New species and additional data on the chewing louse genus Myrsidea (Phthiraptera: Menoponidae) from wild Neotropical Passeriformes (Aves)

STANISLAV KOLENCIK ${ }^{1,3}$, OLDRICH SYCHRA ${ }^{1}$, IVO PAPOUSEK ${ }^{1}$, KAMILA M.D. KUABARA ${ }^{2}$, MICHEL P. VALIM ${ }^{2}$ \& IVAN LITERAK ${ }^{1}$
${ }^{l}$ Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 61242 Brno, Czech Republic
${ }^{2}$ Museu de Zoologia da Universidade de São Paulo, São Paulo, SP, Brazil
${ }^{3}$ Corresponding author: E-mail: stanislav.kolencik@gmail.com

Abstract

Twenty-four species of chewing lice of the genus Myrsidea Waterston, 1915 (Phthiraptera: Menoponidae) from Neotropical Suboscines (Passeriformes: Formicariidae, Furnariidae, Pipridae, Thamnophilidae, Tityridae, Tyrannidae) are recorded and discussed. They include: eight new species which are described and illustrated (Myrsidea capeki new species ex Chiroxiphia caudata; Myrsidea leptopogoni new species ex Leptopogon superciliaris; Myrsidea leucophthalmi new species ex Automolus leucophthalmus; Myrsidea pachyramphi new species ex Pachyramphus polychopterus; Myrsidea philydori new species ex Philydor rufum; Myrsidea pyriglenae new species ex Pyriglena leucoptera; Myrsidea scleruri new species ex Sclerurus scansor and Myrsidea zuzanae new species ex Furnarius rufus), as well as nine previously known species with additional data on intraspecific morphological variability, host associations and geographical distribution (Myrsidea barbati Price, Hellenthal \& Dalgleish, 2005; Myrsidea dalgleishi Valim, Price \& Johnson, 2011; Myrsidea flaviventris Price, Hellenthal \& Dalgleish, 2005; Myrsidea klimesi Sychra, 2006; Myrsidea meyi Valim, Price \& Johnson, 2011; Myrsidea oleaginei Price, Hellenthal \& Dalgleish, 2005; Myrsidea olivacei Price, Hellenthal \& Dalgleish, 2005; Myrsidea pitangi Price, Hellenthal \& Dalgleish, 2005 and Myrsidea spellmani Price, Johnson \& Dalgleish, 2008b). Seven further species are recorded at genus level only due to lack of adequate material. A 379 bp portion of the mitochondrial cytochrome oxidase I (COI) gene was sequenced from seven species in order to assess relative genetic divergences among Myrsidea populations.

Key words: Phthiraptera, Menoponidae, Myrsidea, new species, new data, COI, Passeriformes, Suboscines, Formicariidae, Furnariidae, Pipridae, Thamnophilidae, Tityridae, Tyrannidae, Brazil, Costa Rica, Honduras, Paraguay, Perú

Introduction

The suborder Tyranni (Passeriformes: Suboscines) represents a basal clade among passerine birds that includes more than 1200 species (Table 1), the large majority of which occur in the Neotropical Region (Ohlson et al. 2013; Clements et al. 2017). Neotropical Suboscines (Infraorder Tyrannides) include birds from ten families: Conopophagidae (gnateaters and gnatpittas), Cotingidae (cotingas), Formicariidae (ant-thrushes), Furnariidae (ovenbirds and woodcreepers), Grallariidae (antpittas), Pipridae (manakins), Rhinocryptidae (tapaculos), Thamnophilidae (antbirds), Tityridae (tityras and allies), and Tyrannidae (tyrant-flycatchers).

Despite the high number of potential suboscine hosts, data concerning their chewing lice are scarce and incomplete. The louse genus Myrsidea Waterston, 1915 is one of the most speciose within Phthiraptera, with approximately 380 species known worldwide. About 240 species of Myrsidea parasitise birds in the Neotropical Region; however, only 41 species have been recorded from Neotropical Suboscines (Table 1; Dalgleish \& Price 2005; Valim et al. 2011).

The aim of this paper is to follow up on our previous studies of Myrsidea from Neotropical hosts (Sychra et al.

2006, 2007, 2010; Valim et al. 2011; Valim \& Weckstein 2013; Kolencik et al. 2016, 2017) by (1) describing eight new species, (2) presenting new data on the distribution of other Myrsidea species found on suboscine passerines from Brazil, Costa Rica, Honduras, Paraguay and Perú, and (3) comparing sequences of a portion of the COI gene obtained from selected Myrsidea species against those from other species available in GenBank.

TABLE 1. List of families of Neotropical Suboscines with numbers of species (following Clements et al. 2017) and numbers of identified species of Myrsidea recorded from them

Host families	Species	Hosts of Myrsidea	$\%$	Myrsidea spp.	References
Conopophagidae	11	0	0	0	-
Cotingidae	66	0	0	0	-
Formicariidae	11	3	27	3	Sychra et al. (2006); Valim \& Weckstein (2013)
Furnariidae	303	9	3	7	Sychra et al. (2007); Valim et al. (2011)
Grallariidae	53	0	0	0	-
Pipridae	54	8	15	4	Dalgleish \& Price (2003); Sychra et al. (2010)
Rhinocryptidae	59	0	0	0	-
Thamnophilidae	234	6	3	6	Sychra et al. (2006); Price et al. (2008b)
Tityridae	33	3	9	2^{1}	Dalgleish \& Price (2005); Valim et al. (2011)
Tyrannidae	419	19	5	20^{1}	
TOTALS	1243	$\mathbf{4 8}$	4	$\mathbf{4 1}$	Weckstein (2013)

${ }^{1}$ one species—Myrsidea cinnamomei Dalgleish \& Price, 2005-is known to parasitise hosts from both families Tityridae and Tyrannidae (Dalgleish \& Price, 2005; Valim \& Weckstein, 2013).
${ }^{2}$ two species originally described as from Cotingidae.

Material and methods

We used mist nests at various locations in five countries of the Neotropical region-Brazil, Costa Rica, Honduras, Paraguay and Perú-to trap wild birds, which were searched for chewing lice. See Sychra et al. (2014) and Kolencik et al. (2016) for details of the coordinates of the study sites and detailed methods of collection. We used the standard method to prepare and slide-mount chewing lice, as described by Palma (1978), but modified as follows: (1) lice treated in a solution of $20 \% \mathrm{KOH}$ for at least 5 hours, (2) 30 minutes in water, (3) 30 min in 10% acetic acid, (4) 30 min in 50% ethanol, (5) 30 min in 70% ethanol, (6) 30 min in 96% ethanol, and (7) at least 24 hours in clove oil. Most preserved specimens of Myrsidea contain black crop and gut contents that impede observing important morphological details. Therefore, we remove them as much as possible by gentle pressing the body in water, after maceration with KOH (Fig. 1).

We followed the setal counting system for metanotal and tergal setae as recommended by Valim \& Weckstein (2013), as follows: (1) the number of metanotal setae does not include the most posterolateral setae; (2) the number of tergal setal on tergite I does not include the postspiracular setae; and (3) the numbers of tergal setal on tergites II-VIII neither include the postspiracular setae nor the short associated setae. In the following descriptions, all measurements are in millimeters. Abbreviations for dimensions are: dhs, dorsal head seta; ls5, labial setae 5; TW, temple width; POW, preocular width; HL, head length at midline; PW, prothorax width; MW, metathorax width; AWIV, abdomen width at level of segment IV; TL, total length; ANW, female anus width; GW, male genitalia width; GSL, genital sac sclerite length. Additionally, measurements were made for the setae which compose the aster of sternite II; these are presented from the inner setae to the outer most setae ($s 1, s 2, s 3$, etc).

The taxonomy and nomenclature of the birds follow those in Clements et al. (2017). The species of Myrsidea reported below are grouped within each bird family, arranged in alphabetical order. All samples, including the type specimens of the new species described in this paper, are deposited in the Moravian Museum, Brno, Czech Republic (MMBC). Two exceptions are: Myrsidea scleruri n. sp., deposited in the Museu de Zoologia da Universidade de São Paulo, Brazil (MZUSP), and one female Myrsidea dalgleishi Valim, Price \& Johnson, 2011 which is kept at the Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica (INBIO).

A 379 bp fragment of mitochondrial COI gene was amplified and sequenced from samples of selected Myrsidea, and a 347 bp fragment of nuclear elongation factor 1-alpha (EF1 α) was amplified and sequenced from two specimens of Myrsidea philydori n. sp. from different hosts, using the technique described by Johnson et al. (2002). The sequences (GenBank MF563529-MF563538 and MF574203-MF574204, respectively) were edited and aligned using Geneious 9.1.8 (Kearse et al. 2012), and compared to GenBank database using the BLAST algorithm (Altschul et al. 1990). Genetic divergences of sequences from already published data were assessed by computing p-distances in Geneious 9.1 .8 (Kearse et al. 2012).

In order to summarize all the data we have accumulated over the years concerning records of Myrsidea from Neotropical Suboscines, we have included in Table 3 all the species collected and recorded by us from the Neotropical region. However, to avoid repetition of published data, seven taxa listed in Table 3 are not dealt with in the systematic section of this paper. They are: Myrsidea andylolsoni Dalgleish \& Price, 2003, M. calvi Sychra, 2007, M. mcleannani Sychra, 2006, M. ochrolaemi Sychra, 2007, M. rekasii Dalgleish \& Price, 2003, M. souleyetii Sychra, 2007 and Myrsidea sp. from Dendrocincla fuliginosa (Sychra et al., 2006, 2007, 2010).

FIGURE 1. Removal of crop contents from a specimen of Myrsidea.
TABLE 2. Summary of records of Myrsidea from Neotropical suboscine birds in this study

	Numbers examined		Numbers parasitized		N° of lice	Mean intensity
	Birds	Species	Birds (\%)	Species (\%)		
Formicariidae	5	1	$3(60)$	$1(100)$	16	5.3
Furnariidae	214	45	$18(8)$	$12(27)$	106	5.9
Pipridae	216	11	$20(9)$	$3(27)$	102	5.1
Thamnophilidae	67	17	$6(9)$	$4(24)$	28	4.7
Tityridae	12	3	$4(33)$	$1(33)$	13	3.3
Tyrannidae	334	47	$98(29)$	$12(26)$	529	5.4
TOTALS	848	124	$149(18)$	$33(27)$	794	5.3

Results

A total of 848 host individuals of 124 Neotropical suboscine bird species were examined. One hundred and fourtynine birds (18%) of 33 species were parasitized with 794 chewing lice (mean intensity $=5.3$ lice per bird) belonging to twenty-five species of Myrsidea (Table 2). A total of 33 host-louse associations were found (Table 3). Prevalence of Myrsidea species ranged between 4% and 100%. Ranges of mean intensities and mean abundances were $1-17$ and $0.4-10.3$, respectively. In $87 \%(129 / 149)$ of parasitized birds the rate of infestation was very low
TABLE 3. List of hosts and the Myrsidea recorded from them by the authors in the Neotropical region.

Host family \& species	P	E	Myrsidea species	${ }^{1}$	아	Nymphs	Locality (Country)
Formicariidae							
Formicarius analis (d'Orbigny \&	2	4	\#1 Myrsidea klimesi Sychra, 2006	2	4	3	Hitoy Cerrere (CR)
Lafresnaye, 1837)	1	1	Myrsidea klimesi	0	0	7	Las Tablas (CR)
Furnariidae							
§Anabacerthia lichtensteini (Cabanis \& Heine, 1859)	1	2	**Myrsidea philydori n . sp.	1	0	1	San Rafael (PY)
Automolus ochrolaemus (Tschudi, 1844)	2	3	\# ${ }^{2}$ Myrsidea ochrolaemi Sychra in Sychra et al., 2007	3	4	1	Hitoy Cerrere (CR)
<<" " " >>	0	1	-	-	-	-	Las Tablas (CR)
§Automolus leucophthalmus (Wied, 1821)	3	10	${ }^{* *}$ Myrsidea leucophthalmi n . sp	6	5	4	San Rafael (PY)
Dendrocincla fuliginosa (Vieillot, 1818)	1	1	$\#^{2}$ Myrsidea sp.	1	0	0	Barbilla (CR)
<<" " " >>	0	1	-	-	-	-	Hitoy Cerrere (CR)
<<" " " >>	0	3	-	-	-	-	Iquitos (PE)
<<" " " >>	0	6	-	-	-	-	San Rafael (PY)
Furnarius rufus (J.F. Gmelin, 1788)	2	2	${ }^{* *}$ Myrsidea zuzanae n . sp.	3	3	0	Tres Gigantes (PY)
<<" " " >>	0	1	-	-	-	-	Agripino Enciso (PY)
<<" " " >>	0	5	-	-	-	-	Nova Andranina (BR)
<<""">>	0	7	-	-	-	-	Pantanal (BR)
Glyphorynchus spirurus (Vieillot, 1819)	1	9	Myrsidea dalgleishi Valim, Price \& Johnson, 2011	0	1	0	Barbilla (CR)
<<" " " >>	0	10	-	-	-	-	Hitoy Cerrere (CR)
<<" " " >>	0	5	-	-	-	-	Tapantí (CR)
<<" " " >>	0	3	-	-	-	-	Las Tablas (CR)
<<" " " >>	0	3	-	-	-	-	Iquitos (PE)
<<" " " >>	0	6	-	-	-	-	Atlántida (HO)
Lepidocolaptes souleyetii (Des Murs, 1849)	1	1	\#2 Myrsidea souleyetii Sychra, 2007	1	1	1	Hitoy Cerrere (CR)
§Philydor rufum (Vieillot, 1818)	1	2	**Myrsidea philydori	4	3	10	San Rafael (PY)
Sclerurus guatemalensis (Hartlaub, 1844)	2	3	\# ${ }^{2}$ Myrsidea calvi Sychra, 2007	9	8	9	Hitoy Cerrere (CR)
Sclerurus scansor (Menetries, 1835)	1	1	Myrsidea scleruri n . sp.	1	0	5	San Rafael (PY)
Syndactyla subalaris (P.L. Sclater, 1859)	1	1	Myrsidea meyi Valim, Price \& Johnson, 2011	1	1	2	Tapantí (CR)
§Thripadectes rufobrunneus (Lawrence, 1865)	2	2	**Myrsidea meyi	7	2	8	Tapantí (CR)

TABLE 3. (Continued)

