptila and Temburongsyche are unknown, the 

larvae of Matrioptila and Padunia are very similar—both construct dorsoventrally flattened cases, have “trifid” 

tarsal claws with 3 equally sized processes, and similarly shaped mesonotal sclerites. Furthermore, the female 

genitalia of these 5 genera are very similar in shape. Therefore, to reflect phylogeny accurately, the following 

species are hereby transferred to Padunia (all new combinations): from Matrioptila: P. jeanae (Ross), from 

Nepaloptila: P. coei (Kimmins), P. jisunted (Malicky & Chantaramongkol), P. kanikar (Malicky & 

Chantaramongkol), P. ruangjod (Malicky & Chantaramongkol); from Poeciloptila: P. almodad (Malicky & 

Chantaramongkol), P. atyalpa (Schmid), P. eringena (Malicky & Silalom), P. falcata (Schmid), P. maculata (Tian 

& Li), and P. phyllis (Malicky & Chantaramongkol); and from Temburongpsyche: P. anakan (Malicky). 

Additionally, Padunia briatec (Malicky & Chantaramongkol), which was transferred to Poeciloptila by Schmid 

(1991), is hereby returned to Padunia (restored combination). 

Monophyly of this newly defined Padunia was recovered in all analyses based on the following 

synapomorphies: 1) the phallobase has its dorsal margin forming a sclerotized sheath that is produced anteriorly, 

with its ventral margin membranous or absent (character 90) (Figs. 24A, B); 2) segments VIII and IX of the female 

genitalia are fused (character 99) (Fig. 31C). 

Diagnosis of Padunia (Figs. 6D, 13, 14, 24–27, 31C). The male genitalia of Padunia are quite variable among 

species. Nonetheless, the genus can be diagnosed principally by the structure of the phallobase. The phallobase is 

very elongate and tubular with a dorsal margin consisting of a sclerotized sheath produced anteriorly. Ventrally, the 

phallobase is not sclerotized, but highly membranous, or even apparently absent. Another distinctive feature of 

Padunia is the subtriangular aspect of the anterior margin of segment IX. However, this character is not completely 

diagnostic for the genus since the segment IX anterior margin of 1 species is slightly rounded (P. coei) and another 

is straight (P. anakan). The female genitalia of Padunia are also distinct among protoptilines, with segments VIII, 

IX, and X fused together dorsally. Another diagnostic feature of Padunia is the presence of a pair of distinct setal 

patches on the mesoscutellum. These patches differ from the round conspicuous setal warts present in Tolhuaca, 

but because they may be difficult to see for most species, they may be easily overlooked and have not been 

rendered or discussed in any any previous species diagnoses or descriptions. 

The forewing venation of Padunia is either complete [P. coei, P. kanikar (Malicky & Chantaramongkol, 1992), 

P. jisunted (Malicky & Chantaramongkol, 1992), P. ruangjod] or incomplete, with apical forks I, II, and V present. 

While Tolhuaca also has complete forewing venation (plesiomorphic for Trichoptera), the latter condition 

(presence of apical forks I, II, and V only), is unique among Protoptilinae. The hind wing of Padunia is most 

similar to certain species of Itauara, having apical forks II and V present, however the 2 genera can be easily 

separated based on differences in the male genitalia.

Adult. Body, wings, and appendages nearly uniformly fuscous. Wings often with conspicuous white, broad, 

transverse marks in anal region and along anastomosis. Head broader than long, vertex rounded, pair of distinct, 

suboval anterior setal warts, large suboval posterior setal warts, suboval or triangular and bulging posterolateral 

setal warts. Ocelli present. Antennal scape less than or equal to 2 times length of pedicel. Maxillary palps 5-

segmented, 1st and 2nd segments short; 2nd segment bulbous; last 3 segments each nearly same length as 1st and 

2nd segments combined. Prothorax with 2 large subtriangular or suboval pronotal setal warts, occasionally covered 

with dense scale-like setae. Mesothorax usually wider than long, but longer than wide in P. jeanae, without 

apparent tegular glands; mesoscutum with pair of elongate anteromesal setal warts, suboval posterolateral warts; 

mesoscutellum with pair of small, round, distinct setal patches. Forewing (Figs. 13A, 13C, 14A, 14C) relatively 

broad past anastomosis or with margins nearly parallel, apex rounded or subacute, occasionally with scale-like 

setae. Male occasionally with callosity present in anal and apical costal region of forewing. Forewing venation 

either complete or incomplete; when incomplete, with apical forks I, II, and V present; Sc and R1 usually distinct 

along their entire lengths, occasionally intersecting near costal margin; fork I sessile or only slightly petiolate with 

extremely short stem; fork II sessile or only slightly petiolate with extremely short stem; fork III petiolate, stem 
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about as long as fork; fork IV petiolate, stem about as long as fork; fork V petiolate, or sessile; Cu1 complete, 

reaching wing margin; Cu1 and Cu2 distinct along their entire lengths; row of erect setae present along Cu2; A3 

looped, if present; crossveins forming relatively linear transverse cord; discoidal cell longer than Rs vein, except in 

P. falcata and P. phyllis in which the males have highly modified wings with broad half-ellipse-shaped flap along 

costal margin folding to cover about half wing. Hind wing margins nearly parallel, tapering only slightly past 

anastomosis; venation variable, either with apical forks II only, or II and III only, or II, III, and V (P. bilineata

species group); Sc and R1 separate or converging near wing margin; A2 absent. Tibial spurs variable, either 0,4,4; 

0,4,3; 0,3,3; or 1,4,3; foretibial spur extremely reduced and hair-like. Males occasionally with pair of finger-like 

lateral processes on sternum V associated with glandular structures (Fig. 6D). Sternum VI process present, short 

and digitate, elongate and digitate, or tooth-like point; apex rounded or attenuate and pointed, usually associated 

with oblique apodeme posteriorly.

Male genitalia (Figs. 25–27). Terga VII and VIII interstitial region occasionally with glandular structure 

dorsomesally and dorsolaterally. Segment IX anterior margin usually subtriangular, or rarely, slightly rounded (P. 

coei) or straight (P. anakan), posterolateral margin occasionally with lateral processes or lobes; tergum IX well 

developed, relatively broad; sternum IX usually narrow, occasionally broad (P. anakan). Tergum X completely 

fused to and indistinguishable from segment IX, except in P. anakan in which tergum X appears to be membranous. 

Inferior appendages present, although often vestigial, or 2 distinct appendages fused to one another basally, 

attached ventrally to phallus and articulating with segment IX (P. jeanae) or fused completely and integrated with 

segment IX, forming either elongate or short paired ventrolateral processes or single ventromesal process, 

sometimes bifid. Parameres absent. Phallobase simple, elongate tubular structure, dorsal margin with sclerotized 

sheath produced anteriorly, with membranous or apparently absent ventral margin. Phallic apparatus occasionally 

with apicoventral branch and bearing 1 or more apical spines.

Female genitalia (Fig. 31C). Truncate posteriorly, not extensible. Abdominal segment VIII syncleritous, 

anterolateral margin slightly subtriangular or projecting, posterolateral margin often deeply incised. With segments 

VIII, IX, and X fused, bearing pair of short digitate cerci apically.

Genus Protoptila Banks, 1904

Protoptila Banks, 1904: 215 [Type species: Beraea ? maculata Hagen, 1861, by original designation].

A monophyletic Protoptila was strongly supported in all analyses and based on the following synapomorphies 

suggested by Blahnik and Holzenthal (2006): 1) phallobase with an axe-shaped dorsal apodeme (character 93) (Fig. 

28C); 2) sternum VIII projecting medially and subtending segment IX to which it is partially fused (character 63) 

(Figs. 28A, B). A 3rd synapomorphy of Protoptila includes a ventromesal process on sternum IX projecting 

posterad (character 72) (Figs. 28A, B). 

