Towards the systematics and diversity of Neotropical Tanytarsus van der Wulp (Diptera: Chironomidae): news from Colombia

GALILEU P.S. DANTAS ${ }^{1,4}$, EDUARDO AMAT ${ }^{2}$, NEUSA HAMADA ${ }^{1,5}$ \& WOJCIECH GIEKA ${ }^{3 *}$
${ }^{1}$ Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade (CoBio), Divisão de Curso em Entomologia (DiEnt); Av. André Araújo, 2936, 69067-375, Manaus, Amazonas, Brazil.
${ }^{2}$ Grupo de investigación BIOFORENSE, Facultad de Derecho y Ciencias Forenses, Tecnológico de Antioquia - Institución Universitaria; calle 78B no. 72A-220, Medellín, Colombia.
E"ecamat@gmail.com; © https://orcid.org/0000-0002-0962-777X
${ }^{3}$ University of Gdańsk, Faculty of Biology, Department of Invertebrate Zoology and Parasitology, Laboratory of Systematic Zoology; Wita Stwosza 59, 80-308 Gdańsk, Poland.
ミ"wojciech.gilka@ug.edu.pl; © https://orcid.org/0000-0002-8403-5432
\({ }^{4}
) =" galileu.psd@gmail.com; © https://orcid.org/0000-0002-9155-533X
${ }^{5}$ = nhamada@inpa.gov.br; © https://orcid.org/0000-0002-3526-5426
*Corresponding author

Abstract

Our study pertains to the systematics and diversity of non-biting midges of the genus Tanytarsus van der Wulp, 1874 from the Neotropical region and in particular, Colombia, a country scarcely studied for these dipterans to date. Adult male specimens collected from the Colombian Llanos and Andes biomes belong to five species described as new in the present paper: Tanytarsus colombiensis sp. nov. (placed in the caipira species group, here defined), T. germani sp. nov. and T. gnomon sp. nov. (both placed in the curvicristatus group, here defined), T. lulu sp. nov. (in the ligulatus group, here defined) and T. meta sp. nov. (the riopreto group). Also an illustrated brief redescription of the adult male of T. hastatus Sublette et Sasa, 1994 is provided. After reclassification of Caladomyia Säwedal, 1981, the name accepted as a junior synonym of Tanytarsus, several species names became homonyms, thus they are here proposed to be replaced with substitute names, as follows: Tanytarsus reiffi nom. nov. pro Tanytarsus reissi (Reiff, 2000); Tanytarsus sanseverinoi nom. nov. pro Tanytarsus angelae Trivinho-Strixino et Shimabukuro, 2017; Tanytarsus trivinhostrixinoi nom. nov. pro Tanytarsus fittkaui Sanseverino et Trivinho-Strixino, 2010. Rheotanytarsus breda (Roback, 1960) comb. nov. is excluded from Tanytarsus. An annotated checklist of Neotropical Tanytarsus, with 89 species, is also presented.

Key words: Andes, Llanos, aquatic insects, non-biting midges, Tanytarsus, new species, new names, checklist, Neotropics

Introduction

The Colombian fauna is considered megadiverse, with one of the largest number of species per unit area and endemic species in the world (Arbelaez-Cortes 2013). The family Chironomidae (non-biting midges), one of the most abundant and diverse family of Diptera, has only 33 species in 18 genera and three chironomid subfamilies recorded thus far from Colombia (Contreras-Lichtenberg 1988, Mendes \& Pinho 2014; Ospina-Torres et al. 2018; Dantas et al. 2019). However, Colombia, with its great environmental heterogeneity, probably is home to a rich and diverse fauna of non-biting midges, most of which remain unknown.

Tanytarsus van der Wulp, 1874 is currently the second most diverse genus of Chironomidae, comprising nearly 400 species distributed worldwide (Lin et al. 2018, Roskov et al. 2019, present authors' inventory). It is well represented in the Neotropical region with over 80 species described and named prior to the present paper (see Table 6 and references therein). Despite the great diversity of the genus, only Tanytarsus curvicristatus has been recorded for Colombia so far (Contreras-Lichtenberg 1988, Mendes \& Pinho 2014).

The immature stages of Tanytarsus develop in almost all aquatic environments, and many species are strongly associated with certain habitat types. Representatives of this diverse genus are thus excellent indicators in the biomonitoring of freshwater ecosystems, and the high diversity of such habitats allows expectation of significant species richness.

During our studies on Chironomidae diversity in South America, specimens of five unknown species of Tanytarsus were collected in the ecologically diverse Llanos and Andes biomes in Colombia. They are here described and illustrated based on adult males sampled from just a couple of sites. Two of them are placed in the curvicristatus species group, and further two species-in the caipira and ligulatus groups-all groups here proposed as new and defined; the fifth new species is a member of the riopreto group. We also provide a set of diagnostic characters of adult male of T. hastatus Sublette et Sasa, 1994, the species recorded for the first time in Colombia. As a summary, we have compiled data on all species of the genus Tanytarsus recorded from the Neotropical region, presented as an annotated tabulation below.

Material and methods

The specimens were sampled at several sites in the Llanos (Fig. 1) and Andes biomes, using a Malaise trap or at light. The material was preserved in 80% ethanol. Microscope slides were prepared using Euparal ${ }^{\circledR}$ as the mounting medium according to the procedure outlined by Sæther (1969). Measurements were made using the Cell D program and a digital camera attached to an optic microscope Olympus BX 51; the photographs were adjusted using the Helicon Focus ${ }^{\circledR} 6$ image stacking software; some of them were made before mounting the specimens on permanent slides. The morphological terminology follows Sæther (1980). The 89 Neotropical Tanytarsus species, with data on their known stage/sex, geographical distribution and most important references to each species are presented in Table 6 (see also for their authorship, which is not included at first mention in the text). The type specimens are deposited in the Colección Entomólogica del Tecnológico de Antioquia (CETdeA), Medellín, Colombia.

Results

Systematics

Family: Chironomidae Newman, 1834

Subfamily: Chironominae Newman, 1834

Tribe: Tanytarsini Zavřel, 1917

Subtribe: Tanytarsina Zavřel, 1917
Genus: Tanytarsus van der Wulp, 1874

Tanytarsus caipira species group

Members: Tanytarsus caipira Trivinho-Strixino et Strixino, 2007, Tanytarsus colombiensis sp. nov.

Diagnosis. Hypopygial anal point deeply forked, with bifurcation beginning near its base. Superior volsella bare (without field of microtrichia on its dorsal surface) pyriform, with apex hook-like and anteromedially directed. Digitus short, not extending beyond median margin of superior volsella, apically rounded. Stem of median volsella as short as digitus.

FIGURE 1. Sites of sampling the material in Colombia (Meta Department, Puerto Lopez).

Tanytarsus colombiensis sp. nov.

LSID: urn:Isid:zoobank.org:act:160B07E4-B418-4690-8F64-A21DC8D90AD7
(Fig. 2A-G)

Type material. Holotype, adult male: COLOMBIA, Meta Department, Puerto Lopez, $04^{\circ} 08^{\prime} 11^{\prime \prime} \mathrm{N} 72^{\circ} 52^{\prime} 53^{\prime \prime} \mathrm{W}$, 206 m a.s.l., 01-03 January 2021, Malaise trap, G.P.S. Dantas, S.M.R. Hernández (CETdeA).

Derivatio nominis. In reference to the country-terra typica of the species.
Diagnosis. Frontal tubercles small. Anal tergite bands T-shaped. Anal point deeply forked and strongly curved downwards, apex of each branch notched and slightly curved outwards. Median volsella with setiform and branched lamellae.

Description. Adult male ($\mathrm{n}=1$).
Body size and proportions. Total length 2.08 mm . Wing length 1.15 mm . Total length/wing length ratio 1.81 . Wing length/length of profemur ratio 1.97.

Colouration. Eyes black. Antenna brown, head capsule and palp light brown. Scutal vittae and postnotum light brown. Ground colour of thorax, scutellum, and haltere yellowish. Foreleg: all segments light brown. Mid and hind legs: femora yellowish, tibiae and tarsomeres light brown. Wing membrane with pale brownish undertone. Abdomen light yellowish, hypopygium slightly darker.

Head. Eyes bare, with well-developed dorsomedian extensions. Antenna with 13 flagellomeres; ultimate flagellomere $331 \mu \mathrm{~m}$ long; AR 0.85 . Frontal tubercles small, $8 \mu \mathrm{~m}$ long. Tentorium $110 \mu \mathrm{~m}$ long. Temporal setae 7 on each side. Clypeus with 10 setae. Lengths of palpomeres $1-5($ in $\mu \mathrm{m}): 28,32,80,90,175$; sensilla clavata not observed on third palpomere.

Thorax. Ac 16, restricted to anterior region of scutum; Dc 7 on each side, uniserial; Pa 1 on each side; Scts 4. Scutum projected and rounded anteriorly, overreaching antepronotum.

Wing. Typical of the genus. Almost all veins (except subcosta) and entire membrane posterior to radial veins area (except base of m cell) covered with macrotrichia. Brachiolum with 1 seta. VRCu 1.26. WW 0.27.

Legs. Foreleg tibia with straight lanceolate spur $13 \mu \mathrm{~m}$ long. Tibial combs of mid and hind legs separated; spurs of mid leg unequal: one bent, $15 \mu \mathrm{~m}$ long, second straight and shorter, $11 \mu \mathrm{~m}$ long; spurs of hind leg unequal: one bent $24 \mu \mathrm{~m}$ long, second straight and shorter, $18 \mu \mathrm{~m}$ long. Basitarsus of mid leg with 4 sensilla chaetica. Lengths and proportions of legs as in Table 1.