Host family \& species	P	E	Myrsidea species	δ	아	Nymphs	Locality (Country)
Pipridae							
Ceratopipra mentalis P.L. Sclater, 1857	4	8	\# ${ }^{3}$ Myrsidea rekasii Dalgleish \& Price, 2003	2	1	12	Hitoy Cerrere (CR)
<<" " " >>	0	2	-	-	-	-	Barbilla (CR)
§Chiroxiphia caudata (Shaw, 1793)	10	15	**Myrsidea capeki n . sp.	18	13	49	San Rafael (PY)
Chiroxiphia linearis (Bonaparte, 1838)	6	109	\#3 Myrsidea andylolsoni Dalgleish \& Price, 2003	3	2	2	Rincón de la Vieja (CR)
Thamnophilidae							
Hylophylax naevioides (Lafresnaye, 1847)	1	6	Myrsidea spellmani Price, Johnson \& Dalgleish, 2008b	0	0	2	Rincón de la Vieja (CR)
Phaenostictus mcleannani (Lawrence, 1860)	2	2	\#1 Myrsidea mcleannani Sychra, 2006	2	2	4	Hitoy Cerrere (CR)
Pyriglena leucoptera (Vieillot, 1818)	1	1	${ }^{* *}$ Myrsidea pyriglenae n . sp.	8	5	3	San Rafael (PY)
§Taraba major (Vieillot, 1816)	1	1	**Myrsidea sp. 1	0	1	0	Tres Gigantes (PY)
<<" " " >>	1	3	${ }^{* *}$ Myrsidea sp. 1	0	0	1	Agripino Enciso (PY)
Tityridae							
Pachyramphus polychopterus (Vieillot, 1818)	2	2	**Myrsidea pachyramphi n . sp.	0	2	3	Tarapoto (PE)
<<" " " >>	2	2	**Myrsidea pachyramphi	4	2	2	Iquitos (PE)
Tyrannidae							
Contopus virens (Linnaeus, 1766)	1	2	Myrsidea sp.	0	0	3	Rincón de la Vieja (CR)
<<" " ">>	0	1	-	-	-	-	Islas de la Bahía (HO)
§Elaenia frantzii Lawrence, 1865	1	24	Myrsidea sp.	0	0	1	Barva (CR)
§Leptopogon amaurocephalus Tschudi, 1846	1	1	Myrsidea sp. 2	2	4	0	Tarapoto (PE)
<<" " " >>	3	10	Myrsidea sp. 2	2	2	7	San Rafael (PY)
§Leptopogon superciliaris Tschudi, 1844	3	4	${ }^{* *}$ Myrsidea leptopogoni n . sp.	2	2	20	Tapantí (CR)
<<" " " >>	0	1	-	-	-	-	Las Tablas (CR)
Mionectes oleagineus (Lichtenstein, 1823)	17	27	Myrsidea oleaginei Price, Hellenthal \& Dalgleish, 2005	54	19	22	Hitoy Cerrere (CR)
<<" " " >>	6	6	Myrsidea oleaginei	21	21	20	Barbilla (CR)
<<" " " >>	3	5	Myrsidea oleaginei	2	1	2	Rincón de la Vieja (CR)
<<" " ">>	0	1	-	-	-	-	Las Tablas (CR)
<<" " " >>	1	1	Myrsidea oleaginei	1	0	0	Tarapoto (PE)

TABLE 3. (Continued)

Host family \& species	P	E	Myrsidea species	${ }^{1}$	+	Nymphs	Locality (Country)
<<" " " >>	0	6	-	-	-	-	Iquitos (PE)
<<" " " >>	6	7	Myrsidea oleaginei	5	8	12	Atlántida (HO)
Mionectes olivaceus Lawrence, 1868	41	54	Myrsidea olivacei Price, Hellenthal \& Dalgleish, 2005	64	38	148	Tapantí (CR)
<<" " " >>	7	8	Myrsidea olivacei	14	6	12	Rincón de la Vieja (CR)
§Myiobius sulphureipygius (P.L. Sclater, 1857)	1	2	**Myrsidea barbati Price, Hellenthal \& Dalgleish, 2005	0	1	2	Hitoy Cerrere (CR)
<<" " " >>	0	1	-	-	-	-	Rincón de la Vieja (CR)
Pitangus sulphuratus (Linnaeus, 1766)	1	1	Myrsidea pitangi Price, Hellenthal \& Dalgleish, 2005	1	0	0	Tarapoto (PE)
<<" " " >>	1	2	Myrsidea pitangi	1	0	1	Tres Gigantes (PY)
<<" " " >>	1	1	Myrsidea pitangi	1	1	0	Atlántida (HO)
<<" " " >>	0	1	-	-	-	-	Hitoy Cerrere (CR)
<<" " " >>	0	6	-	-	-	-	Nova Andranina (BR)
§Ramphotrigon megacephalum (Swainson, 1835)	1	7	Myrsidea sp.	0	1	0	San Rafael (PY)
§Rhynchocyclus brevirostris (Cabanis, 1847)	1	1	Myrsidea sp.	0	0	1	Tapantí (CR)
Tolmomyias sulphurescens (Spix, 1825)	1	1	**Myrsidea flaviventris Price, Hellenthal \& Dalgleish, 2005	0	1	2	Atlántida (HO)
<<" " " >>	0	1	-	-	-	-	Rincón de la Vieja (CR)
<<" " " >>	0	1	-	-	-	-	San Rafael (PY)
§Zimmerius vilissimus (P.L. Sclater \& Salvin, 1859)	1	1	Myrsidea sp.	0	0	1	Cerro de la Muerte (CR)
<<" " " >>	0	2	-	-	-	-	Tapantí (CR)

$\mathrm{P}=$ number of birds parasitized; $\mathrm{E}=$ number of birds examined; § = first recorded louse from this host; ${ }^{* *}=$ new host-louse association; $\#^{1}=$ reported by Sychra et al. (2006); $\#^{2}=$ reported by Sychra et al. (2007); $\#^{3}=$ reported by Sychra et al. (2010); BR = Brazil; CR = Costa Rica; HO = Honduras; PY = Paraguay; PE = Perú.
(1-10 lice per bird). Infestations of 11-20 lice per bird were found in 17 (11\%) birds. The highest number of Myrsidea lice recorded per host was 25 individuals on one Sclerurus guatemalensis (Hartlaub, 1844), followed by one Chiroxiphia caudata (Shaw, 1793) and one Mionectes olivaceus Lawrence, 1868, which harboured 21 lice each. The overall sex ratio of lice was male-biased (246 males versus 165 females; $\chi^{2}=15.7, \mathrm{P}<0.001$). The overall age ratio of lice was equal (411 adults versus 383 immatures; $\chi^{2}=1.0, \mathrm{P}>0.05$).

Systematics

PHTHIRAPTERA Haeckel 1896: 703.

Amblycera Kellogg, 1896a: 68.
Menoponidae Mjöberg, 1910: 26.

Myrsidea Waterston, 1915: 12.

Host family: Formicariidae

Myrsidea klimesi Sychra, 2006

Myrsidea klimesi Sychra, 2006 in Sychra et al. 2006: 55, figs 10-11, 14-15.

Type host. Formicarius analis (d'Orbigny \& Lafresnaye, 1837)—black-faced ant-thrush.
Type locality. Hitoy Cerere BR, Provincia Limón, Costa Rica.
Material examined. Ex Formicarius analis: 7 nymphs II, Zona Protectora Las Tablas, Costa Rica $\left(08^{\circ} 54^{\prime} \mathrm{N}\right.$, $82^{\circ} 47^{\prime}$ W), 21 August 2010, O. Sychra \& I. Literak (MMBC).

Remarks. Although we examined only nymphs, we believe they belong to M. klimesi because they are from the type host species, even if from a different locality in Costa Rica.

Host family: Furnariidae

Myrsidea dalgleishi Valim, Price \& Johnson, 2011

Myrsidea sp. 2; Sychra et al. 2007: 123, fig. 13.
Myrsidea dalgleishi Valim, Price \& Johnson, 2011: 10, figs 28-29, 33-35.

Type host. Glyphorynchus spirurus (Vieillot, 1819)—wedge-billed woodcreeper.
Type locality. San José, Tinamaste, 12 km SW San Isidro de El General, Costa Rica.
Material examined. Ex Glyphorynchus spirurus: 1 Q, Barbilla National Park, Provincia Limón, Costa Rica ($09^{\circ} 59^{\prime} \mathrm{N}, 85^{\circ} 27^{\prime}$ W), 3 September 2004, I. Literak, M. Capek \& M. Havlicek (INBIO-O. Sychra CR10).

Remarks. Here we confirm that a female described as "Myrsidea sp. 2" by Sychra et al. (2007) is conspecific with M. dalgleishi originally described from G. spirurus from a different location in Costa Rica. Our specimen differ from the original description of M. dalgleishi by setal counts and dimensions, as follows [data from Valim et al. (2011) are in parentheses]:

Female ($\mathbf{n}=\mathbf{1}$). Length of $d h s 10,0.065(0.03)$; dhs $11,0.102(0.09)$; ratio $d h s 10 / 11,0.64(0.33)$. Gula with 56 (4-5) setae on each side. Tergal setae: II, 12 (8-10); IV, 12 (9-11); VI, 7 (10-11); VII, 4 (7-8); VIII, 4 (5-6). Sternal setae: IV, 26 (22-24); VI, 23 (19-21). Dimensions: TW, 0.42 (0.41); PW, 0.26 ($0.24-0.25$); AWIV, 0.53 (0.50-0.51).

FIGURES 2-3. Dorso-ventral views of female thorax and abdomen: 2, Myrsidea leucophthalmi n. sp.; 3, Myrsidea philydori n. sp.

Myrsidea leucophthalmi, new species

(Figs 2, 6-7, 18-19)

Type host. Automolus leucophthalmus (Wied, 1821)—white-eyed foliage-gleaner.
Type locality. San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$).
Type material. Ex Automolus leucophthalmus: holotype \uparrow, San Rafael National Park, Paraguay $\left(26^{\circ} 30^{\prime} \mathrm{S}\right.$, $55^{\circ} 47^{\prime} \mathrm{W}$), 18 and 20 August 2012, I. Literak (MMBC). Paratypes: $2 q, 3 \delta^{\lambda}$ with the same data as holotype (MMBC).

Diagnosis. Myrsidea leucophthalmi n. sp. is morphologically close to M. ochrolaemi Sychra [in Sychra et al.], 2007 in the following characters: (1) male genital sac sclerite, (2) female metanotum slightly enlarged with rounded posterior margin and (3) shape of abdominal tergites of female. However, M. leucophthalmi is easily distinguished from M. ochrolaemi by (1) fewer setae on: female tergite I (19-21 vs 22-33), female tergites II-IV ($14-17$ vs $18-33$); male tergite IV (12-14 vs $15-20$) and tergite V (12-13 vs $14-17$); (2) presence of continuous row of setae on tergite I only (vs continuous row of setae on tergite I-III in M. ochrolaemi) (3) fewer setae on female sternites IV and V (32-37 vs 39-48).

Description. Female ($\mathbf{n}=3$). As in Figs 2 and 18. Hypopharyngeal sclerites fully developed. Length of $d h s$ $10,0.043-0.063$; $d h s 11,0.108-0.127$; ratio $d h s 10 / 11,0.39-0.54 ; l s 5,0.03$ long, latero-ventral fringe with $9-10$ setae. Gula with 3-4 setae on each side. Pronotum with 6 setae on posterior margin and 3 short spiniform setae at each lateral corner. Prosternal plate with rounded anterior margin (Fig. 2). First tibia with 3 outer ventro-lateral and 4 dorso-lateral setae. Metanotum slightly enlarged with rounded posterior margin, with 11-15 marginal setae; metasternal plate with 6-8 setae; metapleurites with 3-4 short strong spiniform. Femur III with $14-19$ setae in ventral setal brush. Tergites not enlarged and unmodified, only tergite I and II with very slightly rounded posterior
margin (Fig. 2). Abdominal segments with continuous row of setae on tergite I and median gap in the row of tergal setae on tergites II-VIII. Tergal setae: I, 19-21; II, 17; III, 15-17; IV, 14-16; V, 14; VI, 12-14; VII, 10-12; VIII, 45. Postspiracular setae very long on II, IV and VIII ($0.45-0.50$); long on I and VII ($0.26-0.37$); and short on III, V and VI ($0.11-0.23$). Inner posterior seta of last tergum not longer than anal fringe setae with length $0.02-0.05$; length of short lateral marginal seta of last segment, 0.05 . Pleural setae: I, 7-9; II, 9-10; III, 8-11; IV, 8-9; V, 7-8; VI, 6 ; VII, 5; VIII, 3. Pleurites mostly with short spine-like setae; slender and longer setae on pleurites IV-VII, $0-$ 2; without anterior setae. Pleurite VIII with inner setae ($0.05-0.06$) as long as outer ($0.05-0.06$). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0 ; II, 5 in each aster, aster setae length: $s 1,0.10-0.12 ; s 2,0.07-$ $0.11 ; s 3,0.05-0.06 ; s 4,0.05-0.06 ; s 5,0.03-0.04$; with 11-13 marginal setae between asters, 4-6 medioanterior; III, 20-24; IV, 32-37; V, 33-37; VI, 30-31; VII, 16-19; VIII-IX, 13-16; and 14-18 setae on deeply serrated vulvar margin; in one specimen sternites IV-V with 1 medioanterior seta. Anal fringe formed by 43-51 dorsal and 45-47 ventral setae. Dimensions: TW, 0.49-0.50; POW, 0.37; HL, 0.34-0.35; PW, 0.30-0.32; MW, 0.48-0.51; AWIV, 0.65-0.66; ANW, 0.27; TL, 1.50-1.55.

Male ($\mathbf{n}=\mathbf{3}$). As in Fig. 19. Similar to female except as follows: length of $d h s$ 10, $0.048-0.050 ; d h s$ 11, $0.100-$ 0.113 ; ratio dhs 10/11, 0.44-0.48; ls $50.03-0.04$ long, latero-ventral fringe with $9-10$ setae. Gula with 3 setae on each side. Metanotum not enlarged with $8-10$ marginal setae; metasternal plate with 7 setae; metapleurites with 34 short spiniform strong setae. Femur III with 11-15 setae in ventral setal brush. Abdominal segments with welldefined median gap in each row of tergal setae. Tergal setae: I, 12-16; II, 12-15; III, 11-15; IV, 12-14; V, 12-13; VI, 12-14; VII, 11; VIII, 4-6; Postspiracular setae very long on II, IV and VIII (0.45-0.49); long on I and VII ($0.20-0.31$); and short on III, V and VI ($0.07-0.12$). Length of inner posterior seta of last tergum, $0.04-0.05$; short lateral marginal seta of last segment, 0.02 . Pleural setae: I, 5-7; II, 7-9; III, 7-8; IV, 6-8; V, 5-7; VI, 4-5; VII, 4; VIII, 3. Pleurites I-III with only short spine-like setae; pleurites IV-VII with $1-2$ slender setae; without anterior setae. Pleurite VIII with inner setae $(0.05-0.06)$ twice as long as outer ($0.02-0.03$). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0 ; II, 5 in each aster: $s 1,0.08-0.10 ; s 2,0.07-0.10 ; s 3,0.06-0.07 ; s 4,0.04-$ 0.06 ; $s 5,0.03-0.04$; with 12-13 marginal setae between asters, 5-6 medioanterior; III, 17-21; IV, 24-28; V, 28-30; VI, 25-28; VII, 19-20; VIII, 14; remainder of plate, 13-15; and with 5-6 setae posteriorly; in one species sternite VIII with 1 medioanterior seta. With 8 internal anal setae. Genital sac sclerite as in Figs 6-7. Dimensions: TW, 0.43-0.45; POW, 0.32-0.33; HL, 0.30-0.32; PW, 0.26-0.28; MW, 0.39-0.40; AWIV, 0.48-0.49; GW, 0.08-0.12; GSL, 0.08-0.12; TL, 1.28-1.29.