Diagnosis of Protoptila (Figs. 2C, 3A, 6E, 11C, 11D, 28). The genus Protoptila can be recognized by several 

distinct features of the male genitalia. The dorsum of the phallobase has an enlarged, flattened, often axe-shaped 

phallic apodeme. Protoptila can also be characterized by the shape of sternum VIII, which projects posterad and 

subtends sternum IX, to which it is often fused. Additionally, tergum VIII usually has elongate setae along its 

posterior margin. Tergum X is also distinct among protoptilines, composed of lateral branches, with basal and 

apical portions. Like Mortoniella, Protoptila also has small, sclerotized, digitate, articulated appendages attached 

to the phallobase ventrally that fit into modified pockets on the posteroventral portion on the phallobase. However, 

unlike Mortoniella, Protoptila apparently lacks the associated inferior appendages. The 2 genera can also be 

separated by differences in the shapes of tergum X and sternum VIII.

The forewing venation is most similar to Mortoniella, with apical forks I, II, and III present, a completely 

fused Cu1 and Cu2, and 3 anal veins present (although some species of both genera have no 3A). However, the 2 

can usually be separated by the row of erect setae, which is positioned far below the Cu2 vein in Protoptila.

Adult. Body, wings, and appendages pale or tawny brown, often intermingled with rufous or golden hairs, tibia 

and tarsi yellowish brown. Wings often with few pale cream-colored or white hairs, spots, or transverse line along 

anastomosis and small white specks or spots along apical margin (Fig. 2C). Head broader than long, vertex 

rounded, either 1 distinct pair or 1 divided pair of suboval anterior setal warts, small suboval posterior setal warts, 

suboval or triangular and bulging posterolateral setal warts. Ocelli present. Antennal scape less than or equal to 2 
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times length of pedicel. Maxillary palps (Fig. 6E) 5-segmented, 1st and 2nd segments short; 2nd segment bulbous; 

last 3 segments each nearly same length as 1st and 2nd segments combined. Prothorax with 2 large, subtriangular 

or suboval pronotal setal warts, occasionally covered with dense scale-like setae. Mesothorax wider than long, 

without apparent tegular glands; mesoscutum with pair of suboval anteromesal setal warts, although occasionally 

entire region setose with no distinct patch, suboval posterolateral warts; mesoscutellum sparsely setose, without 

distinct setal warts. Forewing (Fig. 11C) relatively narrow, with margins nearly parallel, apex oblique. Male 

without apparent forewing callosity. Forewing venation incomplete, with apical forks I, II, and III present; Sc and 

R1 distinct along their entire lengths; fork I sessile; fork II sessile; fork III petiolate, stem longer than fork; Cu1 

complete, reaching wing margin; Cu1 and Cu2 completely fused; row of erect setae present below Cu2; A3 looped, 

if present; crossveins forming relatively linear transverse cord; discoidal cell longer than Rs vein. Hind wing (Fig. 

11D) narrow and scalloped past anastomosis; apical fork II present; Sc and R1 fused basally; A2 absent. Tibial 

spurs 1,4,4; foretibial spur extremely reduced and hair-like. Sternum VI process present, laterally flattened or 

subtriangular, apex attenuate and pointed, usually associated with oblique apodeme posteriorly.

Male genitalia (Fig. 28). Preanal appendages absent. Tergum VIII posterior margin with elongate setae. 

Sternum VIII projecting medially and subtending segment IX. Segment IX anterior margin rounded, posterolateral 

margin occasionally with lateral processes or lobes; tergum IX usually strap-like or narrow, simple, without 

processes; mesally, with ventromesal projection directed posterad. Tergum X partially fused to tergum IX, 

consisting of lateral branches with basal and distal segments, often articulated; dorsomesal margin divided or bifid 

apicomesally. Inferior appendages absent. Parameres either present or absent; when present, arising laterally from 

endotheca, often membranous basally, with apical sclerotization and spine, variable in shape. Phallobase not 

apparently reduced, with enlarged, flattened, often axe-head shaped apodeme dorsally; small pair of articulated 

digitate, rod-like appendages with membranous apices, associated with modified pockets ventrally; and often with 

paired, posteriorly projecting processes. Phallic apparatus with varying shape of phallicata, and associated spines 

and processes. Endophallus membranous, enlarged and convoluted when invaginated, sometimes with sclerotized 

regions and spines.

Female genitalia. Truncate posteriorly, not extensible. Abdominal segment VIII short, synscleritous, 

posterolateral margin slightly incised. Sternum VIII often with rounded ventrolateral lobes. Segments IX and X 

closely associated, with pair of small digitate cerci dorsolaterally.

Genus Scotiotrichia Mosely, 1934

Scotiotrichia Mosely, 1934: 160 [Type species: Scotiotrichia ocreata Mosely, 1934, by original designation].

Placement of the monotypic genus Scotiotrichia remains unresolved. A sister relationship between Scotiotrichia

and Canoptila was weakly supported in the parsimony analysis of the TOTAL MORPH dataset.

Diagnosis of Scotiotrichia (Figs. 10C, 10D, 29). Scotiotrichia can be recognized by distinct features of the 

male genitalia and forewing venation. Among protoptilines, the forewing venation of Scotiotrichia is unique, 

having only apical forks I and II. The male genitalia are simple, with a greatly enlarged and hood-like tergum X. 

Segment IX is narrow dorsally and straplike ventrally. The phallobase is greatly enlarged, and has a pair of small 

lateral processes medially, and another pair posterolaterally. The endophallus of Scotiotrichia is large and highly 

membranous and contains a pair of large, tooth-like processes ventrally. The male genitalia are quite reminiscent of 

those of Tolhuaca in that both have large phallobases, strap-like sterna IX, and large endophallic membranes. 

However, the shape of the phallobase differs between the 2 genera: That of Tolhuaca is rounded and much more 

produced apicomesally whereas in Scotiotrichia, the dorsal and ventral margins are straight. Culoptila and 

Cariboptila also have enlarged phallobases and strap-like or absent sterna IX, but can easily be differentiated from 

Scotiotrichia based on their retention of inferior appendages and differences in forewing venation.

Adult. Head broader than long, vertex rounded, pair of distinct, suboval anterior setal warts, large suboval 

posterior setal warts, suboval or triangular and bulging posterolateral setal warts. Ocelli present. Antennal scape 

less than or equal to 2 times length of pedicel. Maxillary palps 5-segmented, 1st and 2nd segments short; 2nd 

segment bulbous; last 3 segments each nearly as long as 1st and 2nd segments combined. Prothorax with 2 large, 

subtriangular or suboval pronotal setal warts. Mesothorax wider than long, without apparent tegular glands; 

mesoscutum with pair of suboval anteromesal setal warts, suboval posterolateral warts; mesoscutellum sparsely 

setose, without distinct setal warts. Forewing (Fig. 10C) relatively narrow, with margins nearly parallel, apex 

oblique. Male without apparent forewing callosity. Forewing venation incomplete, with apical forks I and II 
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present; Sc and R1 distinct along their entire lengths; fork I sessile; fork II petiolate; Cu1 complete, reaching wing 

margin; Cu1 and Cu2 intersecting near anastomosis; row of erect setae present below Cu2; A3 absent; crossveins 

difficult to discern, but apparently forming relatively linear transverse cord; discoidal cell longer than Rs vein. 

Hind wing (Fig. 10D) margins nearly parallel, tapering only slightly past anastomosis; apical fork II present; Sc 

and R1 fused basally; A2 absent. Tibial spurs 1,2,3; foretibial spur extremely reduced and hair-like. Sternum VI 

process present, short and digitate, apex rounded, associated with strong oblique apodeme posteriorly.

Male genitalia (Fig. 29). Preanal and inferior appendages absent. Segment IX anterior margin rounded, 

posterolateral margin without lateral process or lobes; tergum IX strap-like, simple, without processes; sternum IX 

strap-like, mesally, without modification. Tergum X extremely large and hood-like, without processes or lobes, 

incompletely fused to tergum IX with membrane or lightly sclerotized region ventrolaterally; dorsomesal margin 

subquadrate. Inferior appendages absent. Parameres absent. Phallobase extremely enlarged, lightly sclerotized with 

small, stout setae ventrally, medially with small, paired lateral processes, apicomedially with smaller paired 

processes. Phallic apparatus simple, without spines or processes. Endophallus membranous, enlarged and 

convoluted when invaginated, bearing single pair of tooth-like downturned spines ventrally.