TABLE 1. Lengths (in $\mu \mathrm{m}$) and proportions of legs of Tanytarsus colombiensis sp. nov., male ($\mathrm{n}=1$).

	fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}	ta_{5}	LR	BV	SV
p_{1}	585	260	854	378	322	252	110	3.28	1.60	0.99
p_{2}	518	448	269	120	78	40	36	0.60	4.52	3.59
p_{3}	564	562	395	238	212	126	63	0.70	2.38	2.85

Hypopygium. Tergite IX covered with dense short microtrichia, except for small median field free of microtrichia at base, dorsal/median setae absent, 4 long setae on each side of anal point; lateral teeth not observed; anal tergite bands T-shaped, ending well anterior to anal point base (Fig. 2A, C). Anal point $70 \mu \mathrm{~m}$ long, deeply forked and strongly curved downwards, apex of each branch notched and slightly curved outwards (Fig. 2A-E). Superior volsella $32 \mu \mathrm{~m}$ long, with posteromedian corner pointed; 4 setae on dorsal surface and 2 ventral setae placed close to median margin; digitus $15 \mu \mathrm{~m}$ long, finger-like, with basal part slightly extending beyond posterior margin of superior volsella but with apex not reaching its median margin (Fig. 2A-C). Stem of median volsella $14 \mu \mathrm{~m}$ long, medially directed, with setiform and branched lamellae, as shown in Fig. 2F, G. Inferior volsella $\sim 65 \mu \mathrm{~m}$ long, covered with microtrichia, evenly curved, posteriorly directed. Phallapodeme slightly sinuous, $\sim 95 \mu \mathrm{~m}$ long; transverse sternapodeme $\sim 40 \mu \mathrm{~m}$ long; oral projections slight. Gonocoxite $100 \mu \mathrm{~m}$ long. Gonostylus $75 \mu \mathrm{~m}$ long, straight, parallel-sided, with apex round. HR 1.33. HV 2.77.

Distribution and ecological notes. The species is known only from the type locality in central Colombia, where the vegetation corresponds to mosaics of savannas, mainland forests and flooded forests (Fig. 1A-C). The holotype specimen was collected over a small stream about 1 meter wide and with negligible current, which is bordered by a relatively well-preserved gallery forest (Fig. 1B). It is worth noting that the point where the trap was placed, was located about 10 meters upstream of a dammed area, which formed a small pond (Fig. 1C).

FIGURE 2. Tanytarsus colombiensis sp. nov., male. A, B: hypopygium in dorsal (A) and ventral aspect (B); C: arrangement of anal tergite, anal point, superior volsella and digitus; \mathbf{D}, \mathbf{E} : anal point in dorsal (D) and lateral view (E); \mathbf{F}, \mathbf{G} : median volsella photographed (F) and drawn (G); (D-G magnified ca. 3 times relative to A and B).

Discussion. A tendency to split, i.e. forming a bi- or trifid hypopygial anal point is a rare character within Tanytarsus. In some species the anal point is divided into lobes, with the split restricted to apical part, usually with median protrusion or extension between. The anal point can be also deeply forked, with a distinct bifurcation beginning near its base. We treat these two character states or structure types as clearly different. The first one is typical mainly of species originally included in Caladomyia [=Tanytarsus ortoni species group in the current definition (Lin et al. 2018)], while the second is known from males of only one species-Tanytarsus caipira described from Brazil (Trivinho-Strixino \& Strixino 2007). Yet another shape of a split anal point is shown in Tanytarsus richardsi Glover, 1973 from Australia, in which the bifurcation is restricted to distal portion, and the anal point is Y-shaped or slingshot-shaped (Glover 1973). We define this structure as unique, and presume a need of inclusion of T. richardsi in a separate species group that is not, however, an aim of this study.

To a group of species displaying the first aforementioned structure type, apart from the species known as members of the ortoni group, we preliminarily include also Tanytarsus bifurcus Freeman, 1958 described from West Africa (Burkina Faso) and Tanytarsus biwatrifurcus Sasa et Kawai, 1987 from Japan (Freeman 1958, Sasa \& Kawai 1987). The two species were placed in Tanytarsus, and have not been previously considered the members of Caladomyia or the ortoni group, probably due to their great distance from region of the highest diversity (Neotropics). In fact, a set of hypopygium structures, including the anal point in the two species, fits the concept of the ortoni group. If so, the group has a much wider range than that known to date, covering the South and Central America, the tropical/subtropical ecozone of North America, Africa and East Asia. Such the distribution pattern, including the Palaearctic region, support a concept by Zakrzewska and Giłka (2013) based on the fossil record and indicating a broad distribution of the ortoni group in the past (Eocene Baltic amber, ~ 40 Mya).

Tanytarsus colombiensis is here defined as a closest known relative of T. caipira. In males of the two species the anal point is deeply forked, the superior volsella is bare, without a field of microtrichia on its dorsal surface, pyriform, with a hook-like apex directed anteromedially, the digitus is short, with apex round, hidden under the superior volsella, and the stem of the median volsella is more or less as short as the digitus. Consequently, we here propose the caipira group for the two species. The character set best delimiting the males of both species includes the anal point branches notched apically and the T-shaped anal tergite bands in T. colombiensis (Fig. 2) vs. the branches pointed and the anal tergite bands of V-type broadly separated in T. caipira (Trivinho-Strixino \& Strixino 2007; figs 1, 2).

Tanytarsus curvicristatus species group

Members: Tanytarsus curvicristatus Contreras-Lichtenberg, 1988, Tanytarsus pseudocurvicristatus TrivinhoStrixino, Wiedenbrug et da Silva, 2015, Tanytarsus germani sp. nov., Tanytarsus gnomon sp. nov.

Diagnosis. Hypopygial anal point with crests short but broad, rounded, crescent (curved) or flake-shaped. Two bars present on anal point: anterior bar smaller, posteriorly directed, simple, cone-shaped or in a form of bunch of spines; posterior bar larger, anteriorly directed, apically enlarged and/or split into projections turned up dorsally or dorsolaterally; spinulae absent. Superior volsella extensive at base, with distinctly narrower posteromedian corner resulting in concave median margin. Digitus short, not extending beyond median margin of superior volsella, or vestigial.

Tanytarsus germani sp. nov.

LSID: urn:Isid:zoobank.org:act:EA7DEF24-FFB4-44E8-9A46-B11916895012
(Fig. 3A-F)

Type material. Holotype, adult male: COLOMBIA, Meta Department, Puerto Lopez, $04^{\circ} 08^{\prime} 11^{\prime}{ }^{\prime} \mathrm{N} 72^{\circ} 52^{\prime} 53^{\prime \prime} \mathrm{W}$, 206 m a.s.l., 01-03 January 2021, Malaise trap, G.P.S. Dantas, S.M.R. Hernández (CETdeA). Paratypes: 2 males, same data as for holotype.

Derivatio nominis. The specific name is a patronym commemorating the eminent Colombian entomologist, German Amat (1960-2021).

Diagnosis. Frontal tubercles absent. Tergite IX with 3-4 strong median setae and extensive microtrichia-free
area near base of anal point. Anal tergite bands V-shaped, broadly separated. Anal point with a round pit—anteriorly enclosed with darkly pigmented horseshoe-like margin overlapping the crests; anterior bar cone-shaped, covered with scale-like thorny structures, darkly pigmented; posterior bar split into two flake-shaped projections turned up dorsolaterally. Superior volsella extensive, anterior margin straight, median margin strongly concave, posteromedian corner distinctly narrower but relatively strong. Digitus straight, pointed. Median volsella with single foliate and several setiform lamellae.

Description. Adult male ($\mathrm{n}=3$).
Body size and proportions. Total length $1.96-2.08 \mathrm{~mm}$. Wing length $1.05-1.06 \mathrm{~mm}$. Total length/wing length ratio 1.87-1.96. Wing length/length of profemur ratio 1.59-1.62.

Colouration. Eyes black. Antenna brown. Scutal vittae and postnotum light brown. Head capsule, ground colour of thorax, scutellum, sternum, and haltere yellow to light brown. Legs yellowish to light brown. Wing veins yellow, membrane pale. Abdomen yellow.

Head. Eyes bare, with well-developed dorsomedian extensions. Antenna with 13 flagellomeres; ultimate flagellomere 350-357 $\mu \mathrm{m}$ long; AR 0.83. Frontal tubercles absent. Tentorium $90-100 \mu \mathrm{~m}$ long. Temporal setae 6-7 on each side. Clypeus with $10-13$ setae. Lengths of palpomeres $1-5($ in $\mu \mathrm{m}): 25-26,25-28,67-72,80-90,122-132$; third palpomere with 5 sensilla clavata subapically, $10-12 \mu \mathrm{~m}$ long.

Thorax. Ac 14-16, restricted to anterior region of scutum; Dc 5-7 on each side, uniserial; Pa 1 on each side; Scts 5. Scutum projected and rounded anteriorly, overreaching antepronotum.

Wing. Obovate, with anal lobe strongly reduced. Almost all veins and entire membrane below radial veins covered with macrotrichia. Brachiolum with 1 seta. VRCu 1.25-1.33.

Legs. Foreleg tibia with short lanceolate spur 13-14 $\mu \mathrm{m}$ long. Tibial combs of mid and hind legs separated; spurs of mid leg unequal: one apically curved, $28-30 \mu \mathrm{~m}$ long, second straight, $12-15 \mu \mathrm{~m}$ long; spurs of hind leg unequal: one apically curved, $33-35 \mu \mathrm{~m}$ long, second straight, $30-33 \mu \mathrm{~m}$ long. Basitarsus of mid leg without sensilla chaetica. Lengths and proportions of legs as in Table 2.