Etymology. The species epithet is a noun in apposition derived from the species name of the type host.
Remarks. This is the first record of a chewing louse from Automolus leucophthalmus. A portion of COI gene was sequenced from specimens of M. leucophthalmi from Paraguay (GenBank MF563529). As expected, the closest species among other published sequences of Neotropical Myrsidea was M. ochrolaemi (ex Automolus ochrolaemus (Tschudi, 1844), family Furnariidae, GenBank JN638820), with a sequence divergence of 11.7%. This divergence is close to the limit of accepted interspecific variation (see Price et al. 2008a; Kolencik et al. 2017) but, together with their morphological differences, we are confident that M. leucophthalmi and M. ochrolaemi represent separate species.

Myrsidea meyi Valim, Price \& Johnson, 2011

Myrsidea meyi Valim, Price \& Johnson, 2011: 8, figs 21, 26-27, 30-32.
Type host. Syndactyla subalaris (P.L. Sclater, 1859)—lineated foliage-gleaner.
Type locality. Palo Seco, Panamá.
Material examined. Ex Syndactyla subalaris: $1 \uparrow$, $1 \widehat{3}$, Tapantí National Park, Sector Tapantí, Costa Rica $\left(09^{\circ} 46^{\prime} \mathrm{N}, 83^{\circ} 47^{\prime}\right.$ W), 3 August 2009, O. Sychra \& I. Literak (MMBC).

Ex Thripadectes rufobrunneus (Lawrence, 1865)—streak-breasted treehunter: 3q, 7 ${ }^{2}$, Tapantí National Park, Sector Tapantí, Costa Rica $\left(09^{\circ} 46^{\prime}\right.$ N, $83^{\circ} 47^{\prime}$ W), 31 July and 6 August 2009, O. Sychra \& I. Literak (MMBC).

Remarks. This is the first record of a chewing louse from Thripadectes rufobrunneus, as well as the first record of M. meyi from Costa Rica. Our specimens differ from the original description of M. meyi by setal counts and dimensions, as follows [data from Valim et al. (2011) are in parentheses]:

Female $(\mathbf{n}=4)$. Length of $d h s 10,0.055-0.065(0.080)$; dhs $11,0.115-0.125(0.110)$; ratio $d h s 10 / 11,0.44-$ 0.57 (0.72). Femur III with 13-18 (14) setae in ventral setal brush. Tergal setae: I, 6-8 (8); II, 9-11 (12); III, 11-13 (13); IV, 12-15 (14); V, 13-16 (14); VI, 13-16 (14); VII, 4-10 (8); VIII, 4 (2). Sternal setae: II, 5-6 (5) in each aster, with 13-15 (13) marginal setae between asters, 4-5 (10) medioanterior; III, 25-29 (25); IV, 27-31 (31); V, 27-31 (30); VI, 26-31 (25); VII, 19-25 (19); VIII-IX, 11-16 (12); and 9-14 (13) setae on vulvar margin. Anal fringe formed by 35-39 (31) dorsal and 34-37 (36) ventral setae. Dimensions: TW, 0.48-0.50 (0.49); HL, 0.300.35 (0.34); PW, $0.29-0.31$ (0.31); MW, $0.44-0.50$ (0.50); AW, $0.62-0.66$ (0.65); ANW, $0.24-0.26$ (0.24); TL, 1.57-1.60 (1.54).

Male ($\mathbf{n}=\mathbf{8}$). Metanotum not enlarged with 4-5 (4) marginal setae; metasternal plate with 6-8 (6) setae. Femur III with 14-16 (11-14) setae in ventral setal brush. Tergal setae: I, 4-6 (4-5); II, 8-11 (9-10); V, 10-12 (12); VI, 11-12 (10-11); VII, 6-8 (5-7); VIII, 4-5 (4). Anterior margin of sternal plate II with a medial notch. Sternal setae: II, with 11-14 (8-11) marginal setae between asters, 5 (8) medioanterior; III, 20-24 (20-22); VII, 15-17 (14-15); VIII, 6-11 (6-9; sternites VII-VIII with $0-1$ medioanterior setae. Dimensions: TW, 0.44 (0.45); HL, 0.32-0.34 (0.31); PW, 0.27-0.29 (0.29-0.30); AWIV, 0.47-0.49 (0.49); GSL, 0.07 (0.06); TL, 1.30-1.35 (1.23-1.33).

Myrsidea philydori, new species

(Figs 3, 8-10, 20-21)

Type host. Philydor rufum (Vieillot, 1818)—buff-fronted foliage-gleaner.
Type locality. San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$).
Type material. Ex Philydor rufum: holotype + , San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$), 19 August 2012, I. Literak (MMBC). Paratypes: 2q, 3才, with the same data as holotype.

Other material, non-type. Ex Anabacerthia lichtensteini (Cabanis \& Heine, 1859)—ochre-breasted foliagegleaner: 1^{\AA}, San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime}$ W), 20 August 2012, I. Literak (MMBC).

Diagnosis. Myrsidea philydori n. sp. shares the same type of male genital sac sclerite as other Myrsidea from members of the Furnariidae. According to the shape of female tergites, M. philydori is close to M. waterstoni Valim, Price \& Johnson, 2011 from Anabacerthia variegaticeps (P.L. Sclater, 1857) from Panamá. Female of M. philydori can be easily distinguished from those of M. waterstoni by the absence of a detached plate on tergite III and a larger number of setae on tergites IV-VI (12-14 vs $7-10$ respectively). Males of M. philydori and of M. waterstoni are very similar in setal counts, but they can be separated by smaller dimensions in all measurements, especially TW ($0.42-0.44$ vs 0.47) and PW ($0.26-0.28$ vs 0.31). Comparing M. philydori with other Neotropical Myrsidea, the new species has modified tergites similar to those of M. rekasii Dalgleish \& Price, 2003 and M. baileyae Dalgleish \& Price, 2003, both described from the Pipridae. However, males of these latter species have completely different type of genital sac sclerite. Females of M. philydori differ from those of M. rekasii by smaller numbers of setae on tergites I-III ($9-10$ vs $12-14$ on I; $6-8$ vs $11-18$ on II; $10-11$ vs $13-16$ on III) and from those of M. baileyae by smaller number of setae on tergite VIII (4 vs $8-9$), as well as by smaller dimensions, especially TW (0.47-0.48 vs 0.54-0.55).

Description. Female ($\mathbf{n}=3$). As in Figs 3 and 20. Hypopharyngeal sclerites fully developed. Length of $d h s$ 10, 0.051-0.055; dhs 11, 0.098-0.111; ratio dhs $10 / 11,0.46-0.55$; ls 50.04 long, latero-ventral fringe with $10-11$ setae. Gula with 4 setae on each side. Pronotum with 6 setae on posterior margin and 3 short spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 4-5 dorso-lateral setae. Metanotum not enlarged, with 8-11 marginal setae; metasternal plate with 4 setae; metapleurites with 4 short strong spiniform setae. Femur III with 13-15 setae in ventral setal brush. Tergites modified as follows: I-II strongly convex, III-IV are depressed by I-II (Fig. 3). Abdominal segments with well-defined median gap in each row of tergal setae. Tergal setae: I, 9-10; II, 68; III, 10-11; IV, 12-13; V, 12-14; VI, 12-14; VII, 7-8; VIII, 4; Postspiracular setae very long on II, IV, VII and VIII ($0.35-0.46$); long on I and III ($0.23-0.32$); and short on V and VI ($0.13-0.20$). Inner posterior seta of last tergum not longer than anal fringe setae with length $0.03-0.06$; length of short lateral marginal seta of last segment, 0.03-0.06. Pleural setae: I, 6-7; II, 7-8; III, 7-8; IV, 6-7; V, 5-6; VI, 5-6; VII, 3-4; VIII, 3. Pleurites without slender and longer setae. Pleurite VIII with inner setae ($0.02-0.04$) as long as outer ($0.02-0.04$). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0 ; II, 5 in each aster: $s 1,0.10-0.12 ; s 2,0.09-0.10 ; s 3,0.07-$ 0.08 ; $s 4,0.05-0.06$; $s 5,0.04-0.05$; with 13-14 marginal setae between asters, 6 medioanterior; III, 20-23; IV, 29-

34; V, 31-37; VI, 25-28; VII, 12-15; VIII-IX, 11-12; and 11-13 setae on deeply serrated vulvar margin; sternites III-VII without medioanterior setae. Anal fringe formed by 38-40 dorsal and 33-43 ventral setae. Dimensions: TW, 0.47-0.48; POW, 0.36-0.37; HL, 0.32-0.33; PW, 0.29; MW, 0.46-0.48; AWIV, 0.60; ANW, $0.20-0.25$; TL, 1.47-1.55.

Male ($\mathbf{n}=4$). As in Fig. 21. Similar to female except as follows: length of dhs 10, $0.048-0.054 ; d h s 11,0.092-$ 0.100 ; ratio $d h s 10 / 11,0.48-0.59$; ls 50.03 long, latero-ventral fringe with $10-11$ setae. Gula with $3-4$ setae on each side. Metanotum not enlarged with 4-7 marginal setae; metasternal plate with 4 (6 in specimen from A. lichtensteini) setae; metapleurites with 3-4 short spiniform strong setae. Femur III with 10-14 setae in ventral setal brush. Abdominal segments with well-defined median gap in each row of tergal setae. Tergal setae: I, 7-9; II, 8-11; III-IV, 9-11; V, 11-12; VI, 9-11; VII, 4-6; VIII, 4; Postspiracular setae with the same pattern as in female but shorter. Length of inner posterior seta of last tergum, 0.05 ; short lateral marginal seta of last segment, 0.02 . Pleural setae: I, 5-6; II, 6-7; III, 6-7; IV, 6; V, 5; VI, 4-5; VII, 3; VIII, 3. Pleurite VIII with inner setae (0.03-0.04) as long as outer (0.02-0.03). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, $0 ;$ II, $4-5$ in each aster: $s 1,0.09-0.12 ; s 2,0.07-0.10 ; s 3,0.06-0.07 ; s 4,0.04-0.05 ; s 5,0.02-0.04$; with $12-14$ marginal setae between asters, 4-6 medioanterior; III, 16-23; IV, 24-28; V, 22-33; VI, 20-26; VII, 10-14; VIII, 4; remainder of plate, 810; and with 3-4 setae posteriorly; sternites III-VII without medioanterior setae. With 8 internal anal setae. Genital sac sclerite as in Figs $8-10$. Dimensions: TW, $0.42-0.44$; POW, $0.33-0.35$; HL, 0.31 ; PW, $0.26-0.28$; MW, 0.370.39; AWIV, 0.47-0.48; GW, 0.11-0.12; GSL, 0.08; TL, 1.23-1.33.

Etymology. The species epithet is a noun in apposition derived from the generic name of the type host.
Remarks. These are first records of chewing lice from both Philydor rufum and Anabacerthia lichtensteini. A portion of COI gene was sequenced from one specimen of M. philydori from Anabacerthia lichtensteini from Paraguay (GenBank MF563530). Comparing our sequence with other known sequences of Neotropical Myrsidea, divergences exceeded 19% in all cases, including that with M. waterstoni (ex Anabacerthia variegaticeps, family Furnariidae, GenBank FJ171278) being 19.3\%. Curiously, comparing our sequence of M. philydori with all known Myrsidea sequences, the closest was that of M. textoris Klockenhoff, 1984 (ex Ploceus intermedius Rüppell, 1845 and Ploceus velatus Vieillot, 1819, family Ploceidae, GenBank KF768813 and KF768815) from South Africa, with a p-distance of about 17.5%. Furthermore, sequences of a portion of EF-1 alpha gene of M. philydori from Philydor rufum and from Anabacerthia lichtensteini (GenBank MF574203-MF574204) were identical to each other, and diverged from that of M. waterstoni (GenBank FJ171305) by 3.4%. All these sequence divergences are large enough to confirm M. philydori as a new, separate species.

Myrsidea scleruri, new species

(Figs 4, 11, 22-23)

Myrsidea sp. 1; Kuabara \& Valim, 2017: 150.
Type host. Sclerurus scansor (Menetries, 1835)—rufous-breasted leaftosser.
Type locality. Ilha Grande, Rio de Janeiro, Brazil ($23^{\circ} 09^{\prime} \mathrm{S}, 44^{\circ} 14^{\prime} \mathrm{W}$).
Type material. Ex Sclerurus scansor: holotype q (MZUSP\#6745), Ilha Grande, Rio de Janeiro, Brazil, 21 September 1944, H. Sick. Paratypes: 2才, 1 , (MZUSP\#6743-44, 6746) with the same data as holotype (MZUSP).

Other material, non-type. $1 \circlearrowleft^{\top}$ San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}$, $55^{\circ} 47^{\prime} \mathrm{W}$), 19 August 2012, I. Literak (MMBC).

Diagnosis. Myrsidea scleruri n . sp. has the same type of male genital sac sclerite as other species of Myrsidea from the Furnariidae. However, it can be easily distinguished from all Neotropical Myrsidea by a unique combination of characters: (1) pronotum with 8 setae on posterior margin, (2) pleurites III-VII with $2-4$ slender and quite long setae, (3) the shape of the male genital sac sclerite (Fig. 11), and (4) shape of female tergites (Fig. 4).

Myrsidea calvi Sychra et al., 2007—described from Sclerurus guatemalensis (Hartlaub, 1844) in Costa Ricais morphologically close to M. scleruri but both species can be easily separated by: (1) number of setae on the posterior margin of pronotum (6 setae vs 8 setae in M. scleruri), (2) shape of tergites I and II, and (3) female total length (1.52-1.60 vs 1.86-1.92).