Female genitalia. Rather elongate posteriorly, but not apparently extensible. Abdominal segment VIII 

syncleritous, relatively short. Segments IX and X closely associated, with pair of small digitate cerci dorsolaterally.

Genus Tolhuaca Schmid, 1964

Tolhuaca Schmid, 1964: 336 [Type species: Tolhuaca cupulifera Schmid, 1964, by original designation].

Monophyly of Tolhuaca was strongly supported in all analyses. Furthermore, a sister relationship to the remaining 

Protoptilinae was found in all analyses, except in the SUBSET COI dataset. Synapomorphies of Tolhuaca include a 

highly inflated, barrel-shaped phallobase and an absence of inferior appendages, although these apomorphies are 

not unique to the genus. 

Diagnosis of Tolhuaca (Figs. 5A, 6B, 6C, 12A, 12B, 30, 31A). The genus Tolhuaca can be recognized by 

features of the thorax, and male and female genitalia. Among protoptilines, Tolhuaca is distinct in having a pair of 

conspicuous round setal warts on the mesoscutellum, the plesiomorphic condition in Trichoptera. Padunia also has 

setal warts on the mesoscutellum, but they differ from those of Tolhuaca in being more patch-like and less 

conspicuous. The phallobase of Tolhuaca is extremely enlarged and barrel-shaped, with a sclerotized projection 

apicomesally. An additional distinct feature includes the large, tubular endophallus, which is highly membranous 

and contains several sclerotized spines and other internal structures. The male genitalia are similar to those of 

Scotiotrichia, Cariboptila, and Culoptila—each have enlarged phallobases and reduced or absent sterna IX. 

However, these genera can be separated based on differences in the shape of the phallobase and wing venation. The 

female genitalia are also unique among Protoptilinae. They are elongate and oviscapt, and have 2 pairs of rod-like 

internal apodemes. The female genitalia of Scotiotrichia are also rather elongate, but do not appear to be oviscapt, 

and lack the rod-like apodemes. The forewing venation of Tolhuaca is complete, like that of some species of 

Padunia, yet these genera are easily separated by differences in the shape of sternum IX in the male genitalia.

Adult. Tibia and tarsi yellowish brown. Head (Fig. 5A) broader than long, vertex rounded, with pair of small 

anteromesal setal warts, pair of distinct, elongate anterior setal warts, large suboval posterior setal warts, suboval or 

triangular and bulging posterolateral setal warts. Ocelli present. Antennal scape less than or equal to 2 times length 

of pedicel. Maxillary palps 5-segmented, 1st and 2nd segments short with elongate setae apically; 2nd segment 

bulbous; last 3 segments each nearly as long as 1st and 2nd segments combined. Prothorax (Fig. 5A) with 2 large 

subtriangular or suboval pronotal setal warts. Mesothorax (Fig. 5A) longer than wide, without apparent tegular 

glands; mesoscutum with pair of elongate anteromesal setal warts, suboval posterolateral warts; mesoscutellum 

with pair of small, round, distinct setal warts. Forewing (Fig. 12A) relatively broad past anastomosis, apex 

rounded, with erect or retrorse setae along some veins, most noticeably along Cu2. Male without apparent forewing 

callosity. Forewing venation complete; Sc and R1 distinct along their entire lengths; fork I petiolate, but with 

extremely short stem, or sessile; fork II sessile; fork III petiolate, stem shorter than fork; fork IV petiolate, stem 

shorter than fork; fork V sessile; Cu1 complete, reaching wing margin; Cu1 and Cu2 distinct along their entire 

lengths; row of erect setae present along Cu2; A3 looped; crossveins forming relatively linear transverse cord; 

discoidal cell longer than Rs vein. Hind wing (Fig. 12B) broad past anastamosis; apical forks II, III, and V present; 

Sc and R1 fused basally or converging near wing margin; A2 present, looped. Tibial spurs 1,4,4; foretibial spur 

extremely reduced and hair-like (Fig. 6B, 6C). Sternum VI process present, thumb-like and prominent or elongate 

and digitate, apex rounded, associated with strong oblique apodeme posteriorly.
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Male genitalia (Fig. 30). Preanal and inferior appendages absent. Segment IX anterior margin rounded; tergum 

IX well developed, relatively broad, simple, without processes; sternum IX strap-like. Tergum X completely fused 

to tergum IX but with membranous connection visible; dorsomesal margin divided or bifid apicomesally; 

dorsolateral margin without processes; ventrolateral margin with small, irregular, paired setose lobes. Parameres 

absent. Phallobase extremely enlarged, barrel-shaped, lightly sclerotized with small, stout setae, without processes, 

produced and sclerotized apicomesally. Phallic apparatus simple, without spines or processes. Endophallus 

membranous, greatly enlarged, and rather tubular when evaginated, with sclerous spines or rod-like structures 

internally.

Female genitalia (Fig. 31A). Extensible oviscapt. Abdominal segment VIII syncleritous, about as wide as long. 

Internally, with 2 pairs of long, slender, sclerotized, rod-like apodemes arising from lateral margins of segments 

VIII and IX and extending cephalad to segments VI and VII, respectively. Segments IX and X closely associated, 

with pair of small digitate cerci dorsolaterally.