TABLE 2. Lengths (in $\mu \mathrm{m}$) and proportions of legs of Tanytarsus germani sp. nov., male ($\mathrm{n}=3$).

	fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}	ta_{5}	LR	BV	SV
p_{1}	$652-660$	$295-298$	$795-806$	$375-397$	$306-317$	$218-224$	$108-115$	$2.69-2.70$	$1.65-1.75$	$1.19-1.20$
p_{2}	$597-612$	$449-452$	$255-275$	$120-122$	$80-82$	$53-55$	$45-48$	$0.57-0.61$	$4.29-4.40$	$3.81-4.16$
p_{3}	$596-602$	$520-526$	$374-395$	$212-217$	$170-180$	$97-110$	$67-70$	$0.72-0.75$	$2.59-2.78$	$2.84-3.00$

Hypopygium. Tergite IX covered with dense short microtrichia except for extensive bare fields near base of anal point, with 3-4 median setae between anal tergite bands; lateral teeth minute; anal tergite bands V-shaped, medially separated, almost reaching the base of anal point (Fig. 3A, C). Anal point $40-45 \mu \mathrm{~m}$ long, lanceolate, apically rounded, bearing a round pit-anteriorly enclosed with dark pigmented, horseshoe-like margin overlapping the crests; anterior bar in shape of spruce cone, covered with scale-like thorny structures, darkly pigmented, posterior bar placed subapically on anal point, split into two flake-shaped projections turned up dorsolaterally (Fig. 3A, C, D). Superior volsella with anterior margin straight and median margin strongly concave, posteromedian corner or distal half distinctly narrower but relatively strong; 6 setae on dorsal surface, 2 setae on median margin (1 close to anterior margin) and 1 seta on ventral tubercle close to anterior margin, field of microtrichia on dorsal surface absent; digitus $10-12 \mu \mathrm{~m}$ long, straight, pointed, reaching but not extending beyond median margin of superior volsella (Fig. 3A, B, E). Stem of median volsella 17-20 $\mu \mathrm{m}$ long, slightly swollen distally, with several setiform lamellae placed subapically and single foliate lamella on apex (Fig. 3B, F). Inferior volsella 55-60 $\mu \mathrm{m}$ long, nearly straight, posteriorly directed, with distal half slightly swollen, apex round. Phallapodeme $\sim 70-80 \mu \mathrm{~m}$ long; transverse sternapodeme $\sim 40 \mu \mathrm{~m}$ long, with small oral projections. Gonocoxite $90-95 \mu \mathrm{~m}$ long. Gonostylus $80-85 \mu \mathrm{~m}$ long, straight, tapering towards blunt apex. HR 1.10-1.12, HV 2.42-2.45.

Distribution and ecological notes. The adult male specimens examined were collected together with those of three other species described in the present paper. For details on ecology and bionomics see notes under Tanytarsus colombiensis.

FIGURE 3. Tanytarsus germani $\mathbf{s p}$. nov., male. A, B: hypopygium in dorsal (A) and ventral aspect (B); \mathbf{C} : anal tergite and anal point; \mathbf{D} : anal point in dorsal view; \mathbf{E} : superior volsella and digitus; \mathbf{F} : median volsella; (D-F magnified ca. 2-3 times relative to A and B).

Tanytarsus gnomon sp. nov.

LSID: urn:Isid:zoobank.org:act:8FF8DF78-6BA1-4661-B38C-560195B62C38
(Fig. 4A-F)
Type material. Holotype: male, COLOMBIA, Huila Departament, Yaguará, Condominio Santa Helena, $2^{\circ} 39^{\prime} 40.86^{\prime} \mathrm{N} 75^{\circ} 31^{\prime} 0.03^{\prime} \mathrm{W}, 570 \mathrm{~m}$ a.s.1., 06 March 2018, sweep net, G.P.S. Dantas, S.M.R. Hernández, E.C.G. Amat (CETdeA).

Derivatio nominis. In reference to the shape of the anal point with its posterior bar, resembling a sundial clock hand (Lat. gnomon). Noun in apposition.

Diagnosis. Frontal tubercles small. Tergite IX covered with dense short microtrichia except for two bare fields lateral to anal point base. Anal point with well-developed anal crests extending towards tergite IX and flanking a small cone-shaped anterior bar, posterior bar slender, evenly curved upwards, with apex slightly enlarged and split. Superior volsella with posteromedian corner strongly narrowed, in shape of finger-like projection, with apex swollen and medially directed. Digitus subtriangular, pointed, reaching half length of superior volsella. Median volsella with 1 foliate and 3 setiform lamellae.

Description. Adult male ($\mathrm{n}=1$).
Body size and proportions. Total length 2.39 mm . Wing length 1.25 mm . Total length/wing length ratio 1.90 . Wing length/length of profemur ratio 1.71.

Coloration. Eyes black. Antenna light brown. Head capsule and thorax yellow to light brown. Legs yellowish to light brown. Wing veins yellow, membrane pale. Abdomen yellow.

Head. Eyes bare, with well-developed dorsomedian extensions. Antenna with 13 flagellomeres; ultimate flagellomere $446 \mu \mathrm{~m}$ long; AR 1.01. Frontal tubercles small, $4 \mu \mathrm{~m}$ long. Tentorium $105 \mu \mathrm{~m}$ long. Temporal setae 9 on each side. Clypeus with 11 setae. Lengths of palpomeres $1-5$ (in $\mu \mathrm{m}): 24,28,78,90,160$; third palpomere with 2 sensilla clavata subapically, $12 \mu \mathrm{~m}$ long.

Thorax. Ac 16, restricted to anterior region of scutum; Dc 5 on each side, uniserial; Pa 1 on each side; Scts 4. Scutum projected and rounded anteriorly, overreaching antepronotum.

Wing. Typical of the genus. Almost all veins (except subcosta) and entire membrane posterior to radial veins area (except base of m and an cells) covered with macrotrichia. Brachiolum with 1 seta. VRCu 1.15. WW 0.28.

Legs. Foreleg tibia with straight lanceolate spur $15 \mu \mathrm{~m}$ long. Tibial combs of mid and hind legs separated; spurs of mid leg unequal: one bent, $24 \mu \mathrm{~m}$ long, second straight, $12 \mu \mathrm{~m}$ long; spurs of hind leg unequal: one bent $28 \mu \mathrm{~m}$ long, second straight $27 \mu \mathrm{~m}$ long. Basitarsus of mid leg without sensilla chaetica. Lengths and proportions of legs as in Table 3.

TABLE 3. Lengths (in $\mu \mathrm{m}$) and proportions of legs of Tanytarsus gnomon sp. nov., male ($\mathrm{n}=1$).

	fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}	ta_{5}	LR	BV	SV
p_{1}	734	299	-	-	-	-	-	-	-	-
p_{2}	668	525	308	136	100	63	55	0.59	4.24	3.86
p_{3}	727	610	449	242	215	125	86	0.74	2.67	2.98

Hypopygium. Tergite IX covered with dense short microtrichia except for two bare fields lateral to anal point base, with 5 median setae placed between anal tergite bands and 4 setae on each side of anal point; lateral teeth present, minute; anal tergite bands V-shaped, widely separated, ending anterior to anal point base (Fig. 4A). Anal point $55 \mu \mathrm{~m}$ long, somewhat lanceolate, with elongated and rounded tip, bearing well-developed, $22 \mu \mathrm{~m}$ long anal crests extending towards tergite IX and flanking a small, $8 \mu \mathrm{~m}$ long, cone-shaped anterior bar, posterior bar slender, evenly curved upwards, with apex slightly enlarged and split (Fig. 4A, C). Superior volsella $44 \mu \mathrm{~m}$ long, with posteromedian corner strongly narrowed, in shape of finger-like projection swollen apically and directed medially; with 5 setae on dorsal surface and 3 ventral setae close to median margin (at least 2 setae placed on prominent tubercles), field of microtrichia on dorsal surface absent; digitus $11 \mu \mathrm{~m}$ long, subtriangular, pointed, reaching half length of superior volsella (Fig. 4A-D). Stem of median volsella $11 \mu \mathrm{~m}$ long, with 1 foliate and 3 setiform lamellae (Fig. 4B, E, F). Inferior volsella $\sim 60 \mu \mathrm{~m}$ long, covered with microtrichia, with distal half slightly curved, swollen and posteromedially directed. Phallapodeme sinuous, $\sim 65 \mu \mathrm{~m}$ long; transverse sternapodeme $\sim 50 \mu \mathrm{~m}$ long, with strong oral projections. Gonocoxite $95 \mu \mathrm{~m}$ long. Gonostylus $85 \mu \mathrm{~m}$ long, almost straight, evenly tapering towards pointed apex. HR 1.14. HV 2.81.

FIGURE 4. Tanytarsus gnomon sp. nov., male. A, B: hypopygium in dorsal (A) and ventral aspect (B); C: arrangement of anal point, superior volsella and digitus; \mathbf{D} : superior volsella and digitus; \mathbf{E}, \mathbf{F} : median volsella drawn (\mathbf{E}) and photographed (F); (C-F magnified $c a .2-3$ times relative to A and B).

Distribution and ecological notes. This species is known only from the type locality in the Huila department, at the inter-Andean valley of Magdalena River basin, reaching the 570 m elevation. Next to the type locality are some small artificial lakes and a first-order stream. However, attempts to collect the immature stages of the new species in these environments were unsuccessful.

Discussion. Sanseverino (2006) discussed relationships between Tanytarsus curvicristatus and species of the Tanytarsus signatus group, as well as those of former Caladomyia and Virgatanytarsus-the names evidenced as synonyms of Tanytarsus (Lin et al. 2018), thus validating a previously postulated concept of Cranston (2000) for Virgatanytarsus. The Sanseverino's analysis was based on morphology of male hypopygium, mainly the anal point and its bars-the structures present in all the taxa analysed. In the dissertation, relations between T. curvicristatus, T. signatus (Holarctic) and T. liepae (Australia) were defined as close and possibly closer to each other than to species of the former Caladomyia and Virgatanytarsus. Due to a peculiar structure of the anal point in T. curvicristatus, a new species group for this species was also suggested. A close species described later, T. pseudocurvicristatus, supported this concept (Trivinho-Strixino et al. 2015). Further, molecular analyses indicated T. signatus as a lineage genetically divergent from that of T. curvicristatus, while the latter species and its morphologically close relatives, including T. pseudocurvicristatus, again were suggested to be placed in a separate species group (Lin et al. 2018). Another two species, presented here as new, made it possible to formulate a diagnosis based on characters found in all four species, and to establish the previously expected Tanytarsus curvicristatus species group. These characters are the shape and arrangement of the anal point crests, bars, the lack of the spinulae typical of most Tanytarsus, as well as the shape of the superior volsella and digitus (see the group diagnosis). The anal point bar(s) shape/ arrangement seems to be crucial in phylogeny analyses based on morphology of Tanytarsus. These structures have recently been studied in both extant and fossil species (Trivinho-Strixino 2012, Zakrzewska \& Giłka 2013, Dantas \& Giłka 2017), although they are found in only a few species groups of the genus.