There are five species of Neotropical Myrsidea with 8 setae on the posterior margin of pronotum, as follows: M. aitkeni Clay, 1966, M. antiqua Ansari, 1956, M. carrikeri (Eichler, 1943), M. elegans Ansari, 1956 and M.
obsoleti Kounek \& Sychra [in Kounek et al.], 2013. All these species were described from members of the Turdidae and are placed in the carrikeri species group (sensu Clay 1966). Myrsidea scleruri is easily distinguished from all these species by a completely different male genital sac sclerite and different modification of tergites in the female.

FIGURES 4-5. Dorso-ventral views of female thorax and abdomen: 4, Myrsidea scleruri n. sp.; 5, Myrsidea zuzanae n. sp.
Description. Female ($\mathbf{n}=\mathbf{2}$). As in Figs 4 and 22. Hypopharyngeal sclerites fully developed. Length of $d h s$ $10,0.090$; dhs $11,0.116$; ratio $d h s 10 / 11,0.78$; ls 5 broken, latero-ventral fringe with 10 setae. Gula with 4 setae on each side. Pronotum with 8 setae on posterior margin and 3 medium length spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 4 dorso-lateral setae. Metanotum enlarged, with 4 marginal setae; metasternal plate with 7-9 setae; metapleurites with 3-4 short strong spiniform setae. Femur III with 18-22 setae in ventral setal brush. Tergite I narrow with medium posterior enlargement; tergite II three times larger than I, with anterior margin medially concave due to enlargement of tergite I. Tergites III-IV slightly concave posteriorly as result of enlargement of first tergites. Abdominal segments II-VIII with well-defined median gap in each row of tergal setae (Fig. 4). Tergal setae: I, 17-20; II, 22-24; III, 22-23; IV, 22-26; V, 26; VI, 18-20; VII, 12; VIII, 2-4. Postspiracular setae very long on II, IV, VII and VIII ($0.41-0.52$); and shorter on I, III, V and VI ($0.19-0.30$). Inner posterior seta of last tergum with length 0.01 ; length of short lateral marginal seta of last segment, 0.03-0.04. Pleural setae: I, 8-9; II, 8-12; III, 8-10; IV, 6-11; V, 6-8; VI, 6-7; VII, 5-6; VIII, 3-4. Pleurites III-VII with 2-4 slender and longer setae. Pleurite VIII with length of inner setae $0.04-0.06$ and outer $0.06-0.07$. Anterior margin of sternal plate II with a small medial notch. Sternal setae: I, 0 (female paratype with 1 seta); II, 5 in each aster: s1, $0.11-0.13 ; s 2,0.08-0.11 ; s 3,0.05-0.07 ; s 4,0.03-0.04 ; s 5,0.02-0.03$; with $14-16$ marginal setae between asters,

4-5 medioanterior setae; III, 40-46; IV, 44-48; V, 47-54; VI, 45-46; VII, 20-25; VIII-IX, 16-17; and 15-17 setae on scantly serrated vulvar margin, without medioanterior setae on sternites III-VII. Anal fringe formed by $42-45$ dorsal and 41-42 ventral setae. Dimensions: TW, 0.50; POW, 0.35; HL, 0.35-0.41; PW, 0.35; MW, 0.55-0.60; AWIV, 0.76-0.88; ANW, 0.27-0.28; TL, 1.86-1.92.

FIGURES 6-17. Male genital sac sclerites: 6-7, Myrsidea leucophthalmi n. sp.; 8-10, Myrsidea philydori n. sp.; 11, Myrsidea scleruri n. sp.; 12-13, Myrsidea zuzanae n. sp.; 14-17, Myrsidea pyriglenae n. sp.

Male ($\mathbf{n}=3$ 3). As in Fig. 23. Similar to female except as follows: length of $d h s 10,0.070-0.098 ; d h s 11,0.110-$ 0.112 ; ratio $d h s 10 / 11,0.64-0.89$. Latero-ventral fringe with 10 setae (one specimen with 11 on one side). Gula with $4-5$ setae on each side. Pronotum with 8 setae on posterior margin and 3 short spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 4-5 dorso-lateral setae. Metanotum with posterior margin roughly straight with 4 marginal setae; metasternal plate with $7-10$ setae; metapleurites with $3-5$ short spiniform strong setae. Femur III with $15-21$ setae in ventral setal brush. Abdominal tergites with continuous row of setae on tergites I-V and with short median gap in the row of setae only on tergites VI-VIII. Tergal setae: I, 12-14; II, 1821; III, 16-25; IV, 16-23; V, 18-21; VI, 15-22; VII, 12-19; VIII, 7-8. Postspiracular setae same with the same pattern as in female but shorter. Length of inner posterior seta of last tergum, 0.01-0.02; short lateral marginal seta of last segment, $0.01-0.02$. Pleural setae: I, 5-7; II, 7-12; III, 7-13; IV, 6-12; V, 6-11; VI, 6-10; VII, 5-9; VIII, 35. Pleurites III-VII with 2-4 slender and longer setae: Pleurite VIII with inner setae (0.02) smaller as the outer one (0.03-0.05). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0; II, 4-5 in each aster: $s 1$, $0.08-0.10 ; s 2,0.07-0.10 ; s 3,0.05-0.07 ; s 4,0.03-0.04 ; s 5,0.02-0.03$; with $15-17$ marginal setae between asters, 7-14 medioanterior; III, 34-37; IV, 45-49; V, 48-52; VI, 47-51; VII, 28-31; VIII, 9-11; remainder of plate, 14-17; sternites VI-VIII with $0-2$ medioanterior setae. Genital sac sclerite as in Fig. 11. Dimensions: TW, 0.43-0.49; POW, 0.31-0.33; HL and PW, 0.31-0.33; MW, 0.41-0.46; AWIV, 0.55-0.58; GW, $0.12-0.14$; GSL, 0.10 ; TL, 1.45-1.54.

Etymology. The species epithet is a noun in apposition derived from the generic name of the type host.

FIGURES 18-21. Habitus: Myrsidea leucophthalmi n. sp.: 18, holotype female; 19, paratype male; Myrsidea philydori n. sp.: 20, holotype female; 21, paratype male.

FIGURES 22-25. Habitus: Myrsidea scleruri n. sp.: 22, holotype female; 23, paratype male; Myrsidea zuzanae n. sp.: 24, holotype female; 25, paratype male.

Myrsidea zuzanae, new species

(Figs 5, 12-13, 24-25)

Type host. Furnarius rufus (J.F. Gmelin, 1788)—rufous hornero.
Type locality. Los Tres Gigantes Biological Station in the Paraguayan Pantanal, Paraguay ($20^{\circ} 04^{\prime} \mathrm{S}, 50^{\circ} 09^{\prime} \mathrm{W}$).
Type material. Ex Furnarius rufus: holotype + , Los Tres Gigantes Biological Station in the Paraguayan Pantanal, Paraguay ($20^{\circ} 04^{\prime} \mathrm{S}, 50^{\circ} 09^{\prime}$ W), 6-7 August 2012, I. Literak (MMBC). Paratypes: $1 q, 2 \sigma^{\top}$ with the same data as holotype (MMBC).

Diagnosis. Myrsidea zuzanae n . sp. shares the same type of male genital sac sclerite as other Myrsidea from the Furnariidae, but it can be easily distinguished from them by its unique modification of female tergites, especially II being the only tergite with a prominent medioposterior convexity (Fig. 5). However, among species of Neotropical Myrsidea from other bird families, M. zuzanae has a similar modification of female tergites as that of M. rufi Price \& Dalgleish, 2006 and M. phoenicii Price \& Dalgleish, 2006 from the Thraupidae. However, males of these two species have a completely different type of genital sac sclerite. In addition, females of M. zuzanae differ from those of M. rufi by (1) fewer setae on tergite VIII (4-5 in M. zuzanae vs 6-8 in M. rufi), and (2) more setae on sternites III-V (total 117-124 in M. zuzanae vs 85-97 in M. rufi). Also, it differs from females of M. phoenicii by (1) more setae on tergite I (14-19 in M. zuzanae vs 10-12 in M. phoenicii), (2) more setae on sternites III-V (total 117-124 in M. zuzanae vs 72-95 in M. phoenicii), and (3) fewer setae on tergite VIII (4-5 in M. zuzanae vs 6-8 in M. phoenicii).

Description. Female ($\mathbf{n}=\mathbf{2}$). As in Figs 5 and 24. Hypopharyngeal sclerites fully developed. Length of $d h s$ $10,0.060-0.065$; dhs 11, 0.102-0.105; ratio dhs $10 / 11,0.36-0.57$; ls 50.06 long, latero-ventral fringe with $10-11$ setae. Gula with 4 setae on each side. Pronotum with 6 setae on posterior margin and 3 short spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 4 dorso-lateral setae. Metanotum not enlarged, with 11-12 marginal setae; metasternal plate with 6 setae; metapleurites with $3-4$ short strong spiniform setae. Femur III with 19-21 setae in ventral setal brush. Tergites modified as follows: tergite II with prominent medioposterior convexity and tergite III with widely rounded posterior margin (Fig. 5). Abdominal segments with well-defined median gap in row of tergal setae II-VIII. Tergal setae: I, 14-19; II, 12-13; III, 10; IV, 10; V, 12-13; VI, 12; VII, 12; VIII, 4-5. Postspiracular setae very long on I, II, IV, VII and VIII (0.31-0.46); and short on III, V-VI (0.16-0.27). Inner posterior seta of last tergum not longer than anal fringe setae with length 0.03 ; length of short lateral marginal seta of last segment, 0.04 . Pleural setae: I, 6-7; II, 7-9; III, 8-9; IV, 6-9; V, 6-7; VI, 5-6; VII, 4-5; VIII, 3. Pleurites with only short spine-like setae. Pleurite VIII with inner setae (0.04) as long as outer ($0.04-0.05$). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0 ; II, 4 in each aster: $s 1,0.09-0.10 ; s 2,0.05-0.06 ; s 3,0.05$; s4, 0.03; with 13-14 marginal setae between asters, 2-5 medioanterior; III, 30-33; IV, 43-47; V, 44; VI, 27-29; VII, 15; VIII-IX, 9; and 11-13 setae on deeply serrated vulvar margin; without medioanterior setae on sternites. Anal fringe formed by 40 dorsal and 36 ventral setae. Dimensions: TW, $0.45-0.46$; POW, $0.35-0.36$; HL, $0.30-$ 0.32; PW, 0.29; MW, 0.45-0.46; AWIV, 0.63-0.65; ANW, 0.23; TL, 1.52-1.58.

Male ($\mathbf{n}=\mathbf{2}$). As in Fig. 25. As for female, except as follows: length of $d h s 10,0.060 ;$ dhs 11, $0.95-0.98$; ratio dhs 10/11, 0.61-0.63; ls5 0.04-0.06 long, latero-ventral fringe with $10-11$ setae. Gula with $2-4$ setae on each side. Metanotum not enlarged with 8-9 marginal setae; metasternal plate with 6 setae; metapleurites with 3-4 short spiniform strong setae. Femur III with $14-17$ setae in ventral setal brush. Abdominal segments with well-defined median gap in each row of tergal setae. Tergal setae: I, 6-7; II, 8-11; III, 7-8; IV-V, 8; VI-VII, 7-8; VIII, 4. Postspiracular setae very long on II, IV, VII and VIII ($0.42-0.45$); long on I (0.29); and short on III, V and VI (0.13-0.23). Length of inner posterior seta of last tergum, $0.045-0.070$; short lateral marginal seta of last segment, $0.020-0.025$. Pleural setae: I, 4-5; II, 6-7; III, 5-6; IV, 5-6; V, 5-6; VI, 4; VII, 2-4; VIII, 3. Pleurite VIII with inner setae ($0.03-0.04$) as long as outer ($0.03-0.04$). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0 ; II, 4 in each aster: $s 1,0.07-0.11 ; s 2,0.05-0.06 ; s 3,0.04-0.05 ; s 4,0.03-0.04$; with $12-14$ marginal setae between asters, 4 medioanterior; III, 20-21; IV, 28-33; V, 33; VI, 26; VII, 15; VIII, 5-7; remainder of plate, 7-8; and with 3 setae posteriorly; without medioanterior setae on sternites. With 8 internal anal setae. Genital sac sclerite as in Figs 12-13. Dimensions: TW, 0.42; POW, $0.32-0.33$; HL, $0.28-0.29$; PW, $0.26-0.27$; MW, 0.37-0.38; AWIV, 0.48-0.53; GW, 0.10-0.11; GSL, 0.08; TL, 1.28-1.36.

Etymology. This species is named in honour of Zuzana Kokeš, the sister of the first author, in recognition of her great support during his life.

Remarks. This is the first record of Myrsidea from Furnarius rufus. A portion of COI gene was sequenced from specimens of M. zuzanae from Paraguay (GenBank MF563531). Comparing our sequence with other known sequences of Neotropical Myrsidea, the divergences exceeded 19% in all cases. However, comparing our sequence of M. zuzanae with all known Myrsidea, the closest was that of M. marksi Johnson \& Price, 2006 (ex Phyllastrephus albigularis (Sharpe, 1882), family Pycnonotidae, from the Democratic Republic of the Congo, GenBank KU187279-KU187280), with a p-distance of 17.9%. These sequence divergences are large enough to confirm M. zuzanae as a new, separate species.

Host family: Pipridae

Myrsidea capeki, new species

(Figs 26, 30-34, 41-42)

Type host. Chiroxiphia caudata (Shaw, 1793)—swallow-tailed manakin.
Type locality. San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$).
Type material. Ex Chiroxiphia caudata: holotype q, San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$), 18-23 August 2012, I. Literak (MMBC). Paratypes: 6 \uparrow, $7 \widehat{\jmath}$ with the same data as holotype (MMBC).

Diagnosis. Myrsidea capeki n. sp. can be easily distinguished from other Myrsidea from the Pipridae and from other Neotropical species by the shape of female tergites (Fig. 26): (1) tergite I slightly enlarged with widely rounded posterior margin, (2) tergites II-III with convex posterior margin, (3) tergite I with continuous row of long setae reaching beyond the posterior margin of tergite III, and (4) tergites II-VIII with well-defined median gap in each row of tergal setae.

Males of M. capeki have a variable and widespread type of male genital sac sclerite (Figs 30-34), also found in other Myrsidea from members of the Pipridae, and in other Neotropical Myrsidea from the Cardinalidae, Emberizidae and Thraupidae. Comparing genetic sequences between M. capeki and other known sequences of Neotropical Myrsidea (see Remarks below), the closest species was M. pagei Price \& Johnson, 2009 from the Thraupidae. However, males of M. capeki differ from those of M. pagei by (1) the number of setae on tergite I (1218 in M capeki vs $7-10$ in M. pagei), and (2) a shorter total length (1.17-1.25 in M. capeki vs $1.26-1.30$ in M. pagei).