FIGURE 5. (A) Tolhuaca cupulifera Schmid, adult head and thorax, dorsal. (B) Canoptila bifida Schmid, adult head and 
mesothorax, dorsal.
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FIGURE 6. Adult. (A) Cariboptila cubana (Sykora), antennal segments 1–4, left lateral. (B, C) Tolhuaca cupulifera Schmid, 
foretibial (B) and mesotibial spurs, left lateral (C), at same scale for comparison. (D) Padunia adelungi Martynov, left lateral 
view of left lateral process of sternum V and associated internal glandular structure. (E) Protoptila species, maxillary palp, left 
lateral.
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FIGURE 7. Fore- and hind wings. (A, B) Culoptila hamata Blahnik & Holzenthal. (C, D) Cariboptila cubana (Sykora). Wings 
between taxa not to scale.
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FIGURE 8. Fore- and hind wings. (A, B) Cariboptila orophila Flint. (C, D) Cariboptila pedophila (Flint). Wings between taxa 
not to scale.
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FIGURE 9. Fore- and hind wings. (A, B) Canoptila bifida Schmid. (C, D) Itauara brasiliana (Mosely). Wings between taxa 
not to scale.
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FIGURE 10. Fore- and hind wings. (A, B) Merionoptila wygodzinskyi Schmid. (C, D) Scotiotrichia ocreata Mosely. Wings 
between taxa not to scale.
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FIGURE 11. Fore- and hind wings. (A, B) Mortoniella roldani Flint. (C, D) Protoptila maculata Banks. Wings between taxa 
not to scale.
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FIGURE 12. Fore- and hind wings. (A, B) Tolhuaca cupulifera Schmid. (C, D) Mastigoptila longicornuta Flint. Wings 
between taxa not to scale.
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FIGURE 13. Fore- and hind wings. (A, B) Padunia adelungi Martynov. (C, D) Padunia jeanae (Ross). Wings between taxa 
not to scale.
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FIGURE 14. Fore- and hind wings. (A, B) Padunia briatec Malicky & Chantaramongkol. (C, D) Padunia anaken (Malicky). 
Wings between taxa not to scale.
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FIGURE 15. Canoptila bifida Schmid. (A) Process of sternum VI, left lateral. (B) Genitalia, left lateral. (C) Genitalia, dorsal. 
(D) Genitalia, ventral. Abbreviations: ap. scl. = apical sclerite; crypt = phallocrypt; enph. = endophallus; enph. pr. = endophallic 
process; enth. = endotheca; phb = phallobase; phc. = phallicata; pmr. = paramere; pr. t. X = process of tergum X; stn. IX = 
sternum IX; t. IX = tergum IX; t. X. = tergum X.
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FIGURE 16. Cariboptila orophila Flint, male genitalia. (A) Left lateral view. (B) Ventral view of phallic apparatus. (C) Dorsal 
view of terga IX and X. Inset is enlarged dorsal view of tergum X. Abbreviations: inf. app. = inferior appendage; enph. = 
endophallus; ph. spn. = phallic spine; phb. = phallobase; stn. IX = sternum IX; t. VIII = tergum VIII; t. IX = tergum IX; t. X = 
tergum X.
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FIGURE 17. Cariboptila cubana (Sykora), male genitalia. (A) Left lateral view of genital capsule and phallic apparatus. (B) 
Dorsal view of terga VIII and IX. (C) Dorsal view of processes of tergum X. Abbreviations: inf. app. = inferior appendage; phb. 
= phallobase; ph. spn. = phallic spine; stn. IX = sternum IX; t. VIII = tergum VIII; t. IX = tergum IX; t. X = tergum X.
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FIGURE 18. Cariboptila pedophila (Flint), male genitalia. (A) Left lateral view of genital capsule (terga IX and X), showing 
insertion of phallobase. (B) Dorsal view of terga IX and X. (C) Left lateral view of phallic apparatus. (D) Ventral view of 
genital capsule. Abbreviations: inf. app. = inferior appendage; phb. = phallobase; IX = segment IX; t. X = tergum X.
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FIGURE 19. Male genitalia. (A, B) Culoptila aluca Mosely. (A) Left lateral. (B) Ventral. (C) Culoptila amberia Mosely, left 
lateral. Abbreviations: inf. app. = inferior appendage; phb = phallobase; pht. scl. = phallotremal sclerite; stn. VIII = sternum 
VIII; IX = segment IX; t. VIII = tergum VIII; t. IX = tergum IX; t. X. = tergum X. (Modified from Blahnik & Holzenthal 2006.)
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FIGURE 20. Itauara brasiliana (Mosely), male genitalia. (A) Left lateral view of genital capsule (terga IX and X) and phallic 
apparatus. (B) Dorsal view of terga IX and X. (C) Ventral view of phallic apparatus and genital capsule. Abbreviations: d. sth. 
= dorsal sheath; stn. IX = sternum IX; t. IX = tergum IX; t. X = tergum X.
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FIGURE 21. Mastigoptila elae Holzenthal, male genitalia. (A) Left lateral view of genital capsule and base of phallic 
apparatus. (B) Right lateral view of right inferior appendage. (C) Left lateral view of phallic apparatus (showing insertion of 
apex of recurved basodorsal process of left inferior appendage. (D) Ventral view phallic apparatus. (E) Dorsal view of tergum 
X. Genitalia, dorsal. Abbreviations: crypt = phallocrypt; inf. app. = inferior appendage; phc. = phallicata; stn. IX = sternum IX; 
t. X. = tergum X. (Modified from Holzenthal 2004.)
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FIGURE 22. Merionoptila wygodzinskyi Schmid, male genitalia. (A) Left lateral view. (B) Dorsal view. (C) Ventral view. 
Abbreviations: enph. = endophallus; phb = phallobase; inf. app. = inferior appendage; phc. = phallicata; stn. IX = sternum IX; t. 
X. = tergum X.
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FIGURE 23. Mortoniella akantha Blahnik & Holzenthal, male genitalia. (A) Left lateral view. (B) Dorsal view. (C) Phallic 
spine, dorsal view. (D) Phallic apparatus, ventral view. Abbreviations: art. app. = articulated appendage; dor. spn. = dorsal 
phallic spine; enph. = endophallus; phb = phallobase; inf. app. = inferior appendage; pct. = pocket; phc. = phallicata; prm. = 
paramere; IX = segment IX; t. X. = tergum X. (Modified from Blahnik & Holzenthal 2008.)
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FIGURE 24. Padunia adelungi Martynov, male genitalia. (A) Left lateral view of genital capsule (terga IX and X). (B) Left 
lateral view of phallic apparatus. (C) Dorsal view of terga IX and X. (D) Ventral view of genital capsule. Abbreviations: inf. 
app. = inferior appendage; phb. = phallobase; IX = segment IX; phl. scl. = phallotremal sclerite; pr. IX = process of segment IX; 
ven. brn. = ventral branch.
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FIGURE 25. Padunia anakan (Malicky), male genitalia. (A) Left lateral view of genital capsule showing insertion of phallic 
apparatus. (B) Dorsal view of terga IX and X. (C) Left lateral view of phallic apparatus. (D) Dorsal view of sternum IX. (E) 
Ventral view of phallic apparatus capsule. Abbreviations: enph. = endophallus; inf. app. = inferior appendage; phb. = 
phallobase; phl. spn. = phallic spine; pr. IX= process of segment IX; stn. IX = sternum IX; t. IX = tergum IX; t. X = tergum X.
 Zootaxa 3723 (1)  © 2013 Magnolia Press  ·  61REVISION OF PROTOPTILINAE



FIGURE 26. Male genitalia. (A) Padunia coei (Kimmins), holotype, left lateral view of genital capsule and phallic apparatus. 
(B) Padunia falcata (Schmid), holotype, left lateral view of genital capsule. (C) Same, left lateral view of phallic apparatus. 
Abbreviations: inf. app. = inferior appendage; phb. = phallobase; IX = segment IX; t. IX = tergum IX; pr. IX = process of 
segment IX; ven. brn. = ventral branch.
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FIGURE 27. Padunia jeanae (Ross), male genitalia. (A) Left lateral view of genital capsule and phallic apparatus. (B) Left 
lateral view of phallic apparatus. (C) Ventral view of sternum IX and apex of phallic apparatus detailing insertion of inferior 
appendages. (D) Dorsal view of genital capsule (terga IX and X). Abbreviations: inf. app. = inferior appendage; phb. = 
phallobase; stn. IX = sternum IX; t. IX = tergum IX; pr. IX = process of segment IX; ven. brn. = ventral branch.
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FIGURE 28. Protoptila diablita Robertson & Holzenthal, male genitalia. (A) Left lateral view of genital capsule, phallic 
apparatus removed. (B) Ventral view of sterna VIII and IX. (C) Left lateral view of phallic apparatus. Left inset is ventral view 
of apex of phallus; right inset is enlarged lateral view of apex of phallus. Abbreviations: apd. = apodeme; art. app. = articluated 
appendage; inf. app. = inferior appendage; pct. = pocket; phb. = phallobase; phc. = phallicata; pmr. = paramere; IX = segment 
IX; stn. VIII = sternum VIII; stn. IX = sternum IX; t. VIII = tergum VIII; t. IX = tergum IX; t. X = tergum X.
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FIGURE 29. Scotiotrichia ocreata Mosely, male genitalia. (A) Left lateral view. (B) Dorsal view. (C) Ventral view. 
Abbreviations: enph. = endophallus; enph. spn. = endophallic spine; phb = phallobase; t. X = tergum X; stn. IX = sternum IX; t. 
IX = tergum IX; t. X. = tergum X.
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FIGURE 30. Tolhuaca cupulifera Schmid, male genitalia. (A) Left lateral view. (B) Left lateral view of fully everted 
endophallus. (C) Dorsal view. (D) Ventral view of phallobase with retracted endophallus. Abbreviations: enph. = endophallus; 
enph. spn. = endophallic spine; phb = phallobase; t. IX = tergum IX; t. X = tergum X.
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FIGURE 31. Female genitalia, left lateral view. (A) Tolhuaca cupulifera Schmid. (B) Canoptila williami Robertson & 
Holzenthal. (C) Padunia jeanae (Ross). Abbreviations: apd. = apodeme; gen. chm. = genital chamber; stn. = sternum; t. = 
tergum; vag. app. = vaginal apparatus.
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FIGURE 32. Phylogeny of protoptiline caddisflies based on Bayesian analysis of TOTAL COMBO dataset (80 taxa, 757 
characters) under the models Mk + Γ (morphological data partition) and GTR + I + Γ (COI data partition). Posterior probability 
values are indicated above internodes.
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FIGURE 33. Phylogeny of protoptiline caddisflies based on parsimony analysis of TOTAL COMBO dataset (80 taxa, 757 
characters). Strict consensus of 20 equally parsimonious trees (Length: 1880; CI: 0.356; RI: 0.575; RC: 0.205). Bootstrap 
values ≥50% are indicated above internodes.
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FIGURE 34. Phylogeny of protoptiline caddisflies based on Bayesian analysis of TOTAL MORPH dataset (80 taxa, 99 
characters) under an Mk + Γ model. Posterior probability values are indicated above internodes.
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FIGURE 35. Phylogeny of protoptiline caddisflies based on parsimony analysis of TOTAL MORPH dataset (80 taxa, 99 
characters). Strict consensus of 2 equally parsimonious trees (Length: 463; CI: 0.339; RI: 0.789; RC: 0.267). Bootstrap values 
≥50% are indicated above internodes.
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FIGURE 36. Phylogeny of protoptiline caddisflies based on parsimony analysis of SUBSET COMBO dataset (25 taxa, 757 
characters). Strict consensus of 2 equally parsimonious trees (Length: 1576; CI: 0.365; RI: 0.435; RC: 0.159). Bootstrap values 
≥50% are indicated above internodes.