Tanytarsus ligulatus species group

Members: Tanytarsus ligulatus Reiss, 1972, Tanytarsus paraligulatus Reiss, 1972, Tanytarsus lulu sp. nov.

Diagnosis. Hypopygial anal point with spoon-shaped apex-round with margin smooth or flattened with margin toothed. Superior volsella more or less heart-shaped, with median margin concave slightly at least. Digitus welldeveloped, extending beyond median margin of superior volsella. Frontal tubercles long, length/width ratio $\sim 2-4$.

Tanytarsus lulu sp. nov.

LSID: urn:lsid:zoobank.org:act:0FFBC66B-AF75-4301-ACA1-96195E22440C
(Fig. 5A-E)

Type material. Holotype, adult male: COLOMBIA, Meta Department, Puerto Lopez, $04^{\circ} 08^{\prime} 11^{\prime \prime} \mathrm{N} 72^{\circ} 52^{\prime} 53^{\prime \prime} \mathrm{W}$, 206 m a.s.l., 01-03 January 2021, Malaise trap, G.P.S. Dantas, S.M.R. Hernández (CETdeA). Paratypes: 1 male, same data as for holotype.

Derivatio nominis. The name is a tribute to the couple, Luz Helena Rangel and Luiz M. Hernández, for their invaluable help during fieldwork in Puerto Lopez, and especially for all the support and warm welcome given during the first author's stay in Colombia. The specific epithet is formed by the junction of the first syllable of Luz and Luiz (lulu) and should be considered a noun in apposition.

Diagnosis. AR > 1. Frontal tubercles well-developed, over two times as long as wide. Mid leg with apical row of 4-7 sensilla chaetica. Tergite IX with lateral teeth. Orolateral spines of laterosternite IX in shape of small processes. Anal point with apex spoon-shaped, smooth, lacking serrations. Superior volsella oval, with posteromedian corner slightly projecting rounded, median margin slightly concave. Digitus pointed, extending slightly beyond median margin of superior volsella. Median volsella with 2-3 setiform and 3 pectinate lamellae. Inferior volsella with angular dorsal protrusion.

Description. Adult male ($\mathrm{n}=2$).
Body size and proportions. Total length 2.34-2.86 mm. Wing length $1.22-1.46 \mathrm{~mm}$. Total length/wing length ratio $1.92-1.96$. Wing length/length of profemur ratio 2.14-2.26.

FIGURE 5. Tanytarsus lulu sp. nov., male. A, B: hypopygium in dorsal (A) and ventral aspect (B); C: anal point; D: superior volsella and digitus; E: median volsella; (C-E magnified ca. 3-4 times relative to A and B).

Colouration. Eyes black. Antenna brown. Head capsule and thorax yellow to light brown. Legs: proximal half of femora pale, distal half of femora plus tibiae and tarsi light brown. Wing veins yellowish brown, membrane pale. Abdomen yellowish.

Head. Eyes bare, with moderately developed dorsomedian extensions. Antenna with 13 flagellomeres; ultimate flagellomere $425 \mu \mathrm{~m}$ long; AR 1.04. Frontal tubercles well-developed, $27-29 \mu \mathrm{~m}$ long, $12-15 \mu \mathrm{~m}$ wide, ca. 2.2 times as long as wide. Tentorium $140 \mu \mathrm{~m}$ long. Temporal setae $8-9$ on each side. Clypeus with $17-18$ setae. Lengths of palpomeres $1-5($ in $\mu \mathrm{m})$: 26-27, 26-27, 67-80, 84-106, 153-169; third palpomere with 1 subapical sensillum clavatum $14 \mu \mathrm{~m}$ long.

Thorax. Ac 12, restricted to anterior region of scutum; Dc 6-7 on each side, uniserial; Pa 1 on each side; Scts 4. Scutum projected and rounded anteriorly, overreaching antepronotum. Halteres with at least 4 setae.

Wing. Somewhat oblong, with anal lobe reduced. Brachiolum with 1 seta, Sc bare, R with $16-18$ setae, R_{1} with $13-20$ setae, R_{4+5} with $11-18$ setae, M bare, M_{1+2} with $35-40$ setae, M_{3+4} with 30 setae, Cu with 4 setae, Cu_{1} with 7-12 setae, postcubitus with 3-4 setae, An with 13-20 setae. Cell m bare (false vein bare), r_{4+5} with 75-80 setae, m_{1+2} with $70-80$ setae (+48 setae on false vein), m_{3+4} with $20-28$ setae, cu and an bare. VRCu 1.20-1.23.

Legs. Foreleg tibia with short lanceolate spur $15-20 \mu \mathrm{~m}$ long. Lengths of combs of mid tibia $8-9 \mu \mathrm{~m}$ (with $11-12 \mu \mathrm{~m}$ long spur) and $13-17 \mu \mathrm{~m}$ (with $15-21 \mu \mathrm{~m}$ long spur); lengths of combs of hind tibia $14-15 \mu \mathrm{~m}$ (with $17-18 \mu \mathrm{~m}$ spur) and $17-19 \mu \mathrm{~m}$ (with $22-25 \mu \mathrm{~m}$ long spur). Basitarsus of mid leg with apical row of $4-7$ sensilla chaetica. Lengths and proportions of legs as in Table 4.

TABLE 4. Lengths (in $\mu \mathrm{m}$) and proportions of legs of Tanytarsus lulu sp. nov., male ($\mathrm{n}=2$).

	fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}	ta_{5}	LR	BV	SV
p_{1}	$543-681$	$265-330$	758	392	323	230	81	2.86	1.53	1.07
p_{2}	$580-721$	$446-558$	$287-347$	$135-166$	$100-121$	$70-77$	$51-57$	$0.62-0.64$	$3.69-3.86$	$3.57-3.69$
p_{3}	$600-732$	$597-732$	$420-500$	$255-294$	$223-266$	$147-169$	$76-92$	$0.68-0.70$	$2.31-2.39$	$2.85-2.93$

Hypopygium. Tergite IX covered with microtrichia except for small bare area at base of anal point; lateral teeth present; orolateral spines of laterosternite IX in shape of small processes; anal tergite bands T-type, fused on median part of tergite, ending close to anal point base (Fig. 5A, B). Anal point 35-40 $\mu \mathrm{m}$ long, elongate, with spoon-shaped apex with margin smooth (without serrations), pair of dorsal setae at base, two lateral setae on each side and pair of ventral setae subapically; microtrichia and spinulae absent (Fig. 5A, C). Superior volsella 32-35 $\mu \mathrm{m}$ long, oval, posteromedian corner slightly projecting and rounded, median margin slightly concave; 6-7 setae on dorsal surface, 2 setae on median margin, and 1 ventral seta; field of microtrichia on dorsal surface absent; digitus $21-23 \mu \mathrm{~m}$ long, pointed, slightly extending beyond median margin of superior volsella (Fig. 5A, B, D). Stem of median volsella 13-15 $\mu \mathrm{m}$ long, with $2-3$ setiform and 3 pectinate lamellae (Fig. 5B, E). Inferior volsella $75 \mu \mathrm{~m}$ long, covered with microtrichia, slightly curved and posteromedially directed, apex with angular dorsal protrusion. Phallapodeme $\sim 100-105 \mu \mathrm{~m}$ long, strongly sinuous; transverse sternapodeme $\sim 35-50 \mu \mathrm{~m}$ long, with well-developed oral projections. Gonocoxite $85-100 \mu \mathrm{~m}$ long. Gonostylus $125 \mu \mathrm{~m}$ long, narrow, slightly curved, tapering towards pointed apex. HR 0.80. HV 2.29.

Distribution and ecological notes. The adult male specimens examined were collected together with those of three other species described in the present paper. For details on ecology and bionomics see notes under Tanytarsus colombiensis.

Discussion. Tanytarsus lulu and several Neotropical species, i.e. T. ligulatus, T. paraligulatus as well as "Tanytarsus cf. ligulatus" [pre-named and described by Sanseverino (2006), but finally not delimited as new species nor yet validated] are distinct by the anal point crests forming an extraordinary structure-the round, spoon-shaped apex (cf. Reiss 1972, Sanseverino 2006). This character state prompted us to treat it as a main apomorphy for the ligulatus species group, proposed here. Several other diagnostic characters in common among the species mentioned above support this concept. All species analysed have well-developed, long frontal tubercles. They are 3.5 times as long as wide in T. ligulatus and T. cf. ligulatus, the ratio is 4 in T. paraligulatus, while 2.2 in T. lulu. In the ligulatus group, the superior volsella is more or less heart-shaped, with the median margin concave slightly at least (strongly concave in T. ligulatus and T. cf. ligulatus, nearly straight in T. paraligulatus, slightly concave in T. lulu). The key character within the ligulatus group is also the size of the digitus, well-developed in all the species. However, T. lulu has the digitus pointed, extending slightly beyond the median margin of the superior volsella, while the digitus is
finger-like, rounded apically, extending well beyond the superior volsella in T. ligulatus and T. paraligulatus. In this character T. lulu is similar to T. cf. ligulatus. These two, possibly the closest species share also some other features that differentiate them from both T. ligulatus and T. paraligulatus: the spoon-shaped anal point apex is round and have no serrations (teeth) on margin in T. lulu and T. cf. ligulatus, while the apex is flattened, with margin toothed in T. ligulatus and T. paraligulatus. Despite the aforementioned similarities, T. lulu and T. cf. ligulatus display several differences: the AR is greater than $1(1.04)$ in T. lulu, while less than 1 (0.84) in T. cf. ligulatus; other differentiate characters pertain to the frontal tubercle length/width ratio, the shape of the superior volsella (see above) and the wing chaetotaxy and macrotrichia-numerous in T. lulu relative to T. cf. ligulatus (cf. Sanseverino 2006). The structure of an auxiliary importance in the male Tanytarsini diagnostics are the hypopygial anterolateral teeth or orolateral spines of laterosternite IX, however, they usually are minute thus weakly observable. The spines are in shape of small processes in Tanytarsus lulu but not confirmed in other species of the ligulatus group. Another character that needs re-examination is the presence of sensilla chaetica on the mid leg basitarsus which form a distinct row (comb) in T. lulu, but have not been mentioned in descriptions of T. ligulatus, T. paraligulatus nor T. cf. ligulatus (Sanseverino 2006). All species of the ligulatus group are close morphologically, thus their delimitation has to be based on detailed descriptions (given in the extended form for T. lulu).