Description. Female ($\mathbf{n}=\mathbf{7}$). As in Figs 26 and 41. Hypopharyngeal sclerites fully developed. Length of $d h s$ $10,0.040-0.045$; dhs 11, 0.088-0.105; ratio dhs $10 / 11,0.36-0.51$; ls5 $0.05-0.06$ long, latero-ventral fringe with $9-$ 10 setae. Gula with 4-5 setae on each side. Pronotum with 6 setae on posterior margin and 3 short spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 3-4 dorso-lateral setae. Metanotum not enlarged, with 6-8 marginal setae metasternal plate with 5-8 setae; metapleurites with 2-4 short strong spiniform setae. Femur III with $12-16$ setae in ventral setal brush. Tergite I slightly enlarged with widely rounded posterior margin and continuous row of long setae reaching beyond the posterior margin of tergite III. Tergites II-III with convex posterior margin. Tergites II-VIII with well-defined median gap in each row of tergal setae (Fig. 26). Tergal setae: I, 19-22; II, 13-15; III, 12-17; IV, 13-16; V, 12-16; VI, 11-17; VII, 9-13; VIII, 8-11; Postspiracular setae very long on II, IV and VIII ($0.39-0.45$); long on I and VII ($0.25-0.30$); and short on III, V and VI ($0.14-0.21$). Inner posterior seta of last tergum longer than anal fringe setae with length $0.07-0.14$; length of short lateral marginal seta of last segment, 0.03-0.06. Pleural setae: I-II, 6-8; III, 7-9; IV, 6-8; V, 5-7; VI, 5-6; VII, 4-6; VIII, 3-4. Pleurites V-VII with $0-3$ slender and longer setae. Pleurite VIII with inner setae ($0.05-0.13$) as long as outer (0.05-0.09). Anterior margin of sternal plate II with a medial notch. Sternites V-VI narrow and arched. Sternal setae: I, 0 ; II, 5-6 (in one specimen one aster with 4) in each aster: $s 1,0.06-0.08 ; s 2,0.06-0.07 ; s 3,0.05-0.08 ; s 4$, $0.03-0.06$; s5, 0.03-0.05; s6, 0.03; with 12-16 marginal setae between asters, 4-6 medioanterior; III, 21-24; IV, 25-29; V, 28-34; VI, 28-31; VII, 15-20; VIII-IX, 10-12; and 8-12 setae on slightly serrated vulvar margin. Anal fringe formed by 29-39 dorsal and 29-32 ventral setae. Dimensions: TW, 0.44-0.46; POW, 0.34-0.37; HL, 0.280.30; PW, 0.27-0.29; MW, 0.42-0.44; AWIV, 0.55-0.60; ANW, 0.20-0.22; TL, 1.33-1.40.

Male ($\mathbf{n}=7$). As in Fig. 42. Similar to female except as follows: length of dhs 10, 0.037-0.045; dhs 11, 0.0780.100 ; ratio $d h s 10 / 11,0.37-0.52$; ls $50.04-0.06$ long, latero-ventral fringe with $9-10$ setae. Gula with 4-6 setae on each side. First tibia with 3 outer ventro-lateral and 3-5 dorso-lateral setae. Metanotum not enlarged with 4-8
marginal setae; metasternal plate with 6-8 setae; metapleurites with 2-3 short spiniform strong setae. Femur III with $10-13$ setae in ventral setal brush. Abdominal segments with well-defined median gap in each row of tergal setae. Tergal setae: I, 12-18; II, 10-13; III, 12-14; IV, 11-14; V, 11-13; VI, 10-13; VII, 9-12; VIII, 6-10; Postspiracular setae same with the same pattern as in female but shorter. Length of inner posterior seta of last tergum, 0.06-0.11; short lateral marginal seta of last segment, 0.02 . Pleural setae: I-III, 5-7; IV, 6-7; V, 5-6; VI, 46; VII, 4-5; VIII, 3. Pleurites IV-VII with $1-3$ slender and longer setae. Pleurite VIII with inner setae ($0.08-0.10$) almost three times as long as outer $(0.03-0.04)$. Anterior margin of sternal plate II without a medial notch. Sternal setae: I, 0; II, 4-5 in each aster: $s 1,0.06-0.08 ; s 2,0.05-0.07$; $s 3-s 4,0.05-0.06 ; s 5,0.03-0.04$; with $13-16$ marginal setae between asters, 4-6 medioanterior; III, 18-23; IV, 21-24; V, 23-30; VI, 23-28; VII, 14-19; VIII, 4-8; remainder of plate, $5-8$; and with 3 setae posteriorly; with 8 internal anal setae. Genital sac sclerite as in Figs $30-$ 34. Dimensions: TW, 0.41-0.44; POW, 0.32-0.33; HL, $0.27-0.29$; PW, $0.25-0.27$; MW, $0.36-0.41$; AWIV, $0.46-$ 0.48 ; GW, 0.11; GSL, $0.08-0.09$; TL, 1.17-1.25.

Etymology. This species is named in honour of our colleague and friend Miroslav Čapek (Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic), a respected Czech ornithologist who participated in many of our fieldtrips, in recognition of his friendship and unmatched enthusiasm in the study of birds.

Remarks. This is the first record of chewing lice from Chiroxiphia caudata. A portion of COI gene was sequenced from specimens of M. capeki from Paraguay (GenBank MF563532). Comparing our sequence with other known sequences of Neotropical Myrsidea, the divergences exceeded 18% in all cases. The closest was that of M. pagei (ex Ramphocelus dimidiatus Lafresnaye, 1837, family Thraupidae, GenBank FJ171287), with a pdistance of 18.2%. These sequence divergences are large enough to confirm M. capeki as a new, separate species.

Host family: Thamnophilidae

Myrsidea sp. 1

Material examined. Ex Taraba major (Vieillot, 1816)—great antshrike: 1 ¢, Los Tres Gigantes Biological Station in the Paraguayan Pantanal, Paraguay ($20^{\circ} 04^{\prime} \mathrm{S}, 50^{\circ} 09^{\prime} \mathrm{W}$), 7 September 2012, I. Literak (MMBC).

Remarks. This is the first record of a chewing louse from Taraba major. Our female is close to Myrsidea dacostai Price, Johnson \& Dalgleish, 2008 from Thamnophilus doliatus (Linnaeus, 1764), although it is considerably larger than specimens from the type host in almost all dimensions. This size discrepancy could be the result of a correlation with the size differences between the two hosts: Taraba major with length $19-20 \mathrm{~cm}$ and weight $50-70 \mathrm{~g}$ against Thamnophilus doliatus with length $15-16 \mathrm{~cm}$ and weight $24-30 \mathrm{~g}$ (see Zimmer \& Isler 2003). Such correlation of host and louse size within a given louse genus is known as Harrison's Rule (Price et al. 2003). Furthermore, both Taraba major and Thamnophilus doliatus have almost the same geographical distribution (Clements et al. 2017). More data are necessary to test if these differences are due to intraspecific variation or if our female represents another, distinct, species.

Our specimen differs from the original description of M. dacostai by setal counts and dimensions, as follows [data from Price et al. (2008b) are in parentheses]:

Female ($\mathbf{n}=\mathbf{1}$). Metanotum with $7(5-6)$ marginal setae. Tergal setae: I, 15 (12-14); III, 17 (11-14). Sternal setae: II, 11 (14-16) marginal setae between asters, 3 (8-9) medioanterior setae. Anal fringe formed by 51 (44-50) dorsal and 40 (45-47) ventral setae. Dimensions: TW, 0.53 ($0.49-0.50$); HL, 0.37 ($0.33-0.34$); MW, 0.52 ($0.48-$ $0.51)$; TL, 1.75 (1.58-1.66).

Myrsidea pyriglenae, new species

(Figs 14-17, 27, 43-44)
Type host. Pyriglena leucoptera (Vieillot, 1818)—white-shouldered fire-eye.
Type locality. San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$).
Type material. Ex Pyriglena leucoptera: holotype + , San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$),
21 August 2012, I. Literak (MMBC). Paratypes: 6 ¢, 7 § with the same data as holotype (MMBC).

FIGURES 26-27. Dorso-ventral views of female thorax and abdomen: 26, Myrsidea capeki n. sp.; 27, Myrsidea pyriglenae \mathbf{n}. sp.

Diagnosis. Myrsidea pyriglenae belongs to the mcleannani species group (sensu Price et al. 2008b), based on the shape of the male genital sac sclerite and the deeply serrated female vulvar margin. According to setal counts and measurements, it is morphologically similar to M. milleri Price, Johnson \& Dalgleish, 2008 ex Gymnopithys rufigula (Boddaert, 1783) from Venezuela. However, females of M. pyriglenae n . sp. are distinguished from those of M. milleri by having (1) modified tergites, especially enlarged tergite II (Fig. 27), and (2) larger number of setae on tergite VII ($14-16$ vs $6-10$), tergite VIII ($8-9$ vs 4), and on anal fringe ($83-88$ vs $64-74$). Males of M. pyriglenae differ from those of M. milleri by having a larger number of setae on tergites VII (11-15 vs 7-9) and VIII (7-8 vs 4). In addition, the host species of these two species of Myrsidea (Pyriglena leucoptera and Gymnopithys rufigula) have different geographical distributions (Clements et al. 2017) and are not phylogenetically closely related (Isler et al. 2013). Considering genetic data, M. pyriglenae is closest to M. patersoni Price \& Johnson, 2009 (see Remarks below), but these two species clearly differ in such significant characters as (1) female tergites having completely different shapes (compare Fig. 27 with fig. 3 in Price \& Johnson 2009), and (2) completely different genital sac sclerite in males (compare Figs 14-17 with fig. 4 in Price \& Johnson 2009).

Description. Female $(\mathbf{n}=\mathbf{4})$. As in Figs 27 and 43. Head with lateral sides of preantennal region conspicuously concave. Hypopharyngeal sclerites fully developed. Length of dhs $10,0.050-0.064 ; d h s 11,0.100-$ 0.113 ; ratio $d h s 10 / 11,0.44-0.63$; ls5 0.04-0.05 long, latero-ventral fringe with $9-10$ setae. Gula with $4-5$ setae on each side. Pronotum with 6 setae on posterior margin and 3 short spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 4 dorso-lateral setae. Metanotum not enlarged, with 4-7 marginal setae; metasternal plate with 6-7 setae; metapleurites with 3-4 short strong spiniform setae. Femur III with $14-16$ setae in ventral setal brush. Tergites modified as on Fig. 27, with enlarged tergite II and widely convex posterior margin of tergites II and III. Abdominal segments with well-defined median gap in each row of tergal setae. Tergal setae: I, 5-8; II, 68; III, 11-12; IV-V, 15-18; VI, 15-17; VII, 14-16; VIII, 8-9. Postspiracular setae very long on II, IV, VII and VIII ($0.35-0.45$); long on I (0.23); and short on III, V and VI ($0.11-0.16$). Inner posterior seta of last tergum not longer
than anal fringe setae with length $0.07-0.09$ inserted $0.060-0.075$ from base of each very long seta; length of short lateral marginal seta of last segment, 0.03-0.04. Pleural setae: I, 6-8; II, 7-10; III, 7-9; IV, 8; V, 6-7; VI, 6; VII, 45; VIII, 3. Pleurites V-VII with $1-2$ somewhat slender and longer setae. Pleurite VIII with inner setae ($0.06-0.08$) as long as outer (0.05-0.06). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0; II, 4-6 in each aster: $s 1,0.08-0.10 ; s 2,0.08-0.09 ; s 3,0.07-0.08 ; s 4,0.05-0.06 ; s 5,0.04$; with $14-16$ marginal setae between asters, 4-7 medioanterior; III, 27-30; IV, 33-36; V, 32-39; VI, 28-36; VII, 23-25; VIII-IX, 15-18; and 9-13 setae on deeply serrated vulvar margin; sternites without medioanterior setae. Anal fringe formed by 38-43 dorsal and 42-46 ventral setae. Dimensions: TW, 0.46-0.48; POW, 0.35; HL, 0.28-0.34; PW, 0.29-0.30; MW, 0.44-0.48; AWIV, 0.61-0.66; ANW, 0.21-0.26; TL, 1.55-1.63.

Male ($\mathbf{n}=4$). As in Fig. 44. Similar to female except as follows: length of dhs 10, $0.040-0.058$; dhs 11, 0.0890.100 ; ratio $d h s 10 / 11,0.45-0.64$; ls 50.04 long, latero-ventral fringe with $9-10$ setae. Gula with 5 (one specimen with 4 on one side) setae on each side. First tibia with 3 outer ventro-lateral and 4-5 dorso-lateral setae. Metanotum not enlarged with 4 marginal setae; metasternal plate with 5-6 setae; metapleurites with 3 short spiniform strong setae. Femur III with 11-13 setae in ventral setal brush. Abdominal segments with well-defined median gap in each row of tergal setae. Tergal setae: I, 6-8; II, 6-11; III, 14-15; IV, 13-16; V, 15-17; VI, 14-18; VII, 11-15; VIII, 7-8. Postspiracular setae same with the same pattern as in female but shorter. Length of inner posterior seta of last tergum, 0.04-0.06; short lateral marginal seta of last segment, 0.02 . Pleural setae: I, 5-6; II, 6-7; III, 7-8; IV, 6-7; V, 5-7; VI, 5-6; VII, 4; VIII, 3. Pleurites IV-VII with $0-3$ slender and longer setae. Pleurite VIII with inner setae $(0.04-0.05)$ as long as outer $(0.04-0.05)$. Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0 ; II, 4-5 in each aster: $s 1,0.08-0.09 ; s 2,0.07-0.08 ; s 3,0.06 ; s 4,0.05-0.06 ; s 5,0.03$; with $12-15$ marginal setae between asters, 4-7 medioanterior; III, 19-27; IV, 25-29; V, 26-32; VI, 25-27; VII, 19-22; VIII, 7-11; remainder of plate, $8-11$; and with $3-4$ setae posteriorly; with $8-9$ internal anal setae. Genital sac sclerite as in Figs 14-17. Dimensions: TW, $0.41-0.43$; POW, $0.31-0.32$; HL, $0.27-0.30$; PW, $0.26-0.28$; MW, $0.35-0.38$; AWIV, 0.46-0.47; GW, 0.10-0.11; GSL, 0.08-0.09; TL, 1.25-1.33.

Etymology. The species epithet is a noun in apposition derived from the generic name of the type host.
Remarks. This is the first record of Myrsidea from Pyriglena leucoptera. A portion of COI gene was sequenced from specimens of M. pyriglenae from Paraguay (GenBank MF563533). Comparing our sequence with other known sequences of Neotropical Myrsidea, the divergences exceeded 18% in all cases, the closest being that of M. patersoni Price \& Johnson, 2009 (ex Eucometis penicillata (Spix, 1825), family Thraupidae, GenBank GQ454448), with a p-distance of 18.2%. Unfortunately, there are no genetic sequences known from M. milleri, the species morphologically closest to M. pyriglenae. However, considering the combination of morphological differences with M. patersoni and M. milleri, and the large sequence divergence with M. patersoni, we are confident that M. pyriglenae is a new, separate species.