FIGURE 37. Phylogeny of protoptiline caddisflies based on Bayesian analysis of SUBSET COMBO dataset (25 taxa, 757 
characters) under the models Mk + Γ (morphological data partition) and GTR + I + Γ (COI data partition). Posterior probability 
values are indicated above internodes.
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FIGURE 38. Phylogeny of protoptiline caddisflies based on parsimony analysis of SUBSET MORPH dataset (25 taxa, 99 
characters). Strict consensus of 12 equally parsimonious trees (Length: 218; CI: 0.569; RI: 0.752; RC: 0.428). Bootstrap values 
≥50% are indicated above internodes.

FIGURE 39. Phylogeny of protoptiline caddisflies based on Bayesian analysis of SUBSET MORPH dataset (25 taxa, 99 
characters) under an Mk + Γ model. Posterior probability values are indicated above internodes.
 Zootaxa 3723 (1)  © 2013 Magnolia Press  ·  73REVISION OF PROTOPTILINAE



FIGURE 40. Phylogeny of protoptiline caddisflies based on Bayesian analysis of SUBSET COI dataset (25 taxa, 658 
characters) under a GTR + I + Γ model. Posterior probability values are indicated above internodes.
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FIGURE 41. Constraint trees of alternative hypotheses for Protoptilinae phylogeny used for Bayesian topological 
incongruence tests of TOTAL COMBO and TOTAL MORPH datasets. A—(Tolhuaca (other Protoptilinae)): Tolhuaca is 
constrained to the outgroup and a monophyletic Protoptilinae includes the Asian clade. B—(Asian (other Protoptilinae)): The 
Asian clade is constrained to the outgroup and a monophyletic Protoptilinae includes Tolhuaca.
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FIGURE 42. Constraint trees of alternative hypotheses for Protoptilinae phylogeny used for Bayesian topological 
incongruence tests of SUBSET COMBO, SUBSET MORPH, and SUBSET COI datasets. A—(Tolhuaca (other Protoptilinae)): 
Tolhuaca is constrained to the outgroup and a monophyletic Protoptilinae includes the Asian clade. B—(Asian (other 
Protoptilinae)): The Asian clade is constrained to the outgroup and a monophyletic Protoptilinae includes Tolhuaca.
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Key to the Subfamilies of Glossosomatidae

1. Forewing R1 forked (Morse & Yang 2004, Fig. 8)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glossosomatinae

Forewing R1 unforked (Fig. 7A)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2(1). Forewing with row of erect setae along or below Cu2 (Fig. 7A), foretibial spur absent or hair-like (Fig. 6B)  . . .. Protoptilinae

Forewing without row of erect setae (Morse & Yang 2004, Fig. 8), foretibial spur well developed (Ross 1944, Fig. 104) . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Agapetinae

Key to the Word Genera of Protoptilinae

1. Phallobase absent or extremely reduced (Figs. 15B, 20A, 21A)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Phallobase present, not reduced (Figs. 15B, 22A, 23A, 28C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

2. Phallobase extremely enlarged (Figs. 16A, 17A, 18C, 19, 24B, 25C, 26, 27B, 29A, 30A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Phallobase not extremely enlarged, moderately sized (Figs. 22A, 23A, 28A)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3(1). Male genitalia markedly asymmetrical (Fig. 21D); forewing row of stout setae below Cu2, approximately halfway between 

Cu2 and 1A (Fig. 12C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Mastigoptila

Male genitalia not markedly asymmetrical; forewing row of stout setae along (Fig. 7A) or just slightly below Cu2 (Fig. 11A) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4(3). Tergum X with pair of long, spine-like processes arising from posterolateral margins (Figs. 15B–D); parameres membranous, 

with sclerotized apices (Figs. 15B, D)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Canoptila 

Tergum X without pair of long, spine-like processes arising from posterolateral margin (Figs. 20A–C); parameres absent, or 

when present, sclerotized (Figs. 20A, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Itauara

5(1). Phallobase with small, digitate rod-like articulated appendages associated with sclerotized pocket on venter (Figs. 23A, D; 

28C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Phallobase without small, digitate rod-like articulated appendages associated with sclerotized pocket (Figs. 22A, C) . . . . . .  7

6(5). Sternum VIII projecting posteriorly (Fig. 28A, 28B), subtending segment IX; row of stout setae below Cu2, approximately 

halfway between Cu2 and 1A (Fig. 11C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Protoptila

Sternum VIII unmodified (Fig. 23A); forewing row of stout setae along or just slightly below Cu2 (Fig. 11A) . . .  Mortoniella

7(5). Fore- and hind wings extremely reduced in size (Figs. 10A, 10B)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Merionoptila

Fore- and hind wings not extremely reduced (Figs. 13A–D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

8(7). Forewing with apical forks I, II, and V (Figs. 13A, 13C, 14A, 14C); tergum X without pair of long, spine-like processes arising 

from posterolateral margin; parameres absent, or when present, sclerotized; phallobase elongate and tubular, with sclerotized 

dorsal margin projecting anteriorly, ventral margin open or membranous (Figs. 24A, 24B, 25A, 25C, 25E, 26, 27A, 27B, 29A, 

29C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Padunia

Forewing with apical forks I–III present (Fig. 9A); tergum X with pair of long, spine-like processes arising from posterolateral 

margin; parameres membranous, with sclerotized apices; phallobase not elongate and tubular, lightly sclerotizated with paired 

row or patches of setae ventrolaterally (Figs. 15B, 15C, 15D )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Canoptila

9(2). Tergum X greatly enlarged and hoodlike (Fig. 29A); forewing row of stout setae below Cu2; forewing with apical forks I and 

II (Fig. 10C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Scotiotrichia

Tergum X not greatly enlarged or hoodlike (Fig. 19A); forewing row of stout setae along Cu2 (Fig. 7A)  . . . . . . . . . . . . . . . 10

10(9). Forewing Cu1 incomplete, not reaching wing margin; with apical forks I–IV (Fig. 7A). . . . . . . . . . . . . . . . . . . . . . . . Culoptila

Cu1 complete, reaching wing margin (Fig. 12A); with apical forks I, II, III (Fig. C) or I, II, V (Figs. 12A)  . . . . . . . . . . . . .  11

11(10). Mesoscutellum with pair of distinct, round setal warts (Fig. 5A); endophallus very membranous, greatly enlarged and elongate 

when evaginated, twice or more the length of segments IX and X (Fig. 30B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tolhuaca

Mesoscutellum sparsely setose or with pair of indistinct setal patches (Fig. 5B); endophallus not apparent or not greatly 

enlarged or elongate when evaginated (Figs. 18C, 24B, 25C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

12(11). Forewing with apical forks I, II, and V (Figs. 13A, 13C, 14A, 14C); sternum IX not absent or reduced (Fig. 24A); antennal 

scape length less than or about equal to 2 times length of pedicel (Fig. 5)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Padunia

Forewing with apical forks I–III present (Figs. 7C, 8A, 8C); sternum IX absent or extremely reduced (Figs. 16A, 17A, 18A); 

antennal scape length greater than or equal to 3 times length of pedicel (Fig. 6A) . . . . . . . . . . . . . . . . . . . . . . . . . .  Cariboptila
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APPENDIX 1. 