Tanytarsus riopreto species group

Members: Tanytarsus branquini Fittkau et Reiss, 1973, Tanytarsus cuieirensis Fittkau et Reiss, 1973, Tanytarsus cururui Fittkau et Reiss, 1973, Tanytarsus riopreto Fittkau et Reiss, 1973, Tanytarsus meta sp. nov.

Tanytarsus meta sp. nov.

LSID: urn:lsid:zoobank.org:act:770BE4EB-7B0F-4D80-9E7D-6BD6D04AF2AA (Fig. 6A-F)

Type material. Holotype, adult male: COLOMBIA, Meta Department, Puerto Lopez, $04^{\circ} 08^{\prime} 11^{\prime}{ }^{\prime} \mathrm{N} 72^{\circ} 52^{\prime} 53^{\prime \prime} \mathrm{W}$, 206 m a.s.l., 01-03 January 2021, Malaise trap, G.P.S. Dantas, S.M.R. Hernández, E.C.G. Amat (CETdeA).

Derivatio nominis. The specific epithet derived from the Meta Department in central Colombia, where the specimen was collected. Noun in apposition.

Diagnosis. Frontal tubercles well-developed, nearly 4 times as long as wide. Tergite IX covered with dense microtrichia on entire surface, with 7 median setae. Anal tergite bands V-shaped separated. Anal point broad at base, distinctly narrowed at mid length, with parallel-sided apical elongation, bearing slender crests and long trifid spinulae directed anteriorly. Superior volsella heart-shaped with median margin strongly concave and posteromedian corner well-developed. Digitus finger-like, pointed, not extending beyond median margin of superior volsella. Stem of median volsella bulbous, bearing several setiform and 3 foliate lamellae.

Description. Adult male ($\mathrm{n}=1$).
Body size and proportions. Total length 2.63 mm . Wing length 1.16 mm . Total length/wing length ratio 2.27 . Wing length/length of profemur ratio 1.63.

Colouration. Eyes black. Antenna, scutal vittae and postnotum light brown. Head capsule, ground colour of thorax, scutellum, sternum and haltere yellow to light brown. Legs yellowish to light brown. Wing veins yellow, membrane pale. Abdomen yellow.

Head. Eyes bare, with well-developed dorsomedian extensions. Antenna with 13 flagellomeres; ultimate flagellomere $416 \mu \mathrm{~m}$ long; AR 0.90 . Frontal tubercles well-developed, $18 \mu \mathrm{~m}$ long, $5 \mu \mathrm{~m}$ wide, 3.6 times as long as wide. Tentorium $115 \mu \mathrm{~m}$ long. Temporal setae 10 on each side. Clypeus with 17 setae. Lengths of palpomeres $1-5$ (in $\mu \mathrm{m}$): $30,33,90,95,150$; third palpomere with 2 subapical sensilla clavata $16 \mu \mathrm{~m}$ long.

Thorax. Ac 14, restricted to anterior region of scutum; Dc 7 on each side, uniserial; Pa 3 on each side; Scts 4. Scutum projected and rounded anteriorly, overreaching antepronotum.

Wing. Typical of the genus. Almost all veins (except subcosta) and entire membrane posterior to radial veins area (except base of m and an cells) covered with macrotrichia. Brachiolum with 1 seta. VRCu 1.21. WW 0.29.

Legs. Foreleg tibia with straight lanceolate spur $16 \mu \mathrm{~m}$ long. Tibial combs of mid and hind legs separated; spurs of mid leg unequal: one bent, $32 \mu \mathrm{~m}$ long, second straight, $20 \mu \mathrm{~m}$ long; spurs of hind leg similar, both long and

FIGURE 6. Tanytarsus meta $\mathbf{s p}$. nov., male. A, B: hypopygium in dorsal (A) and ventral aspect (B); C: anal tergite and anal point; \mathbf{D} : superior volsella and digitus; \mathbf{E}, \mathbf{F} : median volsella photographed (E) and drawn (F); (C-F magnified ca. 2-3 times relative to A and B).
slightly sinuous: one $55 \mu \mathrm{~m}$ long, second $48 \mu \mathrm{~m}$ long. Basitarsus of mid leg without sensilla chaetica. Lengths and proportions of legs as in Table 5.

TABLE 5. Lengths (in $\mu \mathrm{m}$) and proportions of legs of Tanytarsus meta sp. nov., male ($\mathrm{n}=1$).

	fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}	ta_{5}	LR	BV	SV
p_{1}	710	285	932	443	368	295	142	3.27	1.54	1.07
p_{2}	627	492	297	141	100	58	48	0.60	4.08	
p_{3}	670	542	485	275	243	160	75	0.89	2.25	2.50

Hypopygium. Tergite IX covered with dense short microtrichia on entire surface, 7 median setae (placed between anal tergite bands and anal point crests) and 7 lateral setae on each side of anal point; lateral teeth present, minute; anal tergite bands V-type, widely separated, ending well anterior to anal point base (Fig. 6A, C). Anal point $45 \mu \mathrm{~m}$ long, broad at base, with distinctly narrowed parallel-sided apical elongation, rounded apically, bearing slender crests flanking 7 long trifid spinulae placed irregularly and anteriorly directed (Fig. 6A, C). Superior volsella heart-shaped with median margin strongly concave and posteromedian corner well-developed, 10 setae on dorsal surface, 1 seta on median margin and 1 ventral seta close to median margin, field of microtrichia on dorsal surface absent; digitus $12 \mu \mathrm{~m}$ long, finger-like, pointed, not extending beyond median margin of superior volsella (Fig. 6A, B, D). Stem of median volsella bulbous, $22 \mu \mathrm{~m}$ long, with several setiform and 3 foliate lamellae (Fig. 6B, E, F). Inferior volsella $67 \mu \mathrm{~m}$ long, covered with microtrichia, straight and posteriorly directed, with apex slightly swollen. Phallapodeme S-shaped, $\sim 85 \mu \mathrm{~m}$ long; transverse sternapodeme $\sim 50 \mu \mathrm{~m}$ long, without oral projections. Gonocoxite $\sim 90 \mu \mathrm{~m}$ long. Gonostylus $100 \mu \mathrm{~m}$ long, narrow, nearly straight, tapering towards blunt apex. HR 0.88. HV 2.63.

Distribution and ecological notes. The adult male specimen examined was collected together with those of Tanytarsus colombiensis, T. germani and T. lulu. For details on ecology and bionomics see notes under Tcolombiensis.

Discussion. The Tanytarsus riopreto species group was proposed by Fittkau and Reiss (1973) for four species: T. branquini, T. cuieirensis, T. cururui and T. riopreto. Later on, several further species (T. clivosus, T. hamatus, T. hastatus, T. limneticus and T. pandus) were proposed to be included (Sublette \& Sasa 1994), although when their diagnostic characters were comprehensively reanalyzed, their membership in the riopreto group was considered questionable (Sanseverino 2006). The group definition by Sublette and Sasa (1994) was refuted also on the basis of molecular analyses by Lin et al. (2018); consequently a more strict group definition and species composition were postulated. Following the concepts of Fittkau and Reiss (1973), Sanseverino (2006) and Lin et al. (2018), we accept the riopreto group with the original species composition, extended with T. meta described here. The adult male of T. meta fits well the group diagnosis, except for the structure of lamellae of the median volsella-with apices split into minute pectinations in the riopreto group vs. foliate lamellae, with simple apices in T. meta. However, if this subtle difference is not considered (the structure is often overlooked due to its size), the new species falls in the couplet 33 of the key to adult males of Neotropical Tanytarsus by Sanseverino (2006), leading to the riopreto group. The set of character best separating the male of T. meta and other species of the group are slight difference in the shape of the anal point, volsellae and a relatively short digitus in the new species [cf. the diagnosis given above and those of Fittkau \& Reiss (1973) and Sanseverino (2006)].

Tanytarsus hastatus Sublette et Sasa, 1994

(Fig. 7A-D)

Material examined. COLOMBIA, Cundinamarca department, Fusagasugá, $04^{\circ} 19^{\prime} 50^{\prime} \mathrm{N} 74^{\circ} 21^{\prime} 49^{\prime \prime} \mathrm{W}, 1,800 \mathrm{~m}$ a.s.l., 07 March 2021, at light, 2 adult males, G.P.S. Dantas (CETdeA).

Diagnostic characters. Adult male. AR 1.12. Frontal tubercles large. Tergite IX entirely covered with microtrichia, with double lateral teeth; anal tergite bands V-type, separated, ending well anterior to anal point base (Fig. 7A, B). Anal point robust, lanceolate, pointed, with pair of well-developed crests, area between crests with numerous small spinulae; superior volsella more or less circular at base, with concave median margin and well projecting posteromedian corner, field of microtrichia on dorsal surface absent; digitus long and pointed, fingerlike, extending well beyond margin of superior volsella (Fig. 7C). Median volsella with foliate lamellae (Fig. 7D). Inferior volsella slightly curved, with swollen round apex directed posteromedially.

FIGURE 7. Tanytarsus hastatus Sublette et Sasa, 1994, male. A, B: hypopygium in dorsal (A) and ventral aspect (B); C arrangement of anal point, superior volsella and digitus; \mathbf{D} : median volsellae; ($\mathrm{C}-\mathrm{D}$ magnified $c a .2-3$ times relative to A and B).