Myrsidea spellmani Price, Johnson \& Dalgleish, 2008

Myrsidea spellmani Price, Johnson \& Dalgleish, 2008b: 58.

Type host. Hylophylax naevioides (Lafresnaye, 1847)—spotted antbird.
Type locality. Rio Mono, Panamá.
Material examined. Ex Hylophylax naevioides: 2 nymphs II, Rincón de la Vieja National Park, Sector Santa María, Sendero del Padre, Costa Rica ($10^{\circ} 46^{\prime} \mathrm{N}, 85^{\circ} 18^{\prime} \mathrm{W}$), 20 August 2009, O. Sychra \& I. Literak.

Remarks. Although we only examined nymphs, we believe they are M. spellmani considering that our specimens were collected from the type host species.

Host family: Tityridae

Myrsidea pachyramphi, new species

(Figs 28, 35, 45-46)

Type host. Pachyramphus polychopterus (Vieillot, 1818)—white-winged becard.

FIGURES 28-29. Dorso-ventral views of female thorax and abdomen: 28, Myrsidea pachyramphi n. sp.; 29, Myrsidea leptopogoni \mathbf{n}. sp.

Type locality. San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$).
Type material. Ex Pachyramphus polychopterus: holotype q, San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime}$ S, $55^{\circ} 47^{\prime} \mathrm{W}$), $8-15$ August 2012, I. Literak (MMBC). Paratypes: $2 \uparrow, 3{ }^{\wedge}$ with the same data as holotype (MMBC).

Diagnosis. Myrsidea pachyramphi n . sp. is morphologically similar to M. incerta (Kellogg, 1896b) and M. pricei Clay, 1966 from members of the Turdidae, and to M. bessae Price, Johnson \& Dalgleish, 2008 and M. alexanderi Kolencik, Sychra, Valan \& Literak, 2016 from members of the Troglodytidae. Combining genetic and morphological difference, the closest species is M. incerta. However, females of M. pachyramphi can be distinguished from those of M. incerta by having (1) a larger number of setae on the femoral brush (18-22 vs 1317), and (2) larger dimensions, as follows: MW ($0.42-0.43$ vs 0.37) and AWIV ($0.52-0.57$ vs 0.50), while males differ by having a greater total number of setae on sternites IV-VII (85-96 vs 53-82). Further, females of M. pachyramphi, differ from those of M. pricei in (1) the shape of the first tergite (more concave in M. pricei); and (2) the number of setae on tergites I-IV (total $28-38$ in M. pachyramphi vs. 40-52 in M. pricei). Males can be distinguished by the number of setae on tergites I-V (total 29-33 in M. pachyramphi vs. 39-53 in M. pricei). Females of M. pachyramphi can be easily distinguished from those of M. bessae by the shape of the metanotum and first two tergites. Finally, M. pachyramphi differs from M. alexanderi in the number of setae on tergites I-VII: females with a total of 44-61 setae in M. pachyramphi vs. 74-90 in M. alexanderi; males with a total of 38-43 vs. 63-71.

Description. Female ($\mathbf{n}=\mathbf{3}$). As in Figs 28 and 45. Hypopharyngeal sclerites fully developed. Length of $d h s$ 10, 0.045-0.055; dhs 11, 0.090-0.105; ratio dhs 10/11, 0.50-0.52; ls5 0.04-0.05 long, latero-ventral fringe with $10-11$ setae. Gula with $4-5$ setae on each side. Pronotum with 6 setae on posterior margin and 3 short spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 4 dorso-lateral setae. Metanotum not enlarged, with 8-9 marginal setae; metasternal plate with 6-7 setae; metapleurites with 3-4 short strong spiniform setae. Femur III with 18-22 setae in ventral setal brush. Tergites I and II slightly convex. Abdominal segments with welldefined median gap in each row of tergal setae. Tergal setae: I, 6-8; II, 8-11; III, 8-10; IV, 6-9; V, 7-10; VI, 5-8;

VII, 4-5; VIII, 4. Postspiracular setae very long on II, IV and VIII ($0.45-0.51$); long on I and VII ($0.30-0.38$); and short on III, V and VI ($0.12-0.23$). Inner posterior seta of last tergum not longer than anal fringe setae with length $0.06-0.08$; length of short lateral marginal seta of last segment, $0.03-0.04$. Pleural setae: I, $4-5$; II, 6-8; III, 7-8; IV, $6-7$; V, $5-6$; VI-VII, 4-5; VIII, 3. Pleurite VIII with inner setae ($0.07-0.09$) twice as long as outer ($0.04-0.05$). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, $0 ;$ II, 3-4 in each aster: $s 1,0.05-0.06$; $s 2$, $0.04-0.05$; s3, 0.03-0.04; s4, 0.02-0.03; with 13-16 marginal setae between asters, 3-4 medioanterior; III, 21-24; IV, 32; V, 33-35; VI, 27-30; VII, 10-11; VIII-IX, 8-10; and 10-12 setae on deeply serrated vulvar margin. Anal fringe formed by 40 dorsal and 35 ventral setae. Dimensions: TW, $0.45-0.46$; POW, $0.35-0.36$; HL, $0.31-0.32$; PW, 0.27-0.28; MW, 0.42-0.43; AWIV, 0.52-0.57; ANW, 0.21-0.23; TL, 1.43-1.45.

Male ($\mathbf{n}=\mathbf{3}$). As in Fig. 46. Similar to female exept as follows: length of $d h s 10,0.045-0.050$; $d h s 11,0.093-$ 0.100; ratio dhs 10/11, 0.48-0.50; ls 50.05 long, latero-ventral fringe with $10-11$ setae. Gula with 5 setae on each side. Pronotum with 6 setae on posterior margin and 3 short spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 4 dorso-lateral setae. Metanotum not enlarged with 6-7 marginal setae; metasternal plate with 6-7 setae; metapleurites with 3 short spiniform strong setae. Femur III with 13-17 setae in ventral setal brush. Abdominal segments with well-defined median gap in each row of tergal setae. Tergal setae: I, 4; II, 6-7; III, 6-8; IV, 7; V, 6-7; VI, 5-6; VII-VIII, 4; Postspiracular setae with the same pattern as in female but shorter. Length of inner posterior seta of last tergum, $0.03-0.05$; short lateral marginal seta of last segment, 0.02 . Pleural setae: I, 3-4; II, 4-5; III-IV, 5-6; V, 4-6; VI, 4-5; VII, 3-4; VIII, 2-3. Pleurite VIII with inner setae (0.06-0.07) as long as outer (0.02-0.03). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0 ; II, 3-4 in each aster: $s 1$, $0.05-0.06 ; s 2,0.03-0.04 ; s 3,0.03 ; s 4,0.02-0.03$; with $8-10$ marginal setae between asters, $2-4$ medioanterior; III, 15-17; IV, 23-28; V, 27-29; VI, 22-25; VII, 13-14; VIII, 4; remainder of plate, 6-7; and with 3 setae posteriorly; with 8 internal anal setae. Genital sac sclerite as in Fig. 35. Dimensions: TW, $0.41-0.43$; POW, $0.32-0.33$; HL, 0.28-0.30; PW, 0.25-0.26; MW, 0.35-0.36; AWIV, 0.42-0.44; GW, 0.10-0.11; GSL, 0.08; TL, 1.23-1.28.

Etymology. The species epithet is a noun in apposition derived from the generic name of the type host.
Remarks. This is the first record of chewing lice from Pachyramphus polychopterus. A portion of COI gene was sequenced from two specimens of M. pachyramphi from Paraguay (GenBank MF563534-MF563535). Comparing our sequence with all known Myrsidea sequences, the closest were: (1) those of M. incerta (ex Catharus ustulatus (Nuttall, 1840), GenBank FJ171268-FJ171269, and Catharus minimus (Lafresnaye, 1848), GenBank FJ171270, family Turdidae), with p-distances of 11.9-12.9\%, (2) those of M. alexanderi (ex Pheugopedius maculipectus Lafresnaye, 1845, GenBank MF563536), and M. bessae (ex Pheugopedius fasciatoventris Lafresnaye, 1845, GenBank EU289214, and Cantorchilus semibadius Salvin, 1870, GenBank EU289213 family Troglodytidae), with p-distances of 12.7-13.7\%, and (3) that of M. pricei (ex Catharus guttatus (Pallas, 1811), GenBank FJ171273), with a p-distance of 13.7%. These divergences are close to the limit of accepted interspecific variation but, together with their morphological differences, we are confident that M. pachyramphi is a distinct species. Further molecular data are needed to clarify the phylogenetic relationships of these species within the species-complex and confirm their valid status as species or subspecies.

Host family: Tyrannidae

Myrsidea barbati Price, Hellenthal \& Dalgleish, 2005

Myrsidea barbati Price, Hellenthal \& Dalgleish, 2005: 8, figs 9-10.

Type host. Myiobius barbatus (J. F. Gmelin, 1789)—whiskered flycatcher.
Type locality. 12 km SW San Isidro de El General, Tinamaste, San José Province, Costa Rica.
Material examined. Ex Myiobius sulphureipygius (P.L. Sclater, 1857)—sulphur-rumped flycatcher: 1 , Hitoy Cerere BR, Provincia Limón, Costa Rica ($09^{\circ} 40^{\prime} \mathrm{N}, 85^{\circ} 05^{\prime} \mathrm{W}$), 28 August 2004, I. Literak, M. Capek \& M. Havlicek (MMBC).

Remarks. This is the first record of a louse from Myiobius suphureipygius. Our specimen differs slightly from the original description of M. barbati by some setal counts, as follows [data from Price et al. (2005) are in parentheses]:

Female ($\mathbf{n}=1$). Sternal setae: IV, 31 (24-29); V, 34 (28-33). Anal fringe with 32 (25-31) dorsal setae.

Myrsidea sp. 2

Material examined. Ex Leptopogon amaurocephalus Tschudi, 1846—sepia-capped flycatcher: $2 \uparrow$, $1 \delta^{\wedge}$ Centro URKU, Tarapoto, Perú ($06^{\circ} 27^{\prime} \mathrm{S}, 76^{\circ} 21^{\prime} \mathrm{W}$), 8 August 2011, I. Literak (MMBC); 4ㅇ, $1 \delta^{\AA}$ San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$), 18 and 20 August 2012, I. Literak (MMBC).

Remarks. This is the first record of Myrsidea from Leptopogon amaurocephalus.Our specimens are very close to Myrsidea contopi Price, Hellenthal \& Dalgleish, 2005 ex Contopus cinereus (Spix, 1825) from Trinidad \& Tobago by the shape of metanotum and tergites of female and similar type of genital sac sclerite in male, but differ by setal counts and dimensions, as follows [data from Price et al. (2005) are in parentheses]:

Female ($\mathbf{n}=\mathbf{6}$). Metanotum with 8-11 (8-9) marginal setae. Tergal setae: I, 10-13 (6-8); II, 11-13 (9-11); III, 10-15 (11-13); IV, 9-13 (10-11); V, 9-12 (7-9); VI, 10-12 (7-9); VII, 6-11 (4); VIII, 4-6 (4). Sternal setae: II, with 14-19 marginal setae between asters, 4-7 medioanterior (in total 24 marginal and medioanterior setae); III, 22-24 (19-21); IV, 28-35 (30-32); V, 30-36 (34-35); VI, 25-36 (30); VII, 16-18 (12-14); VIII-IX, 7-11 (22-25 including vulvar setae); and 10-13 setae on deeply serrated vulvar margin. Anal fringe formed by 34-36 (35-36) dorsal setae. Dimensions: TW, 0.44-0.45 (0.43-0.44); HL, 0.29-0.31 (0.31-0.32); PW, 0.27-0.32 (0.27-0.28); MW, 0.39-0.41 (0.42-0.43); AWIV, $0.51-0.54$ ($0.56-0.58$); ANW, $0.20-0.23$ ($0.20-0.21$); TL, $1.40-1.42$ ($1.32-$ 1.37).

Male ($\mathbf{n}=\mathbf{2}$). Metanotum with 5-9 (7-8) marginal setae. Tergal setae: I, 8-10 (5-6); III, 14-15 (7-11); IV, 1115 (6-10); V, 11-14 (6-8); VI, 9-13 (6); VII, 7-15 (4-6); VIII, 5-7 (4). Sternal setae: III, 21 (17-20); IV, 25-30 (23-29); V, 29-32 (28-30); VI, 28-30 (22-27); VII, 16-21 (13-16); VIII, 8-11 (6-7). Genital sac sclerite as in Figs 36-37. Dimensions: TW, 0.37-0.40 (0.40-0.41); MW, 0.32-0.36 (0.36-0.37); AWIV, 0.40-0.44 (0.45-0.46); TL, 1.05-1.18 (1.18-1.23).

Remarks. A portion of COI gene was sequenced from specimens of Myrsidea sp. 2 ex Leptopogon amaurocephalus from Paraguay (GenBank MF563537). Comparing our sequence with other known sequences of Neotropical Myrsidea, the divergences exceeded 16% in all cases including those of the two morphologically closest species: M. elaeniae Price, Hellenthal \& Dalgleish, 2005 (ex Elaenia flavogaster (Thunberg, 1822), GenBank KF048117), with a p-distance of 19.5%, and M. cnemotriccola Valim \& Weckstein, 2013 (ex Cnemotriccus fuscatus, GenBank KF048124), with a p-distance of 20.6%, both from species of Tyrannidae. The closest species was M. lightae Valim \& Weckstein, 2013 from the Cardinalidae (GenBank EU289211), with a pdistance of 16.9%. These results show that our specimens differ from all Neotropical Myrsidea with known sequences of COI. Despite some morphological differences (especially the smaller number of setae on tergite I in both sexes), we found our specimens to be very close to M. contopi. However, molecular data from M. contopi from the type-host are necessary to confirm that our samples belong to M. contopi. Also, more morphological and genetic data are needed to evaluate the status of Myrsidea from Leptopogon amaurocephalus from different localities, especially because our single males from Paraguay and Perú show some differences in tergal setae (tergites VI-VII of male from Perú with 7-9 setae vs $13-15$ in male from Paraguay) and measurements (TW 0.40 for male from Perú vs 0.37 for male from Paraguay). According to these characters, the male from Perú is conspecific with M. contopi, while the specimen from Paraguay could represent a separate species or subspecies. However, the male from Paraguay share the same shape of male genital sac sclerite with M. contopi, while that from Perú differs in this character (see Figs 36 and 37), but such difference maybe the result of a distortion. Contrary to Price et al. (2005), we think that it is not possible to use the tip of the male genital sac sclerite as a single character to separate species of Myrsidea.