Morphological characters and states for cladistic analysis.

1. Type of larval case. 0: free-living; 1: purse-like; 2: tortoise- or saddle-like.
Adult-larval associations have been determined for only a few taxa in this study. Although it is possible that larval 
characters may be highly conserved at the genus level, this is an untested assumption, casting doubt on an analysis of most 
larval characters. Furthermore, since a primary goal of the study was to test the monophyly of individual genera, it was not 
deemed appropriate to use composite taxon sampling for genus-level larval characters. On the other hand, because no 
exceptions are known, it is widely accepted that all Glossosomatidae larvae construct tortoise-like cases (Wiggins 2004). 
Consequently, only this single larval character was coded and scored for the analysis.

Head & thorax

2. Shape of head. 0: wider than long (Fig. 5); 1: longer than wide; 2: length = width.
State 0 is observed in all taxa.

3. Length of antennal scape. 0: ≤2x length of pedicel; 1: ≥3x length of pedicel (Fig. 6A).
State 1 is present in the Caribbean genera (Campsiophora, Cariboptila, Cubanoptila).

4. 3rd antennal segment. 0: without stout spine-like setae; 1: with stout spine-like setae (Fig. 6A).
State 1 is present in Cubanoptila.

5. Length of maxillary palpi 1st & 2nd segments (Frania & Wiggins 1997) in part. 0: 1st segment shorter than 2nd segment; 1: 
1st segment = 2nd segment (Fig. 6E); 2: 1st segment longer than 2nd segment.

6. Number of anterior setal warts. 0: 1 distinct pair (Fig. 5A); 1: 1 pair, each wart constricted medially; 2: 2 distinct pairs (Fig. 
5B); 3: patchy, sparsely setose.

7. Shape of anterior setal warts. 0: elongate (Fig. 5A); 1: suboval (Fig. 5B); 2: irregular, patchy.
8. Posterior setal wart size. 0: large, extending from lateral ocellus and meeting or almost meeting at medial suture (Fig. 5A); 1: 

small, not extending from lateral ocellus or meeting at medial suture (Fig. 5B).
9. Posterolateral setal wart shape. 0: suboval or triangular and bulging (Fig. 5); 1: elongate.

State 0 is observed in all protoptilines and some of the outgroups.
10. Mesothorax shape. 0: longer than wide (Fig. 5A); 1: wider than long (Fig. 5B); 2: length = width.
11. Mesothorax tegular glands presence. 0: present (Fig. 5B); 1: absent.
12. Anteromesal mesoscutal wart shape. 0: elongate (Fig. 5A); 1: suboval (Fig. 5B); 2: entire region setose, no distinct wart.
13. Anteromesal mesoscutal wart position. 0: anterior (Fig. 5B); 1: mesal; 2: lateral (Fig. 5A).

State 2 is characteristic of taxa having elongate anteromesal mesoscutal warts.
14. Mesoscutellar wart presence (Kimmins 1964, in part; Ross 1956, in part). 0: present (Fig. 5A); 1: absent (Fig. 5B).

The presence of mesoscutellar warts is considered a primitive characteristic of Trichoptera. Among the Protoptilinae, 
mesoscutellar warts are absent in all Neotropical taxa except Tolhuaca. 

15. Mesoscutellar wart shape and position. 0: 2 distinct small circular warts posterior; 1: 2 distinct small circular patches 
posterior; 2: 2 distinct large suboval warts or patches lateral.

16. Number of foretibial spurs (Ross 1956, in part) 0: two; 1: one; 2: zero; 3: three.
Either state 1 or 2 is observed among Protoptilinae.

17. Foretibial spur development (Morse & Yang 1993, Ross 1956, in part). 0: hair-like (Fig. 6B); 1: well-developed. 
When a single foretibial spur is present in protoptiline taxa, it is always hair-like. 

18. Number of mesotibial spurs (Frania & Wiggins 1997, in part). 0: four; 1: three; 2: two.
19. Number of metatibial spurs. 0: four; 1: three.

Wings

20. Shape of forewing (Ross 1967, in part). 0: broad past anastamosis (Fig. 12A); 1: margins nearly parallel (Fig. 7A); 2: narrow 
past anastomosis, much reduced (Fig. 10A).

21. Male anal region forewing callosity (Morse & Yang 1993; Morse & Yang 2004, in part). 0: present; 1: absent.
Wing callosity is defined as a visible thickening of the wing cuticle. Morse & Yang (2004) described 3 general patterns of 
callosity observed in the anal region of the male forewing in Glossosoma. However, for the purposes of this study, we 
coded this character as absent or present. 

22. Male apical costal region forewing callosity. 0: present; 1: absent.
23. Male forewing hair pencil. 0: absent; 1: present on inner surface of anal angle (Fig. 8C).

A hair pencil is defined as a modified fringe of elongate setae associated with androconial glands (Nichols 1989). State 1 is 
observed in Campsiophora pedophila and Campsiophora arawak Flint, 1968.

24. Forewing R1 (Morse and Yang 1993). 0: forked; 1: unforked.
State 0 is observed in the outgroup genera Anagapetus and Glossosoma.

25. Forewing apical fork I in relation to crossvein s. 0: sessile (Fig. 11A); 1: petiolate (Fig. 7A).
26. Stem of forewing fork I length. 0: about the same length as the fork; 1: longer than fork; 2: shorter than fork (Fig. 10A).
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State 2 is observed in almost all taxa with a petiolate apical fork I. State 0 is observed in the outgroup taxon Ptilocolepus 

granulatus (Pictet, 1834). State 1 is an autapomorphy for Merionoptila wygodzinskyi.
27. Forewing apical fork II in relation to crossvein r-m. 0: sessile (Fig. 7C); 1: petiolate (Fig. 8A).
28. Stem of forewing fork II length. 0: about the same length as fork (Fig. 8A); 1: longer than fork (Fig. 9A); 2: shorter than fork 

(Fig. 9C).
29. Forewing apical forks I and II. 0: branching at same level (Fig. 8C) 1: fork I branching before fork II (Fig. 8A) 2: fork II 

branching before fork I (Fig. 7A).
30. Forewing apical fork III presence (Morse & Yang 1993, in part; Ross 1956, in part). 0: present; 1: absent (Fig. 10C).

State 1 is observed in Matrioptila, Padunia, Poeciloptila, Temburongpsyche, and Scotiotrichia.
31. Forewing apical fork III in relation to crossvein m-cu. 0: sessile; 1: petiolate.

State 1 is observed in all taxa with fork III present, with the exception of the outgroup taxon Glossosoma.
32. Stem of forewing fork III length. 0: about the same length as fork; 1: longer than fork; 2: shorter than fork.
33. Forewing apical fork IV presence (Morse & Yang 1993, in part; Ross 1956, in part). 0: present; 1: absent.
34. Forewing apical fork IV in relation to crossvein m-cu. 0: sessile; 1: petiolate.
35. Stem of forewing fork IV length. 0: about the same length as fork; 1: longer than fork; 2: shorter than fork.
36. Forewing apical fork V (Kimmins 1964, in part; Morse & Yang 1993; Ross 1956, in part; Schmid 1990, in part). 0: present; 

1: absent.
37. Forewing apical fork V in relation to crossvein m-cu. 0: sessile; 1: petiolate.
38. Forewing Cu1. 0: complete, reaching wing margin; 1: incomplete, not reaching wing margin (Fig. 7A).