Distribution and ecological notes. The present record of Tanytarsus hastatus in Colombia is the first in the Andean region and its highest known location above sea level. As a result, the vertical distribution gradient known for T. hastatus ranges from 0 to an altitude of 1800 meters. The specimens were collected in an urban area, on the seventh floor of an aparthotel.

Annotated checklist of Tanytarsus recorded from the Neotropical region

The checklist includes data on known sex and stage, geographical distribution and most important references to each species listed (Table 6). Among 89 species, all are known from adult males, 13 from females, 42 from pupae and 24 from larvae, while all stages (larva, pupa and adults of both sexes) have so far been described for 10 species. The majority of Tanytarsus have been recorded from Brazil (65 species), among which 62 species have locus typicus here, and 61 species are known exclusively from this country. The numbers of species recorded in other countries of South and Central America are as follows: Argentina, Chile (7), Guatemala (6), Costa Rica (5), Ecuador (4), Belize, Panama, Peru (2), French Guyana, Nicaragua, Puerto Rico, Venezuela (1), and Colombia, from where 7 species are recorded, including these presented here. Several species known from the Neotropical region are distributed also in the tropical ecozone of North America reaching Mexico (3 species) and the southern USA (California, Florida; 2 species). Additionally, names for two species coming from Argentina and Bolivia need validation, and one name from Brazil is considered doubtful (nomen dubium). From the checklist we exclude one species originally ascribed to Calopsectra Kieffer, 1921 "Group Rheotanytarsus", subsequently moved to Tanytarsus (considered the senior synonym of Calopsectra), and here treated in a new systematic combination as Rheotanytarsus breda (Roback, 1960). The species is known from the adult male that shows a set of characters typical of the genus Rheotanytarsus Thienemann et Bause, 1913, i.e. the shape of the gonostylus (distal portion distinctly narrowed), superior volsella (directed posteriorly), median volsella (with long sinuous lamellae fused basally) and the lack of a digitus (cf. Roback 1960, figs 57-62).

After recent reclassification of Caladomyia Säwedal, 1981 (Lin et al. 2018), this generic name is accepted as a junior synonym of Tanytarsus. As a result, several specific names became homonyms for which we propose new substitute names (ICZN, Art. 60.3), as follows:

Tanytarsus reiffi Dantas, Amat, Hamada et Giłka, 2022
LSID: urn:lsid:zoobank.org:act:53143FCD-B509-4AC2-94FA-F29BD663EEC9
pro Tanytarsus reissi (Reiff, 2000) preoccupied by Tanytarsus reissi Paggi, 1992
Tanytarsus sanseverinoi Dantas, Amat, Hamada et Giłka, 2022
LSID: urn:Isid:zoobank.org:act:F3DE2AE8-8907-4C0F-B670-D4E87745AFBF
pro Tanytarsus angelae Trivinho-Strixino et Shimabukuro, 2017 preoccupied by Tanytarsus angelae (TrivinhoStrixino, 2012)

Tanytarsus trivinhostrixinoi Dantas, Amat, Hamada et Giłka, 2022
LSID: urn:lsid:zoobank.org:act:DC6D905F-A51F-4CDD-A1CD-4CF9E749B612
pro Tanytarsus fittkaui Sanseverino et Trivinho-Strixino, 2010 preoccupied by Tanytarsus fittkaui (Reiff, 2000)

Acknowledgments

Sincere thanks to Peter Scott Cranston (Canberra, Australia), for substantive discussions and comments improving our work. We are grateful to Bruno Rossaro (Milan, Italy) for the proficient processing our manuscript. Thanks are due to Sandra M. Hernandez Rangel, Juanita Hernandez Rangel, Luz Elena Rangel, Luiz Miguel Hernandez, and Pablo A. Lopez, for their invaluable help during fieldwork. GPSD received MCTI/ INPA/ CNPq research fellowships (PDJ/CNPq process n. 150072/2018-0). NH received a CNPq research fellowship (Process n. 307849/ 2014-7; 308970/2019-5). Photographic infrastructure was provided by CAPES/ Pro-equipamentos-DCEN. The following projects provided partial financial support: Sistemática integrada de insetos aquáticos na América do Sul (CNPq and Instituto Nacional de Pesquisas da Amazônia-INPA), Sistemática de Insetos aquáticos (PROTAX/CNPq process n. 440616/2015-8; CNPq/MCTI/FAP/PROTAX-FAPEAM).
TABLE 6. The 89 extant species of Tanytarsus recorded from the Neotropical region, known from male (m), female (f), pupa (p) and/or larva (l); yellow: Brazil, green: Brazil + other countries, blue: outside Brazil; boldface: terra typica; * gender of species epithet adjusted to the genus name in the current combination (ICZN, Art. 34.2); ** new name (nom. nov.) for homonym (ICZN, Art. 60.3) after reclassification of Caladomyia (=junior synonym of Tanytarsus).

No	species	sex/stage	distribution/country	reference
1	T. adalberti (Säwedal, 1981)	m	Brazil	Säwedal (1981)
2	T. alaidae Trivinho-Strixino et Shimabukuro, 2017	m	Brazil	Trivinho-Strixino \& Shimabukuro (2017)
3	T. alatus Paggi, 1992	m	Argentina	Paggi (1992), Sanseverino (2006), Sanseverino \& Fittkau (2007)
4	T. alfredoi Sanseverino et Trivinho-Strixino, 2010	mpl	Brazil	Sanseverino \& Trivinho-Strixino (2010)
5	T. alienus Trivinho-Strixino et Shimabukuro, 2017	mf	Brazil	Trivinho-Strixino \& Shimabukuro (2017)
6	T. amazonicus Sanseverino et Fittkau, 2006	mp	Brazil	Sanseverino \& Fittkau (2006)
7	T. angelae (Trivinho-Strixino, 2012)	m	Brazil	Trivinho-Strixino (2012)
8	T. branquini Fittkau et Reiss, 1973	m	Brazil	Fittkau \& Reiss (1973), Sanseverino (2006)
9	T. briani Reis, Gil-Azevedo et Ferreira-Keppler, 2021	m	Costa Rica	Reis et al. (2021)
10	T. bromelicola Cranston, 2007	mfpl	Puerto Rico, USA (FL)	Cranston (2007)
11	T. bruneolus (Trivinho-Strixino, 2012) *	mfpl	Brazil	Trivinho-Strixino (2012)
12	T. caipira Trivinho-Strixino et Strixino, 2007	mfpl	Brazil	Trivinho-Strixino \& Strixino (2007)
13	T. canine (Trivinho-Strixino, 2012)	mp	Brazil	Trivinho-Strixino (2012)
14	T. capaopreto (Trivinho-Strixino, 2012)	mpl	Brazil	Trivinho-Strixino (2012)
15	T. capitatus Sublette et Sasa, 1994	m	Costa Rica, Guatemala	Sublette \& Sasa (1994), Sanseverino (2006)
16	T. carolae (Trivinho-Strixino, 2012)	m	Brazil	Trivinho-Strixino (2012)
17	T. carolensis (Trivinho-Strixino, 2012)	mfpl	Brazil	Trivinho-Strixino (2012)
18	T. castelnaui (Säwedal, 1981)	m	Brazil	Säwedal (1981)
19	T. cayambe Giłka et Zakrzewska, 2013	m	Ecuador	Giłka \& Zakrzewska (2013)
20	T. clivosus Reiss, 1972	mp	Argentina, Chile	Reiss (1972), Sanseverino (2006)
21	T. colombiensis sp. nov.	m	Colombia	present data
22	T. comunis (Trivinho-Strixino, 2012)	mpl	Brazil	Trivinho-Strixino (2012)
23	T. corumba Trivinho-Strixino, Wiedenbrug et da Silva, 2015	m	Brazil	Trivinho-Strixino et al. (2015)
24	T. costarica Reis, Gil-Azevedo et Ferreira-Keppler, 2021	m	Costa Rica	Reis et al. (2021)
25	T. cotopaxi Giłka et Zakrzewska, 2013	m	Ecuador	Giłka \& Zakrzewska (2013)

TABLE 6. (Continued)

No	species	sex/stage	distribution/country	reference
26	T. cuieirensis Fittkau et Reiss, 1973	mp	Brazil	Fittkau \& Reiss (1973), Sanseverino \& Wiedenbrug (2000), Sanseverino (2006)
27	T. curumim (Trivinho-Strixino, 2012)	mpl	Brazil	Trivinho-Strixino (2012)
28	T. cururui Fittkau et Reiss, 1973	m	Brazil	Fittkau \& Reiss (1973), Sanseverino (2006)
29	T. curvicristatus Contreras-Lichtenberg, 1988	m	Colombia, Ecuador, Peru	Contreras-Lichtenberg (1988), Sanseverino (2006), Giłka \& Zakrzewska (2013)
30	T. digitatus Sanseverino et Fittkau, 2006	m	Brazil	Sanseverino \& Fittkau (2006)
31	T. erikae (Reiff, 2000)	m	Brazil	Reiff (2000)
32	T. fastigatus Reiss, 1972	mp	Argentina, Brazil, Chile	Reiss (1972), Sanseverino (2006), Mendes \& Pinho (2014)
33	T. fittkaui (Reiff, 2000)	m	Brazil	Reiff (2000)
34	T. friburgensis Sanseverino et Fittkau, 2006	m	Brazil	Sanseverino \& Fittkau (2006)
35	T. friederi (Trivinho-Strixino et Strixino, 2000)	mfpl	Brazil	Trivinho-Strixino \& Strixino (2000)
36	T. germani sp. nov.	m	Colombia	present data
37	T. giovannii Sanseverino et Trivinho-Strixino, 2010	mpl	Brazil	Sanseverino \& Trivinho-Strixino (2010), Trivinho-Strixino et al. (2015)
38	T. gnomon sp. nov.	m	Colombia	present data
39	T. guatemalensis Sublette et Sasa, 1994	m	Guatemala	Sublette \& Sasa (1994), Sanseverino (2006)
40	T. hamatus Reiss, 1972	mp	Argentina, Chile	Reiss (1972), Sanseverino (2006)
41	T. hastatus Sublette et Sasa, 1994	mfp	Colombia, Brazil, Ecuador, Guatemala, Mexico, Panama, Peru, Venezuela, USA (CA)	Sublette \& Sasa (1994), Spies \& Reiss (1996), Sanseverino (2006), present data
42	T. hero (Reiff, 2000)	m	Brazil	Reiff (2000)
43	T. hirsutus Trivinho-Strixino, Wiedenbrug et da Silva, 2015	mp	Brazil	Trivinho-Strixino et al. (2015), Dantas \& Giłka (2017)
44	T. hoefleri (Reiff, 2000)	m	Brazil	Reiff (2000)
45	T. humboldti (Säwedal, 1981)	mfpl	Brazil	Säwedal (1981), Trivinho-Strixino (2012)
46	T. illustris Dantas et Giłka, 2017	m	Brazil	Dantas \& Giłka (2017)
47	T. impar Trivinho-Strixino et Strixino, 2004	mfpl	Brazil	Trivinho-Strixino \& Strixino (2004), Dantas \& Giłka (2017)
48	T. insignis Dantas et Giłka, 2017	m	Brazil	Dantas \& Giłka (2017)