Although both host species (Contopus cinereus and Leptopogon amaurocephalus) are not closely related (Rheindt et al. 2008), they have almost the same geographical distribution (Clements et al. 2017), implying that host-switching of lice between these host species (see Price et al. 2003) is a possible explanation for the unusual host distribution of these specimens of Myrsidea.

FIGURES 30-40. Male genital sac sclerites: 30-34, Myrsidea capeki n. sp.; 35, Myrsidea pachyramphi n. sp.; 36, Myrsidea contopi from Leptopogon amaurocephalus from Perú; 37, same but from Paraguay; 38-39, Myrsidea leptopogoni n. sp.; 40, Myrsidea pitangi from Pitangus sulphuratus from Paraguay.

Myrsidea flaviventris Price, Hellenthal \& Dalgleish, 2005

Myrsidea flaviventris Price, Hellenthal \& Dalgleish, 2005: 8.

Type host. Tolmomyias flaviventris (Wied, 1831)—yellow-breasted flycatcher.
Type locality. Melajo Forest, Sangre Grande, Trinidad \& Tobago.
Material examined. Ex Tolmomyias sulphurescens (Spix, 1825)—yellow-olive flycatcher: 1q, Atlántida, Tela, Lancetilla Botanical Garden, Honduras ($15^{\circ} 44^{\prime} \mathrm{N}, 87^{\circ} 27^{\prime} \mathrm{W}$), 10 August 2014, I. Literak (MMBC).

Remarks. This is the first record of Myrsidea from Tolmomyias sulphurescens. Until now, Myrsidea flaviventris was known from Trinidad \& Tobago and Perú (Price et al. 2005), and this is the first record from Honduras. Our specimen differs from the original description of M. flaviventris by setal counts and dimensions, as follows [data from Price et al. (2005) are in parentheses]:

Female ($\mathbf{n}=\mathbf{1}$). Tergal setae: II, $15(9-11)$; V, $12(10-11)$. Sternal setae: II, in total 17 (24-25) medioanterior and marginal setae; III, 27 (23-25); IV, 36 (31-35); VI, 34 (35-37). Anal fringe with 32 (35-42) dorsal setae. Dimensions: TW, 0.47 (0.46); MW, 0.44 (0.41-0.42); ANW, 0.22 (0.20-0.21).

FIGURES 41-44. Habitus: Myrsidea capeki n. sp.: 41, holotype female; 42, paratype male; Myrsidea pyriglenae n. sp.: 43, holotype female; 44, paratype male.

FIGURES 45-48. Myrsidea pachyramphi n. sp.: 45, holotype female; 46, paratype male; Myrsidea leptopogoni n. sp.: 47, holotype female; 48, paratype male.

Myrsidea leptopogoni, new species

(Figs 29, 38-39, 47-48)

Type host. Leptopogon superciliaris Tschudi, 1844—slaty-capped flycatcher.
Type locality. San Rafael National Park, Paraguay ($26^{\circ} 30^{\prime} \mathrm{S}, 55^{\circ} 47^{\prime} \mathrm{W}$).
Type material. Ex Leptopogon superciliaris: holotype q, Tapantí National Park, Sector Tapantí, Costa Rica ($09^{\circ} 46^{\prime} \mathrm{N}, 83^{\circ} 47^{\prime}$ W), 8 August 2009, O. Sychra \& I. Literak (MMBC).

Paratypes: $2 \AA$ with the same data as holotype (MMBC).
Diagnosis. Myrsidea leptopogoni n. sp. is morphologically close to M. rekasii Dalgleish \& Price, 2003-from species of Pipridae-in setal counts and the shape of tergites, but both sexes of M. leptopogoni have larger dimensions. Furthermore, the female of M. leptopogoni can also be distinguished by the absence of a median gap among setae on tergite I (Fig. 29), and the male by the number of setae on tergites I-III (total 35-36 vs 19-28 in M. rekasii). Among the species of Myrsidea from members of the Tyrannidae, the closest morphological species to M. leptopogoni is M. oleaginei, but females can be easily distinguished by the shape of tergites I-II, being U-shaped in M. leptopogoni (Fig. 29), but V-shaped in M. oleaginei.

Description. Female ($\mathbf{n}=\mathbf{1}$). As in Figs 29 and 47. Hypopharyngeal sclerites fully developed. Length of dhs $10,0.035$; dhs $11,0.098$; ratio dhs $10 / 11,0.36$; ls 50.04 long, latero-ventral fringe with 10 setae. Gula with $4-5$ setae on each side. Pronotum with 6 setae on posterior margin and 3 short spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 3 dorso-lateral setae. Metanotum not enlarged, with 10 marginal setae; metasternal plate with 6 setae; metapleurites with 4 short strong spiniform setae. Femur III with $14-15$ setae in ventral setal brush. Tergites modified as on Fig. 29. Tergite I enlarged, compressing II-IV at midline. Abdominal segments with constant row of tergal setae on tergite I and with well-defined median gap on tergites II-VIII. Tergal setae: I, 14; II, 17; III, 13; IV, 10; V, 11; VI, 10; VII, 7; VIII, 4. Postspiracular setae very long on II, IV and VIII ($0.44-0.48$); long on I and VII ($0.29-0.33$); and short on III, V and VI ($0.13-0.16$). Inner posterior seta of last tergum not longer than anal fringe setae with length 0.07 ; length of short lateral marginal seta of last segment, 0.03-0.05. Pleural setae: I, 6; II, 9; III, 8; IV, 7-8; V, 7; VI, 6; VII, 5; VIII, 3. Pleurites with only short spine-like setae. Pleurite VIII with inner setae (0.07) longer as outer (0.05). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0 ; II, 4 in each aster: $s 1,0.10 ; s 2,0.06 ; s 3,0.05 ; s 4,0.04$; with 17 marginal setae between asters, 5 medioanterior; III, 22; IV, 30; V, 32; VI, 29; VII, 15; VIII-IX, 9; and 12 setae on deeply serrated vulvar margin. Anal fringe formed by 32 dorsal and 32 ventral setae. Dimensions: TW, 0.45 ; POW, 0.35 ; HL, 0.27; PW, 0.27; MW, 0.42; AWIV, 0.55; ANW, 0.22; TL, 1.45.

Male ($\mathbf{n}=\mathbf{2}$). As in Fig. 48. Similar to female except as follows: length of $d h s 10,0.022-0.035 ; d h s 11,0.091-$ 0.095 ; ratio $d h s 10 / 11,0.24-0.37$; ls $50.02-0.04$ long, latero-ventral fringe with 9 setae. Gula with 4 setae on each side. Pronotum with 6 setae on posterior margin and 3 short spiniform setae at each lateral corner. First tibia with 3 outer ventro-lateral and 3-4 dorso-lateral setae. Metanotum not enlarged with 7-8 marginal setae; metasternal plate with 6 setae; metapleurites with 3 short spiniform strong setae. Femur III with 12 setae in ventral setal brush. Abdominal segments with well-defined median gap in each row of tergal setae. Tergal setae: I, 10; II, 13; III, 1213; IV, 11-13; V, 9-11; VI, 10; VII, 6-9; VIII, 4-6. Length of inner posterior seta of last tergum, 0.05-0.06; short lateral marginal seta of last segment, 0.02 . Pleural setae: I, 5; II, 5-6; III, 6-7; IV, 6; V, 6; VI, 6; VII, 4-5; VIII, 3. Pleurites with only short spine-like setae. Pleurite VIII with inner setae (0.05) as long as outer (0.03). Anterior margin of sternal plate II with a medial notch. Sternal setae: I, 0 ; II, 4 in each aster: $s 1,0.08-0.10 ; s 2,0.05-0,08$; $s 3,0.04-0.06$; $s 4,0.03-0.05$; with 14 marginal setae between asters, $4-6$ medioanterior; III, 19-20; IV, 23-25; V, 27-29; VI, 23-24; VII, 15-16; VIII, 5-6; remainder of plate, 7; and with 3 setae posteriorly. With 8 internal anal setae. Genital sac sclerite as in Figs 38-39. Dimensions: TW, 0.40 ; POW, $0.31-0.32$; HL, 0.25 ; PW, 0.25 ; MW, 0.34; AWIV, 0.44; GW, 0.11; GSL, 0.10; TL, 1.16-1.23.

Etymology. This species epithet is a noun in apposition derived from the generic name of the type host.
Remarks. This is the first record of chewing lice from Leptopogon superciliaris. A portion of COI gene was sequenced from specimens of M. leptopogoni from Costa Rica (GenBank MF563538). Comparing our sequence with other known sequences of Neotropical Myrsidea, the divergences exceeded 18% in all cases, including that with the morphologically close species M. oleaginei (ex Mionectes oleagineus, family Tyrannidae, GenBank KF048108), with a p-distance of 25.6%. The closest p-distance was with that of M. cnemotriccola (ex Cnemotriccus fuscatus, family Tyrannidae, GenBank KF048124), with a value of 18.1%. Unfortunately, there are
no genetic sequences known from M. rekasii, the species morphologically closest to M. leptopogoni. However, considering the combination of morphological differences between M. oleaginei and M. rekasii, and the large sequence divergence with M. oleaginei, we are confident that M. leptopogoni is a new, separate species.

Myrsidea oleaginei Price, Hellenthal \& Dalgleish, 2005

Myrsidea oleaginei Price, Hellenthal \& Dalgleish, 2005: 13, figs 15-16.

Type host. Mionectes oleagineus (Lichtenstein, MHC, 1823)—ochre-bellied flycatcher.
Type locality. Simla near Arima, Trinidad \& Tobago.
Material examined. Ex Mionectes oleagineus: 3 9 , $3 \widehat{ } \neq$, Hitoy Cerere BR, Provincia Limón, Costa Rica ($09^{\circ} 40^{\prime} \mathrm{N} 85^{\circ} 05^{\prime} \mathrm{W}$), 18 August 2004, I. Literak, M. Capek \& M. Havlicek (MMBC); 3q, $1 \delta^{\lambda}$, Centro URKU, Tarapoto, Perú ($06^{\circ} 27^{\prime} \mathrm{S}, 76^{\circ} 21^{\prime} \mathrm{W}$), 8 August 2011, I. Literak (MMBC); 4 ${ }^{\circ}$, $1 \widehat{c}^{\top}$, Atlántida, Tela, Lancetilla Botanical Garden, Honduras ($15^{\circ} 44^{\prime} \mathrm{N}, 87^{\circ} 27^{\prime} \mathrm{W}$), 10-18 August 2014, I. Literak (MMBC).

Remarks. This is the first record of Myrsidea oleaginei in Honduras. Our specimens differ from the original description of M. oleaginei by setal counts and dimensions, as follows [data from Price et al. (2005) are in parentheses]:

Female ($\mathbf{n}=\mathbf{1 0}$). Metanotum with 10-11 (8-10) marginal setae. Tergal setae: I, 6-9 (8-13); III, 12-15 (1014). Anterior margin of sternal plate II with a medial notch. Sternal setae: II, 4-5 (4) in each aster; III, 24-25 (2024); IV, 30-36 (22-29); V, 29-32 (24-31); VI, 22-27 (19-25); VIII-IX, 7-9; and 9-11 setae on serrated vulvar margin (total number of VIII-IX sternal setae is $16-20$ vs $18-22$ in Price et al. 2005). Dimensions: PW, 0.26-0.29 (0.25-0.28); ANW, 0.19-0.21 (0.17-0.20).

Male ($\mathbf{n}=\mathbf{5}$). Metanotum with $10(6-8)$ marginal setae. Tergal setae: I, 10 (7-9); II, 12 (8-11); VI, 14 (10-13). Sternal setae: II, 3-4 (4) in each aster; III, 22 (17-20); V, 27 (19-26); VI, 23 (16-22). Dimensions: TW, 0.40 (0.360.39); PW, 0.27 (0.23-0.26); MW, 0.34 (0.30-0.33); AWIV, 0.43 (0.38-0.42); GSL, 0.10 (0.09).

Myrsidea olivacei Price, Hellenthal \& Dalgleish, 2005

Myrsidea olivacei Price, Hellenthal \& Dalgleish, 2005: 15, fig. 20.

Type host. Mionectes olivaceus Lawrence, 1868—olive-striped flycatcher.
Type locality. Simla near Arima, Trinidad \& Tobago.
Material examined. Ex Mionectes olivaceus: 2 \uparrow, $2 \widehat{3}^{\wedge}$, Rincón de la Vieja, Costa Rica ($10^{\circ} 46^{\prime} \mathrm{N}, 85^{\circ} 18^{\prime} \mathrm{W}$), 22-24 August 2009, O. Sychra \& I. Literak (MMBC); 2 § , Tapantí National Park, Sector Tapantí, Costa Rica $\left(09^{\circ} 46^{\prime} \mathrm{N}, 83^{\circ} 47^{\prime} \mathrm{W}\right), 6$ August 2009, O. Sychra \& I. Literak (MMBC).

Remarks. This is the first record of M. olivacei from Costa Rica. Our specimens differ from the original description of M. olivacei by setal counts and dimensions, as follows [data from Price et al. (2005) are in parentheses]:

Female ($\mathbf{n}=\mathbf{2}$). Metanotum with 9-10 (10) marginal setae Tergal setae: I, 8-9 (11); III, 13-15 (12-13); IV, 1314 (12-13); V, 15-16 (12-13); VI, 12-14 (12-13); VII, 11-12 (10); VIII, 7-9 (6). Sternal setae: II, with 13-16 marginal setae between asters, 4-6 medioanterior (total number of setae on sternite II including aster setae is 25-30 vs 32 in Price et al. 2005); III, 22-24 (24); V, 34 (28-31); VI, 26-29 (28-31); VII, 16 (13); VIII-IX, 8-9; and 1213 setae on serrated vulvar margin (total number of VIII-IX sternal setae is 20-22 in comparison with 18 in Price et al. 2005). Dimensions: HL, 0.28-0.29 (0.31); PW, 0.28-0.29 (0.28); MW, 0.41-0.42 (0.43); AWIV, 0.54-0.56 (0.55); ANW, 0.21 (0.20); TL, 1.46-1.49 (1.43).

Male ($\mathbf{n}=4$). Metanotum with 6-9 (8) marginal setae. Tergal setae: I, 7-8 (9); II, 12-14 (13); III, 12-13 (912); IV, 12-15 (9-12); V, 13-15 (9-12); VI, 11-14 (9-12); VII, 8-12 (8); VIII, 7-8 (6). Sternal setae: II, with 1314 marginal setae between asters, $4-5$ medioanterior (total number of setae on sternite II including aster setae is 25-27 vs 27 in Price et al. 2005); III, 17-21 (19); IV, 22-26 (21); V, 28-33 (26); VI, 24-26 (21); VII, 14-16 (12); VIII, 6-7 (5); remainder of plate, 6-9. Dimensions: TW, 0.39-0.40 (0.40); HL, 0.24 (0.28); PW, 0.25-0.26 (0.26); MW, 0.32-0.33 (0.35); AWIV, 0.41-0.42 (0.44); TL, 1.18-1.20 (1.12).