State 1 is observed in Culoptila. 
39. Forewing Cu1 and Cu2 intersection (Ross 1956, in part). 0: intersecting near anastomosis (Fig. 7A); 1: separate, not 

intersecting (12A); 2: completely fused (Fig. 11A).
40. Forewing A3 looping. 0: looped (Fig. 11C); 1: absent.
41. Forewing Cu2 row of erect setae presence (Kimmins 1964, in part; Mosely 1954, in part; Ross 1956, in part). 0: absent; 1: 

present (Figs. 7–14).
State 1 is observed in all Protoptilinae.

42. Forewing Cu2 row of erect setae position (Ross 1956, in part). 0: along Cu2 (Fig. 7A); 1: below Cu2 (Fig. 9A, 10C).
43. Forewing crossvein r presence. 0: present (Fig. 7A); 1: absent (Fig. 7C).
44. Forewing crossvein s presence (Morse & Yang 1993). 0: present; 1: absent.
45. Forewing crossvein r-m presence. 0: present; 1: absent.
46. Forewing discoidal cell length. 0: as long as or longer than Rs vein (Fig. 7A); 1: shorter than Rs vein (Fig. 7C, 8A).
47. Forewing crossveins r, s, and r-m alignment (Mosely 1954, in part; Ross 1956, in part; Morse & Yang 1993, in part). 0: 

forming relatively straight line; 1: not forming straight line.
48. Forewing crossvein m-cu presence. 0: present; 1: absent.
49. Hind wing shape. 0: broad past anastomosis (Fig. 12B); 1: margins nearly parallel (Fig. 9B); 2: narrow past anastomosis or 

scalloped along costal margin (Fig. 7D); 3: much reduced (Fig. 10B).
50. Hind wing apical fork I presence (Morse & Yang 1993, in part; Ross 1956, in part). 0: present; 1: absent.
51. Hind wing apical fork II presence (Morse & Yang 1993, in part). 0: present; 1: absent.
52. Hind wing apical fork III presence (Morse & Yang 1993, in part). 0: present; 1: absent.
53. Hind wing apical fork V presence (Morse & Yang 1993, in part; Ross 1956, in part). 0: present; 1: absent.
54. Hind wing A2 presence. 0: present; 1: absent.
55. Hind wing A2 looping. 0: not looped; 1: looped.
56. Hind wing A3 presence. 0: present; 1: absent.

Male pregenitalic abdominal structures

57. Sternum V lateral process presence. 0: absent; 1: present (Fig. 6D).
The lateral process is associated with glandular structures on segment V in males. State 1 is observed in Matrioptila and 
some species of Padunia and Nepaloptila. The process is also present in the outgroup taxon Ptilocolepus granulatus. 

58. Sternum VI mesal process presence. 0: absent; 1: present (Fig. 15A).
State 0 is an autapomorphy of Merionoptila wygodzinskyi. The presence of small points or processes on sterna VI and VII 
is plesiomorphic in Trichoptera (Schmid 1989).

59. Shape of sternum VI mesal process apex. 0: pointed or attenuate; 1: rounded; 2: bilobate; 3: subquadrate.
60. General shape of sternum VI mesal process. 0: tooth-like point; 1: elongate and digitate; 2: subtriangular; 3: circular; 4: 

flattened dorsoventrally; 5: thumb-like and prominent; 6: short and digitate.
61. Sternum VI mesal process apodeme. 0: absent; 1: strong; 2: weak.
62. Sternum VII mesal process presence. 0: without mesal process; 1: with prominent mesal process; 2: with small mesal point.

State 2 appears in the outgroup taxa Anagapetus and Glossosoma and the protoptiline species Campsiophora mulata.

Male genitalia

63. Sternum VIII modification. 0: projecting medially and subtending segment IX to which it is partially fused (Figs. 27A,B); 
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1: not projecting medially.
State 0 is a synapomorphy of Protoptila.

64. Terga VII and VIII dorsomesal, intersegmental region modifications. 0: with no modification; 1: with glandular structure.
65. Terga VII and VIII dorsolateral, intersegmental region modification. 0: with paired glandular structure; 1: without 

modification.
66. Tergum VIII dorsal plate presence. 0: absent; 1: present [subtending terga IX and X (Figs. 17A, B)].
67. Anterior margin of segment IX shape. 0: fairly straight (Fig. 27A); 1: rounded (Fig. 18A); 2: subtriangular (Fig. 24A). 
68. Posterior margin of segment IX processes or lobes presence. 0: absent; 1: present (Fig. 24A,C).

State 1 is present in Matrioptila, Padunia, Poeciloptila, and Temburongpsyche.
69. Tergum IX shape dorsally. 0: strap-like, very narrow; 1: uniformly narrow; 2: uniformly broad.
70. Sternum IX shape ventrally. 0: strap-like, very narrow (Fig. 30A); 1: uniformly narrow (Fig. 20); 2: uniformly broad (Fig. 

25A,D); 3: absent (Fig. 16A).
71. Sternum IX lateral margins. 0: constricted; 1: not constricted.
72. Sternum IX mesal modifications. 0: without modification; 1: with ventromesal projection posteriorly (Fig. 28A,B); 2: with 

2 pairs of elongate seta-like spines ventrolaterally (Fig. 20A,C).
State 1 is observed in Protoptila. The 2 pairs of elongate seta-like spines (State 2) is an autapomorphy of Itauara

brasiliana. These spines are superficially similar in appearance to the elongate parameres of certain other Itauara species, 
but are not homologous structures. 

73. Tergum IX paired dorsolateral process presence. 0: present [each usually bearing 1 or more elongate apical setae (Fig. 
16A,C)]; 1: absent.
State 0 is observed in the Caribbean taxa Campsiophora, Cariboptila, and Cubanoptila.

74. Tergum X attachment. 0: completely fused to and indistinguishable from segment IX (Fig. 24); 1: incompletely fused to 
segment IX with membrane or lightly sclerotized region connecting segment X ventolaterally (Fig. 28A,C); 2: mostly 
separate segment from segment IX; 3: fused dorsomesally, or "hinged" (Fig. 22); 4: partially fused to segment IX, 
consisting of basal and distal segments (Fig. 28).
State 2 is considered the primitive condition and is present in the outgroup taxa Ptilocolepus, Anagapetus, and 
Glossosoma. State 3 is observed in Merionoptila and Mortoniella. State 4 is observed in Protoptila.

75. Tergum X position. 0: subtended by segment IX (Fig. 16–18); 1: not subtended by segment IX.
State 0 is observed in the Caribbean taxa Campsiophora, Cariboptila, and Cubanoptila.

76. Tergum X dorsomesal region (Morse & Yang 1993, in part). 0: absent or vestigial 1: present, mostly membranous (Fig. 
25A,C); 2: present, mostly sclerotized. 

77. Tergum X dorsomesal margin. 0: with single, elongate, prominent process; 1: irregular with several small processes; 2: 
divided or bifid apicomesally; 3: subquadrate; 4: subtriangular; 5: with a single broad, plate-like process.
There is a great diversity among the shapes and number of processes/lobes of Tergum X. No doubt, many of these states 
are homoplastic at higher taxonomic levels. However, they may be informative at the species level.

78. Tergum X dorsolateral margin. 0: with paired elongate, down-turned, finger-like processes; 1: with irregular setose 
processes; 2: with small paired lobes; 3: without processes; 4: with upturned sclerotized points; 5: membranous; 6: with 
forked paired process; 7: with teeth-like spines; 8: with 1 or more large, horn-like processes; 9: with short, flattened, 
inwardly curved process (Fig. 16C, 17A,C, 18A,B).
(See Character 77 comment). State 4 is an autapomorphy for the outgroup taxon, Agapetus rossi Denning 1941. 