TABLE 6. (Continued)

No	species	sex/stage	distribution/country	reference
49	T. insolens Dantas et Giłka, 2017	m	Brazil	Dantas \& Giłka (2017)
50	T. jacaretingensis Sanseverino et Fittkau, 2006	m	Brazil, French Guyana	Sanseverino \& Fittkau (2006)
51	T. jaragua (Trivinho-Strixino, 2012)	mpl	Brazil	Trivinho-Strixino (2012)
52	T. jatai Trivinho-Strixino, Wiedenbrug et da Silva, 2015	m	Brazil	Trivinho-Strixino et al. (2015)
53	T. kapilei (Trivinho-Strixino, 2012)	mpl	Brazil	Trivinho-Strixino (2012)
54	T. kiche Vinogradova, Riss et Spies, 2009	m	Belize, Costa Rica, Guatemala, Mexico, Nicaragua, Panama	Vinogradova et al. (2009), Dantas \& Giłka (2017)
55	T. kraussi (Säwedal, 1981)	m	Brazil	Säwedal (1981)
56	T. lenyae Sanseverino et Trivinho-Strixino, 2010	mp	Brazil	Sanseverino \& Trivinho-Strixino (2010)
57	T. ligulatus Reiss, 1972	mp	Brazil	Reiss (1972), Sanseverino (2006), Trivinho-Strixino et al. (2015)
58	T. longitubuli Trivinho-Strixino, Wiedenbrug et da Silva, 2015	mpl	Brazil	Trivinho-Strixino et al. (2015)
59	T. lulu sp. nov.	m	Colombia	present data
60	T. magnus Trivinho-Strixino et Strixino, 2004	mfpl	Brazil	Trivinho-Strixino \& Strixino (2004)
61	T. marauia Sanseverino, Wiedenbrug et Fittkau 2003	mp	Brazil	Sanseverino et al. (2003), Sanseverino (2006)
62	T. meta sp. nov.	m	Colombia	present data
63	T. monospinosus Ekrem et Reiss, 1999	m	Brazil	Ekrem \& Reiss (1999)
64	T. mulleri (Säwedal, 1981)	m	Brazil	Säwedal (1981)
65	T. obiriciae Trivinho-Strixino et Sonoda, 2006	mfpl	Brazil	Trivinho-Strixino \& Sonoda (2006), Trivinho-Strixino et al. (2015)
66	T. orellanai (Reiff, 2000)	m	Brazil	Reiff (2000)
67	T. ortoni (Säwedal, 1981)	mpl	Brazil	Säwedal (1981), Trivinho-Strixino \& Strixino (1991, 2003)
68	T. pandus Sublette et Sasa, 1994	mfp	Guatemala, Costa Rica	Sublette \& Sasa (1994), Spies \& Reiss (1996), Sanseverino (2006)
69	T. paraligulatus Reiss, 1972	m	Chile	Reiss (1972), Sanseverino (2006)
70	T. patagonicus (Reiss, 1972)	mpl	Argentina, Chile	Reiss (1972), Sanseverino et al. (2010)
71	T. pistra (Sublette et Sasa, 1994)	m	Guatemala	Sublette \& Sasa (1994), Reiff (2000)
72	T. poppigi (Säwedal, 1981)	m	Brazil	Säwedal (1981)
73	T. poqomchi Vinogradova, Riss et Spies, 2009	m	Belize, Mexico	Vinogradova et al. (2009)

TABLE 6. (Continued)

No	species	sex/stage	distribution/country	reference
74	T. pseudocurvicristatus Trivinho-Strixino, Wiedenbrug et da Silva, 2015	mpl	Brazil	Trivinho-Strixino et al. (2015)
75	T. reiffi Dantas, Amat, Hamada et Giłka, 2022**	m	Brazil	Reiff (2000)
76	T. reissi Paggi, 1992	m	Argentina	Paggi (1992), Sanseverino (2006)
77	T. revolta Sanseverino, Wiedenbrug et Fittkau, 2003	mp	Brazil	Sanseverino et al. (2003), Sanseverino (2006)
78	T. rhabdomantis (Trivinho-Strixino et Strixino, 1991)	mpl	Brazil	Trivinho-Strixino \& Strixino (1991), Trivinho-Strixino \& Sanseverino (2003), Sanseverino (2006)
79	T. rinihuensis Reiss, 1972	mp	Chile	Reiss (1972), Sanseverino (2006)
80	T. riopreto Fittkau et Reiss, 1973	m	Brazil	Fittkau \& Reiss (1973), Sanseverino (2006)
81	T. riotarumensis (Reiff, 2000)	mpl	Brazil	Reiff (2000), Trivinho-Strixino \& Strixino (2003)
82	T. sanseverinoi Dantas, Amat, Hamada et Giłka, 2022**	m	Brazil	Trivinho-Strixino \& Shimabukuro (2017)
83	T. spixi (Säwedal, 1981)	mp	Brazil	Säwedal (1981)
84	T. trivinhostrixinoi Dantas, Amat, Hamada et Giłka, 2022**	mpl	Brazil	Sanseverino \& Trivinho-Strixino (2010)
85	T. tuberculatus Reiss, 1972	mp	Argentina, Brazil, Chile	Reiss (1972), Sanseverino (2006), Sanseverino \& Fittkau (2007)
86	T. tumultuarius Ekrem et Reiss, 1999	m	Brazil	Ekrem \& Reiss (1999)
87	T. waika Sanseverino, Wiedenbrug et Fittkau, 2003	mp	Brazil	Sanseverino et al. (2003), Sanseverino (2006)
88	T. xingu Sanseverino, Wiedenbrug et Fittkau, 2003	mp	Brazil	Sanseverino et al. (2003), Sanseverino (2006)
89	T. yara (Trivinho-Strixino, 2012)	mfpl	Brazil	Trivinho-Strixino (2012)
	T. pararinihuensis sensu Sanseverino (2006), not yet valid (ICZN)	m	Bolivia	Sanseverino (2006)
	T. pseudorinihuensis sensu Sanseverino (2006), not yet valid (ICZN)	m	Argentina, Bolivia	Sanseverino (2006)
	T. oligotrochus Rempel, 1939, nomen dubium	m	Brazil	Rempel (1939), Spies \& Reiss (1996)

References

Arbelaez-Cortes, E. (2013) Knowledge of Colombian Biodiversity: Published and Indexed. Biodiversity and Conservation, 22, 2875-2906.
https://doi.org/10.1007/s10531-013-0560-y
Contreras-Lichtenberg, R. (1988) Tanytarsus curvicristatus spec. nov. eine neue Chironomidenart aus Kolumbien (Diptera: Chironomidae). Spixiana, Supplement 14, 101-104. [https://biostor.org/reference/86112]
Cranston, P.S. (2000) Monsoonal tropical Tanytarsus van der Wulp (Diptera: Chironomidae) reviewed: new species, life histories and significance as aquatic environmental indicators. Australian Journal of Entomology, 39, 138-159. https://doi.org/10.1046/J.1440-6055.2000.00170.X
Cranston, P.S. (2007) A new species for a bromeliad phytotelm-dwelling Tanytarsus (Diptera: Chironomidae). Annales of the Entomologica Society of America, 100, 617-622. https://doi.org/10.1603/0013-8746(2007)100[617:ANSFAB]2.0.CO;2
Dantas, G.P.S., Amat, G. \& Hernández-Rangel, S.M. (2019) A new Andean species of Ablabesmyia Johannsen from Colombia (Diptera: Chironomidae) with an updated taxonomic key for Neotropical species. Studies on Neotropical Fauna and Environment, 55 (2), 96-102. https://doi.org/10.1080/01650521.2019.1697162
Dantas, G.P.S. \& Giłka, W. (2017) New Tanytarsus van der Wulp from the Brazilian Amazonia indicate clues to intrageneric relations (Diptera: Chironomidae). Zootaxa, 4294 (2), 281-291. https://doi.org/10.11646/zootaxa.4294.2.10
Ekrem, T. \& Reiss, F. (1999) Two new Tanytarsus species (Diptera: Chironomidae) from Brazil, with reduced median volsella. Aquatic Insects, 21, 205-213. https://doi.org/10.1076/aqin.21.3.205.4525
Fittkau, E.J. \& Reiss, F. (1973) Amazonische Tanytarsini (Chironomidae, Diptera) I. Die riopreto-Gruppe der Gattung Tanytarsus. Studies on Neotropical Fauna, 8, 1-16. https://doi.org/10.1080/01650527309360451
Freeman, P. (1958) A study of the Chironomidae (Diptera) of Africa South of the Sahara. Part IV. Bulletin of the British Museum (Natura History) Entomology, 6, 263-363. https://doi.org/10.5962/bhl.part. 17110
Giłka, W. \& Zakrzewska, M. (2013) A contribution to the systematics of Neotropical Tanytarsus van der Wulp: first descriptions from Ecuador (Diptera: Chironomidae: Tanytarsini). Zootaxa, 3619 (4), 453-459. https://doi.org/10.11646/zootaxa.3619.4.3
Glover, B. (1973) The Tanytarsini (Diptera: Chironomidae) of Australia. Australian Journal of Zoology, Supplementary Series, 23, 403-478. https://doi.org/10.1071/AJZS023
ICZN [International Commission on Zoological Nomenclature] (1999) International Code of Zoological Nomenclature. $4^{\text {th }}$ Edition. International Trust for Zoological Nomenclature, London. Available from: https://www.iczn.org/the-code/the-code-online/ (accessed 30 September 2021)
Lin, X.-L., Stur, E. \& Ekrem, T. (2018) Molecular phylogeny and temporal diversification of Tanytarsus van der Wulp (Diptera: Chironomidae) support generic synonymies, a new classification and centre of origin. Systematic Entomology, 43 (4), 659-677. https://doi.org/10.1111/syen. 12292
Mendes, H.F. \& Pinho, L.C. (2014) Checklist of the Brazilian Chironomidae species. Available from: https://sites.google.com/ site/brazilianchironomids/list (accessed 30 April 2022)
Ospina-Torres, R., Mey, W. \& Jaime-Murcia, P. (2018) Two New orthoclad species from Colombian Andes (Diptera: Chironomidae). Zootaxa, 4472 (2), 385-392. https://doi.org/10.11646/zootaxa.4472.2.11
Paggi, A.C. (1992) Two new species of genus Tanytarsus from Argentina (Diptera, Chironomidae). Fragmenta Entomologica, 23, 299-306.
Reiff, N. (2000) Review of the mainly Neotropical genus Caladomyia Säwedal, 1981, with descriptions of seven new species (Insecta, Diptera, Chironomidae, Tanytarsini). Spixiana, 23, 175-198.
Reis, P.R., Gil-Azevedo, L.H. \& Ferreira-Keppler, R.L. (2021) Two new species of Tanytarsus van der Wulp (Diptera: Chironomidae) from Costa Rica. Zootaxa, 4966 (1), 84-90. https://doi.org/10.11646/zootaxa.4966.1.9
Reiss, F. (1972) Die Tanytarsini (Chironomidae, Diptera) Südchiles und Westpatagoniens. Mit Hinweisen auf die TanytarsiniFauna der Neotropis. Studies on Neotropical Fauna, 7, 49-94. https://doi.org/10.1080/01650527209360434
Rempel, J.G. (1939) Neue Chironomiden aus Nordostbrasilien. Zoolischer Anzeiger, 127, 209-216.
Roback, S. (1960) Results of the Catherwood Foundation Peruvian Amazon Expedition. New species of Tendipedidae (Diptera). Transactions of American Entomological Society, 86, 87-107. [https://www.jstor.org/stable/25077799]