Myrsidea pitangi Price, Hellenthal \& Dalgleish, 2005

(Fig. 40)

Myrsidea pitangi Price, Hellenthal \& Dalgleish, 2005: 6, figs 4-6.
Type host. Pitangus sulphuratus (Linnaeus, 1766)—great kiskadee.
Type locality. Tumpuna Rd, Trinidad \& Tobago.
Material examined. Ex Pitangus sulphuratus: 1δ Los Tres Gigantes Biological Station in the Paraguayan Pantanal, Paraguay ($20^{\circ} 04^{\prime} \mathrm{S}, 50^{\circ} 09^{\prime} \mathrm{W}$), 7 September 2012, I. Literak (MMBC); 1 q Atlántida, Tela, Lancetilla Botanical Garden, Honduras ($15^{\circ} 44^{\prime} \mathrm{N}, 87^{\circ} 27^{\prime} \mathrm{W}$), 13 August 2014, I. Literak (MMBC).

Remarks. Myrsidea pitangi was known from Trinidad \& Tobago and Costa Rica, and our records are the first from Honduras, Paraguay and Perú. Our specimens differ from the original description of M. pitangi by setal counts and dimensions, as follows [data from Price et al. (2005) are in parentheses]:

Female $(\mathbf{n}=\mathbf{1})$. Metanotum not enlarged, with $7(10-11)$ marginal setae. Tergal setae: I, $8(10-11)$; II, 11 (1215); V, 11 (13-14); VII, 9 (6-7). Anterior margin of sternal plate II with a medial notch. Sternal setae: III, 34 (2531); VII, 19 (13-15); Anal fringe with 41 (42-46) dorsal setae. Dimensions: HL, 0.39 (0.35-0.38); PW, 0.34 (0.350.37); MW, 0.50 ($0.53-0.55$); AWIV, 0.68 ($0.73-0.79$); ANW, 0.26 ($0.28-0.29$); TL, 1.72 (1.76-1.79).

Male ($\mathbf{n}=\mathbf{1}$). Tergal setae: I, 7 (8-11). Sternal setae: VII, 18 (15-16); VIII, 9 (7). Genital sac sclerite as in Fig. 40. Dimensions: PW, 0.30 ($0.32-0.34$); GSL, 0.12 (about 0.10 long).

Myrsidea sp.

We collected a few specimens of Myrsidea from five other species of Tyrannidae, as follows: Contopus virens (Linnaeus, 1766), Elaenia frantzii Lawrence, 1865, Ramphotrigon megacephalum (Swainson, 1835), Rhynchocyclus brevirostris (Cabanis, 1847), and Zimmerius vilissimus (P.L. Sclater \& Salvin, 1859) (see Table 3). They represent first records of Myrsidea from C. virens, and of any louse from the other four hosts. Unfortunately, with one exception, they were all nymphs, from which we were unsuccessful in obtaining genetic data or meaningful morphological data for their identification. The exception was one female from Ramphotrigon megacephalum which, unfortunately, was destroyed during DNA extraction.

Acknowledgements

We thank everyone who helped us with fieldwork, in particular Bernardo Calvo Rodríguez from Costa Rica, Alberto Andrés Velásquez Castillo from Honduras, Sebastián Héctor Franco Ibarrola from Paraguay, and Jorge Manuel Cárdenas-Callirgos from Perú. Field work in Costa Rica was under permit issued by the Ministerio de Ambiente, Energía y Telecomunicaciones de Costa Rica (Resoluciones N ${ }^{\circ}$ 106-2004-OFAU, N ${ }^{\circ}$ 136-2009-SINAC, $\mathrm{N}^{\circ} 120-2010-$ SINAC $)$. Field work in Perú was covered by a permit from Perúvian authorities issued to Mercedes Gonzales de la Cruz (Museo de Historia Natural, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Perú). Field work in Paraguay was under permit issued by the SEAM (Secretaría del Ambiente, Paraguay) ($\mathrm{N}^{\circ} 118859$, $\mathrm{N}^{\circ} 121842$, $\mathrm{N}^{\circ} 121856$). Field work in Honduras was under permit issued by the Instituto Nacional de Conservación y Desarrollo Forestal, Áreas Protegidas y Vida Silvestre, Gobierno de la República de Honduras (Resolución-DE-MP-063-2014). This study was supported by the project IGA VFU Brno 223/2017/FVHE. We thank Ricardo L. Palma (Museum of New Zealand, Wellington, N.Z.) for his review of the first draft of this paper, and an anonymous referee for useful comments which have improved the quality of this paper.

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. \& Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.
https://doi.org/10.1016/S0022-2836(05)80360-2

Ansari, M.A.R. (1956) Contribution to our knowledge of Myrsidea (Mallophaga: Amblycera) occurring on Turdidea (sens. lat.). Pakistan Journal of Health, 5 (4), 163-177.
Clay, T. (1966) Contributions towards a revision of Myrsidea Waterston. I. (Menoponidae: Mallophaga). Bulletin of the British Museum (Natural History) Entomology, 17 (8), 327-395, 2 pls.
Clements, J.F., Schulenberg, T.S., Iliff, M.J., Roberson, D., Fredericks, T.A., Sullivan, B.L. \& Wood, C.L. (2017) The eBird Clements checklist of birds of the world: v2017. Available from: http://www.birds.cornell.edu/clementschecklist/ download/ (accessed 14 June 2017)
Dalgleish, R.C. \& Price, R.D. (2003) Four new species of Myrsidea (Phthiraptera: Menoponidae) from manakins (Passeriformes: Pipridae). New York Entomological Society, 111 (4), 167-173. https://doi.org/10.1664/0028-7199(2003)111[0167:FNSOMP]2.0.CO;2
Dalgleish, R.C. \& Price, R.D. (2005) Two new species of the genus Myrsidea Waterston (Phthiraptera: Menoponidae) from cotingas (Passeriformes: Cotingidae). Zootaxa, 983 (1), 1-6. https://doi.org/10.11646/zootaxa983.1.1
Eichler, W. (1943) Notulae Mallophagologicae. IX. Oedicnemiceps nov. gen. und andere interessante Federlinge von bemerkenswerten Wirten. Zoologischer Anzeiger, 141 (3/4), 57-61.
Haeckel, E. (1896) Systematische Phylogenie. 2. Theil. Systematische Phylogenie der wirbellosen Thiere (Invertebrata). Verlag von Georg Reimer, Berlin, 720 pp. https://doi.org/10.1515/9783111443935
Isler, M.L., Bravo, G.A. \& Brumfield, R.T. (2013) Taxonomic revision of Myrmeciza (Aves: Passeriformes: Thamnophilidae) into 12 genera based on phylogenetic, morphological, behavioral, and ecological data. Zootaxa, 3717 (4), 469-497. https://doi.org/10.11646/zootaxa.3717.4.3
Johnson, K.P., Adams, R.J. \& Clayton, D.H. (2002) The phylogeny of the louse genus Brueelia does not reflect host phylogeny. Biological Journal of the Linnean Society, 77, 233-247. https://doi.org/10.1046/j.1095-8312.2002.00107.x
Johnson, K.P. \& Price, R.D. (2006) Five new species of Myrsidea Waterston (Phthiraptera: Menoponidae) from bristlebills and greenbuls (Passeriformes: Pycnonotidae) in Ghana. Zootaxa, 1177, 27-37.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. \& Drummond, A. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647-1649.
https://doi.org/10.1093/bioinformatics/bts 199
Kellogg, V.L. (1896a) New Mallophaga. I.-with special reference to a collection made from maritime birds of the Bay of Monterey, California. Proceedings of the California Academy of Sciences, Series 2, 6, 31-168, pls. 2-15.
Kellogg, V.L. (1896b) New Mallophaga. II.-from land birds; together with an account of the mallophagous mouth-parts. Proceedings of the California Academy of Sciences, Series 2, 6, 431-548, pls. 60-73.
Kolencik, S., Sychra, O., Valan, M. \& Literak, I. (2016) New data on the taxonomy and distribution of ten Neotropical chewing lice of the genus Myrsidea (Phthiraptera: Menoponidae), including the description of a new species. Zootaxa, 4085 (2), 233-247.
https://doi.org/10.11646/zootaxa.4085.2.4
Kolencik, S., Sychra, O., Papousek, I. \& Literak, I. (2017) Where are the species limits? Morphology versus genetics in Neotropical chewing lice of the genus Myrsidea (Phthiraptera: Menoponidae), with description of three new species. Zootaxa, 4324 (1), 161-179. https://doi.org/10.11646/zootaxa.4324.1.9
Kounek, F., Sychra, O., Capek, M. \& Literak, I. (2013) Chewing lice of genus Myrsidea (Phthiraptera: Menoponidae) from Turdidae (Passeriformes) of Costa Rica, with descriptions of seven new species. Zootaxa, 3620 (2), 201-222. https://doi.org/10.11646/zootaxa.3620.2.1
Kuabara, K.M.D. \& Valim, M.P. (2017) New records of chewing lice (Insecta, Phthiraptera) from Brazilian birds (Aves) collected by Helmut Sick (1910-1991). Revista Brasileira de Entomologia, 61, 146-161. https://doi.org/10.1016/j.rbe.2016.12.006
Mjöberg, E. (1910) Studien über Mallophagen und Anopluren. Arkiv för Zoologi, 6, 1-296. https://doi.org/10.5962/bhl.part. 26907
Ohlson, J.I., Irestedt, M., Ericson, P.G.P. \& Fjeldså, J. (2013) Phylogeny and classification of the Neotropical suboscines (Aves, Passeriformes). Zootaxa, 3613 (1), 1-35. https://doi.org/10.11646/zootaxa.3613.1.1
Palma, R.L. (1978) Slide mounting of lice: a detailed description of the Canada balsam technique. The New Zealand Entomologist, 6, 432-436. https://doi.org/10.1080/00779962.1978.9722313
Price, R.D. \& Dalgleish, R.C. (2006) Myrsidea Waterston (Phthiraptera: Menoponidae) from tanager (Passeriformes: Thraupidae), with descriptions of 18 new species. Zootaxa, 1174, 1-25.
Price, R.D., Hellenthal, R.A. \& Dalgleish, R.C. (2005) The genus Myrsidea Waterston (Phthiraptera: Menoponidae) from tyrant-fly catchers (Passeriformes: Tyrannidae), with descriptions of 13 new species. Zootaxa, 1048, 1-20.
Price, R.D., Hellenthal, R.A., Palma, R.L., Johnson, K.P. \& Clayton, D.H. (2003) The Chewing Lice. World Checklist and

Biological Overview. Illinois Natural History Survey, Special Publication 24, $\mathbf{i}-\mathrm{x}+1-501$.
Price, R.D. \& Johnson K.P. (2009) Five new species of Myrsidea Waterston (Phthiraptera: Menoponidae) from tanagers (Passeriformes: Thraupidae) in Panama. Zootaxa, 2200, 61-68.
Price, R.D., Johnson, K.P. \& Dalgleish, R.C. (2008a) Myrsidea Waterston (Phthiraptera: Menoponidae) from wrens (Passeriformes: Troglodytidae), with descriptions of three new species. Zootaxa, 1740, 59-65.
Price, R.D., Johnson, K.P. \& Dalgleish, R.C. (2008b) Five new species of Myrsidea Waterston (Phthiraptera: Menoponidae) from antshrikes and antbirds (Passeriformes: Thamnophilidae). Zootaxa, 1819, 55-62.
Rheindt, F.E., Norman, J.A. \& Christidis, L. (2008) Phylogenetic relationships of tyrant-flycatchers (Aves: Tyrannidae), with an emphasis on the elaeniine assemblage. Molecular Phylogenetics and Evolution, 46, 88-101. https://doi.org/10.1016/j.ympev.2007.09.011
Sychra, O., Kounek, F., Papoušek, I., Čapek, M., Cárdenas-Callirgos, J.M., Franco, S. \& Literak, I. (2014) Chewing lice (Phthiraptera: Amblycera et Ischnocera) from wrens (Passeriformes: Troglodytidae), with description of a new species of Myrsidea. Acta Entomologica Musei Nationalis Pragae, 54, 1-28.
Sychra, O., Literak, I., Čapek, M. \& Havlíček, M. (2006) Chewing lice (Phthiraptera) from typical antbirds and ground antbirds (Passeriformes: Thamnophilidae, Formicariidae) from Costa Rica, with descriptions of three new species of the genera Formicaphagus and Myrsidea. Zootaxa, 1206, 47-61.
Sychra, O., Literak, I., Capek, M. \& Havlíček, M. (2007) Chewing lice (Phthiraptera) from ovenbirds, leaftossers and woodcreepers (Passeriformes: Furnariidae: Furnariinae, Sclerurinae, Dendrocolaptinae) from Costa Rica, with descriptions of four new species of the genera Rallicola and Myrsidea. Caribbean Journal of Science, 43 (1), 117-126. https://doi.org/10.18475/cjos.v43i1.a11
Sychra, O., Najer, T., Kounek, F., Čapek, M. \& Literak, I. (2010) Chewing lice (Phthiraptera) on manakins (Passeriformes: Pipridae) from Costa Rica, with description of a new species of the genus Tyranniphilopterus (Phthiraptera: Philopteridae). Parasitology Research, 106, 925-931. https://doi.org/10.1007/s00436-010-1768-3
Valim, M.P., Price, R.D. \& Johnson, K.P. (2011) New host records and descriptions of five new species of Myrsidea Waterston chewing lice (Phthiraptera: Menoponidae) from passerines (Aves: Passeriformes). Zootaxa, 3097, 1-19.
Valim, M.P. \& Weckstein, J.D. (2013) A drop in the bucket of the megadiverse chewing louse genus Myrsidea (Phthiraptera, Amblycera, Menoponidae): ten new species from Amazonian Brazil. Folia Parasitologica, 60, 377-400. https://doi.org/10.14411/fp. 2013.040
Waterston, J. (1915) On two new species of Mallophaga (Menoponidae): Menacanthus balfouri n . sp . and Myrsidea victrix n . sp. from Colombia. Entomologist's Monthly Magazine, 51, 12-16, 1 pl.
Zimmer, K.J. \& Isler, M.L. (2003) Family Thamnophilidae (typical antbirds). In: del Hoyo, J., Elliot, A. \& Christie, D.A. (Eds.), Handbook of the birds of the world. Vol. 8. Broadbills to Tapaculos, Lynx Edicions, Barcelona, pp. 448-681.