79. Tergum X ventrolateral margin. 0: with paired, broad, flange-like processes; 1: with 1 or more irregular, paired, setose, 
digitate lobes directed posteriorly; 2: with paired very elongate, spine-like process directed inwardly; 3: with small 
irregular, paired, setose lobes; 4: with paired elongate processes attached ventrolaterally to segment IX and directed 
ventrally and sometimes anteriorly (Fig. 19A,C); 5: without processes or lobes; 6: bearing 1 or several large, highly 
sclerotized spines or spine-like setae, directed mesad (Fig. 16C, 17A,C, 18A,B).
(See Character 77 comment). State 4 is observed in Culoptila. State 6 is observed in the Caribbean taxa Campsiophora, 
Cariboptila, and Cubanoptila.

80. Preanal appendages presence. 0: absent; 1: present.
Preanal appendages are absent in Protoptilinae and the outgroup taxa Anagapetus debilis (Ross, 1938) and Glossosoma 

intermedium (Klapálek, 1892).
81. Inferior appendages presence (Ross 1956, in part). 0: present; 1: absent.

In Trichoptera, inferior appendages are defined as 1- or 2-segmented gonopods, arising ventrally from segment IX and 
often connected to each other at their bases (Holzenthal et al. 2007b). Functionally, these structures serve as claspers, 
grasping the female during copulation. Among the Protoptilinae, the inferior appendages have undergone such extensive 
evolution that many structures are often no longer identifiable as “claspers.” For example, in some species the inferior 
appendages appear to have migrated from segment IX to be attached to the phallobase (Ross 1956). In other species, the 
inferior appendages have been completely lost. 

82. Inferior appendage shape. 0: 2 distinct appendages attached to segment IX and articulating with phallus basally; 1: fused 
completely (non-articulating) and integrated with segment IX, forming either elongate or shortened paired ventrolateral 
processes, or single ventromesal process, sometimes bifid (Fig. 24A,D); 2: 2 distinct appendages attached ventrally to 
phallus and articulating with IX (Fig. 27A,B,C); 3: markedly asymmetrical, fused to phallocrypt ventrobasally (Fig. 
21A,D); 4: composite structure consisting of paired processes fused together basally and to ventral margin of phallic 
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apparatus and ventrolaterally to endotheca, associated with articulated appendages fitting into pockets (Fig. 23A,C); 5: 
bulbous, fused ventromedially to endotheca and projecting ventrad (Fig. 22A,C); 6: broad, highly setose, prominent plate-
like projection fused ventrobasally to phallobase, sometimes invaginated apicomesally or with broad lateral processes 
(Fig. 16A,B); 7: simple, paired long or short processes, fused to one another basally to ventral surface of phallobase (Fig. 
19); 8: single or apically bifid process produced mesally, broadest at base, fused to phallobase ventrobasally.
Inferior appendages were identified and homologized based on their general position and structure. An evident 
transformational series is present from the simple condition of paired articulating appendages attached to segment IX, to 
the various conditions observed in Protoptilinae. In some species, the inferior appendages may function to evert or guide 
the phallus, in others, they are so reduced that they have apparently lost all functionality. In several subgenera of 
Glossosoma, Morse and Yang (2004) considered Ross’s (1956) “fixed spiny lobes of the aedeagus” to be the inferior 
appendages. However, we believe these processes, based on their position and structure, are actually parameres and 
therefore we agree with Ross’s original homology assessment in which the inferior appendages appear as ventral 
projections of sternum IX. State 0 is observed in all outgroup taxa and is considered the plesiomorphic condition in 
Trichoptera (Schmid 1989). State 1 is observed in Nepaloptila, Padunia, Poeciloptila, and Temburongpsyche. This 
character was especially phylogenetically informative at the generic level.

83. Inferior appendage segments (Frania & Wiggins 1997, in part; Morse & Yang 1993, in part). 0: with 2 articles; 1: with 1 
article.
State 0 is plesiomorphic in Trichoptera. The 1-article condition is observed in all Glossosomatidae and results from the 
loss of the harpago, or its fusion to the coxopodite (Holzenthal et al. 2007b)

84. Parameres (Frania & Wiggins 1997, in part; Morse & Yang 1993, in part). 0: absent; 1: present.
Parameres are paired processes arising from the endotheca (Holzenthal et al. 2007b). No doubt, parameres have been lost 
several times independently. Additionally, many taxa have structures resembling parameres, but it is unclear if they are 
truly homologous to parameres or are novel structures. For example, several taxa in the Caribbean genera have spine-like 
features; however, as they do not appear to arise from the endotheca, we do not consider them to be true parameres. 

85. Paramere position. 0: arising ventrobasally from fused endotheca and phallobase; 1: laterally from endotheca; 2: 
dorsolaterally from endotheca.
State 1 is the plesiomorphic condition in Trichoptera. 

86. Paramere sclerotization. 0: sclerotized and rod-like (Fig. 23A); 1: membranous and digitate (Fig. 15B, D).
87. Paramere shape. 0: mostly straight; 1: ram’s horn-like; 2: tusk-like and curving upward dorsally; 3: elongate and mostly 

curving downward; 4: serrate with 1 or 2 processes; 5: spatulate and straight; 6: digitate lobe with bulbous apex bearing 
short spine-like, stout setae; 7: elongate sinuous; 8: bulbous.

88. Phallic apparatus. 0: with single dorsomesal process arising internally from phallobase (Fig. 23A,C); 1: with single 
dorsomesal process arising dorsobasally from phallobase; 2: without single dorsomesal process.

89. Phallobase. 0: extremely reduced, often membranous (Fig. 15B,D); 1: not apparently reduced; 2: extremely enlarged (Fig. 
16A,B); 3: absent (Fig. 21).

90. Phallobase dorsal margin. 0: with sclerotized sheath produced anteriorly, with ventral margin membranous or absent (Fig. 
24A,B); 1: without sclerotized sheath, ventral margin sclerotized.

91. Phallobase appendages (Blahnik & Holzenthal 2008, in part). 0: without paired articulated, rod-like appendages with 
membraneous apices; 1: with paired articulated, small, digitate, rod-like appendages with membranous apices (Fig. 
23A,C).

92. Phallobase ventrobasally (Blahnik & Holzenthal 2008, in part). 0: without modified pockets; 1: with modified pockets (Fig. 
23A,C).

93. Phallobase apodeme. 0: with axe-shaped dorsal apodeme (Fig. 28C); 1: without dorsal apodeme.
94. Phallicata. 0: with sclerotized dorsolateral flange; 1: without flange.
95. Phallicata dorsum. 0: without dorsal sheath; 1: with dorsal sheath covering membranous ventral portion (Fig. 20A).
96. Phallicata apically. 0: without ventral branch; 1: with ventral branch bearing 1 or more apical spines (Fig. 24B). 

Female genitalia

97. Shape of the female genitalia apex (Frania & Wiggins 1997, in part; Ross 1967, in part). 0: extensible oviscapt (Fig. 31A); 
1: not extensible, but rather with modified appendicular parts of abdominal segments VIII and IX (Fig. 31B,C).
State 0, an extensible oviscapt is the primitive condition in Trichoptera (Schmid 1989) and consists of a prolongation or 
modification of the posterior abdominal segments which functions as an ovipositor (Nichols 1989).

98. Elongate internal apodemes (Frania & Wiggins 1997, in part; Ross 1967, in part). 0: vestigial or absent; 1: present as 2 pairs 
of long, slender sclerotized rods arising from the lateral margins of segments VIII and IX and extending cephalad to 
segments VI and VII, respectively (Fig. 31A).
State 1, the presence of elongate apodemes is a pleisiomorph for Amphiesmenoptera (Schmid 1989). 

99. Segments VIII and IX. 0: fused (Fig. 31C); 1: not fused.
State 0 is observed in Matrioptila, Nepaloptila, Padunia, Poeciloptila, and Temburongpsyche. State 1 is the plesiomorphic 
condition. 
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