Roskov, Y., Abucay, L., Orrell, T., Nicolson, D., Bailly, N., Kirk, P.M., Bourgoin, T., DeWalt, R.E., Decock, W., De Wever, A., Nieukerken, E. van, Zarucchi, J. \& Penev, L. (2019) Species 2000 \& ITIS Catalogue of Life. Available from: http://www. catalogueoflife.org/annual-checklist/2019/ (accessed 15 May 2021)
Sæther, O.A. (1969) Some Nearctic Podonominae, Diamesinae and Orthocladiinae (Diptera: Chironomidae). Bulletin of the Fisheries Research Board of Canada, 107, 1-154. [https://waves-vagues.dfo-mpo.gc.ca/Library/1505.pdf]
Sæther, O.A. (1980) Glossary of chironomid morphology terminology (Diptera, Chironomidae). Entomologica scandinavica, Supplement 14, 1-51. [https://www.nhbs.com/glossary-of-chironomid-morphology-terminology-diptera-chironomidaebook]
Sanseverino, A.M. (2006) A review of the genus Tanytarsus van der Wulp, 1874 (Insecta, Diptera, Chironomidae) from the Neotropical Region. Dissertation, Fakultät für Biologie, Ludwig-Maximilians-Universität, München, 312 pp. Available from: http://edoc.ub.uni-muenchen.de/4975 (accessed 30 September 2020)
Sanseverino, A.M. \& Fittkau, E.J. (2006) Four new species of Tanytarsus van der Wulp, 1874 (Diptera: Chironomidae) from South America. Zootaxa, 1162 (1), 1-18. https://doi.org/10.11646/zootaxa.1162.1.1
Sanseverino, A.M. \& Fittkau, E.J. (2007) Taxonomy of Caladomyia alata (Paggi, 1992) and Caladomyia tuberculata (Reiss, 1972), new combinations (Diptera: Chironomidae). In: Andersen, T. (Ed.), Contributions to the Systematics and Ecology of Aquatic Diptera-A Tribute to Ole A. Scether. The Caddis Press, Columbus, Ohio, pp. 265-273.
Sanseverino, A.M. \& Trivinho-Strixino, S. (2010) New Species of Tanytarsus van der Wulp (Diptera: Chironomidae) from São Paulo State, Brazil. Neotropical Entomology, 39 (1), 67-82. https://doi.org/10.1590/S1519-566X2010000100010
Sanseverino, A.M., Trivinho-Strixino, S. \& Nessimian, J.L. (2010) Taxonomic status of Nimbocera Reiss, 1972, a junior synonym of Tanytarsus van der Wulp, 1874 (Diptera: Chironomidae). Zootaxa, 2359 (1), 43-57. https://doi.org/10.11646/zootaxa.2359.1.3
Sanseverino, A.M. \& Wiedenbrug, S. (2000) Description of the pupa of Tanytarsus cuieirensis Fittkau \& Reiss (Insecta, Diptera, Chironomidae). Spixiana, 23, 207-210.
Sanseverino, A.M., Wiedenbrug, S. \& Fittkau, E.J. (2003) Marauia group: a new species group in the genus Tanytarsus van der Wulp, 1874, from the Neotropics (Diptera, Chironomidae). Studia Dipterologica, 9, 453-468.
Sasa, M. \& Kawai, K. (1987) Studies on the chironomid midges of Lake Biwa (Diptera, Chironomidae). Lake Biwa Study Monographs, 3, 1-120.
Säwedal, L. (1981) Amazonian Tanytarsini II. Description of Caladomyia n . gen. and eight new species (Diptera: Chironomidae). Entomologica scandinavica, 12, 123-143. https://doi.org/10.1163/187631281794709890
Spies, M. \& Reiss, F. (1996) Catalog and bibliography of Neotropical and Mexican Chironomidae (Insecta, Diptera). Spixiana, Supplement 22, 61-119. [https://biostor.org/reference/86122]
Sublette, J.E. \& Sasa, M. (1994) Chironomidae collected in onchocerciasis endemic areas of Guatemala (Insecta, Diptera). Spixiana, Supplement 20, 1-60. [https://biostor.org/reference/86107]
Trivinho-Strixino, S. (2012) A systematic review of Neotropical Caladomyia Säwedal (Diptera: Chironomidae). Zootaxa, 3495 (1), 1-41. https://doi.org/10.11646/zootaxa.3495.1.1
Trivinho-Strixino, S. \& Sanseverino, A.M. (2003) Tanytarsus rhabdomantis: New combination for Nimbocera rhabdomantis Trivinho-Strixino \& Strixino, 1991 (Diptera: Chironomidae). Zootaxa, 389 (1), 1-10. https://doi.org/10.11646/zootaxa.389.1.1
Trivinho-Strixino, S. \& Shimabukuro, E.M. (2017) Tanytarsini (Diptera: Chironomidae) from madicolous habitat in Southeast Brazil: new species and new records. Zootaxa, 4269 (3), 427-437. https://doi.org/10.11646/zootaxa.4269.3.6
Trivinho-Strixino, S. \& Sonoda, K.C. (2006) A new Tanytarsus species (Insecta, Diptera, Chironomidae) from São Paulo State, Brazil. Biota Neotropica, 6 (2), 1-9. https://doi.org/10.1590/S1676-06032006000200020
Trivinho-Strixino, S. \& Strixino, G. (1991) Duas novas espécies de Nimbocera Reiss (Diptera, Chironomidae) do Estado de São Paulo, Brasil. Revista Brasileira de Entomologia, 35, 173-178.
Trivinho-Strixino, S. \& Strixino, G. (2000) A new species of Caladomyia Säwedal, 1981, with description of the female and immature stages (Insecta, Diptera, Chironomidae). In: Baehr M., Spies M. (eds). Contributions to chironomid research in memory of Dr. Friedrich Reiss. Spixiana, 23, 167-173.
Trivinho-Strixino, S. \& Strixino, G. (2003) The immature stages of two Caladomyia Säwedal, 1981 species, from São Paulo State, Brazil (Chironomidae, Chironominae, Tanytarsini). Revista Brasileira de Entomologia, 47, 597-602.
Trivinho-Strixino, S. \& Strixino, G. (2004) Two new species of Tanytarsus from southeast of Brazil (Insecta, Diptera, Chironomidae). Spixiana, 27, 155-164.
Trivinho-Strixino, S. \& Strixino, G. (2007) A new Neotropical species of Tanytarsus van der Wulp, 1874 (Diptera: Chironomidae), with an unusual anal process. Zootaxa, 1654 (1), 61-67.
https://doi.org/10.11646/zootaxa.1654.1.5

Trivinho-Strixino, S., Wiedenbrug, S. \& da Silva, F.L. (2015) New species of Tanytarsus van der Wulp (Diptera: Chironomidae: Tanytarsini) from Brazil. European Journal of Environmental Sciences, 5 (1), 92-100. https://doi.org/10.14712/23361964.2015.82
Vinogradova, E.M, Riss, H.W. \& Spies, M. (2009) New species of Tanytarsus van der Wulp, 1874 (Diptera: Chironomidae) from Central America. Aquatic Insects, 31, 11-17. https://doi.org/10.1080/01650420802502477
Zakrzewska, M. \& Giłka, W. (2013) In the Eocene, the extant genus Caladomyia occurred in the Palaearctic (Diptera: Chironomidae: Tanytarsini). Polish Journal of Entomology, 82, 397-403. https://doi.org/10.2478/pjen-2013-0003

