Otapirian (Rhaetian) Terebratulida (Brachiopoda) of Zealandia

DONALD ALEXANDER BANKIER MACFARLAN
13 Fairfax Terrace, Frankleigh Park, New Plymouth 4310, New Zealand
✉ donald.macfarlan@xtra.co.nz; https://orcid.org/0000-0001-6853-5675

Abstract

Terebratulides are present throughout the Zealandian Rhaetian (Otapirian local stage), but only Zeilleria spiculata has been described to date. Others have been recorded, mainly as Dielasma. A total of seven species are recorded here. In this paper, two new species are included in the dielasmatid genus Tibetothyris Jin and Sun, 1976. Tibetothyris hamishi n. sp. is found in New Caledonia and the Kawhia and Southland synclines. Tibetothyris johnstoni n. sp. is found in New Caledonia, Nelson, and the Taringatura Hills in western Southland. A large, biconvex terebratulide that is common at a few localities in île Ducos and île Hugon, New Caledonia, in Nelson, and probably in Southland, belongs to the cosmopolitan genus Rhaetina and is described as Rhaetina rainei n. sp.

Lobothyris richardsi n. sp. is proposed for a Lobothyris with a distinctive straight anterior margin. This has some resemblance to the Siberian and North American late Triassic species Lobothyris monstrifera Dagys, 1963.

As well as Z. spiculata, two other species of Zeilleria are recognized from the Otapirian of Zealandia. A small form that has some similarity to the Early Jurassic Zeilleria terezowae is here named Z. minima n. sp. A single specimen of a larger, strongly inflated species is described as Zeilleria n. sp.

The fauna as a whole is cosmopolitan, with affinities to the Circumpacific region.

Key words: New Zealand; New Caledonia; Zealandia; Brachiopoda; Terebratulida; Late Triassic; Murihiku Terrane; Téremba Terrane

Introduction

This paper is intended as a detailed systematic account of the Otapirian terebratulides of Zealandia. It forms part of the author’s survey of Late Triassic and Jurassic brachiopods, along with work on the rhynchonellides (MacFarlan 1992), Jurassic terebratulides (MacFarlan and Campbell 2003, MacFarlan 2016, 2019) and latest Triassic and Early Jurassic spiriferinides (MacFarlan 2023).

Terebratulides are a minor group of brachiopods in the Triassic marine faunas of Zealandia and have received little taxonomic attention. In contrast, they become second to the rhynchonellides in terms of specimen numbers and species diversity in the Jurassic, and the most dominant group in the Cenozoic.

A major purpose of this paper is to provide the taxonomic framework for analysis of the effects of the end-Triassic extinction event on Zealandian brachiopod faunas. The terebratulides are one of three major brachiopod groups which span the Triassic-Jurassic boundary in Zealandia, along with spiriferinides and rhynchonellides.

Previous Work

Treichmann (1918) described two new terebratulide species (Dielasma zealandica and Terebratula pachydentata), and described three more (Dielasma cf. himalayana, Coenothyris sp. and Terebratula cf. hungarica) in open nomenclature. Of these, only Coenothyris sp. was recorded from the Otapirian. Marwick (1953) figured the same species, with a few comments. The only published addition to the fauna since then is that of Zeilleria spiculata MacFarlan and Campbell, 2003, which spans the Triassic-Jurassic boundary (MacFarlan and Campbell 2003,
MacFarlan 2019. MacFarlan et al. (2009) list a total of 13 species of Triassic terebratulide, one of which is Early to Middle Triassic (Malakovian) five are Middle Triassic (Etalian-Kaikhuan) and nine are Late Triassic (Oretian to Otapirian). Most of these are from the unpublished work of Begg (1981).

Methods

This paper is based on material from the collections of the School of Environment, University of Auckland, the Department of Geology, University of Otago, and the National Palaeontological Collection at GNS Science, Lower Hutt. Methods and taxonomic approach are generally those applied in the author’s previous works on Mesozoic brachiopod faunas of New Zealand and New Caledonia (MacFarlan 1992, 2016, 2019).

All suitable specimens were measured (Fig. 1) and catalogued in the relevant specimen catalogue. Specimens with valid length (Ld or Lv) and width data were used in plotting graphs and for statistics. All measurement data will be available in a planned update to MacFarlan (2021). Working photos and camera lucida drawings were taken where required. No serial sections were made as there were too few well-preserved double-valved shelly specimens available to justify the destruction of any of them. Abbreviations used in measurement tables are shown in Fig. 1.

Classification and morphologic terminology follow the revised Brachiopoda volumes of the Treatise on Invertebrate Paleontology (Kaesler 2000–2007). Authorship for higher taxa, genera and type species also follows Treatise usage unless otherwise stated. Abbreviations used throughout for type species designation are OD (by original designation) and SD (by subsequent designation).

Locality and collection data

Nearly all localities discussed here are registered in the New Zealand Fossil Record File maintained by the Geoscience Society of New Zealand and GNS Science (Clowes et al. 2021). Localities are registered by NZMS260 map sheet number and registration number (FR number), with a letter to indicate a recollection (for example R13/f6613A). The associated Fossil Record Electronic Database (FRED) was used extensively to search for collections containing terebratulide material and to obtain locality, stratigraphic and faunal data. New Caledonian collections held in New Zealand are also registered in the Fossil Record File (prefixed NC).

Collections and specimens are catalogued as follows:
- University of Auckland School of Environment: Collections prefixed AU, brachiopod specimens prefixed B.
- University of Otago Department of Geology Museum: collections under collector’s field number, catalogued specimens prefixed OU. Specimens in J.D. Campbell’s catalogue prefixed C.
- National Paleontological Collection at GNS Science, Avalon: collections prefixed GS, catalogued specimens prefixed BR.
A few localities are not registered in the Fossil Record File. These are listed with the relevant NZMS 260 map sheet number (example E45/f (AU 2819). “Probable” identifications are shown in lists by a question mark in front of the collection number.

Locality data are summarised in Appendix A.

Correlations

Detailed biostratigraphy in this paper is in terms of the New Zealand stage system as originally proposed by Marwick (1951, 1953) and refined and subdivided by Cooper (ed.) (2004). Correlations with international stages follow Raine et al. (2015). The stage system and the correlations of key localities and horizons are summarised in Fig. 2.

The Otapirian stage was further refined by Campbell and McKellar (1956) and Campbell (1956). It is correlative with the international Rhaetian Stage (Cooper et al. 2004, Raine et al. 2015). The upper and lower boundaries of the Otapirian are very close to those of the Rhaetian, but not coincident. Recent work by Rigo and Campbell (2022) in the Kiritehere section (south of Kiritehere Stream) indicates that the Norian-Rhaetian boundary, as defined by a negative δ¹³Corg shift, occurs 6.4m below the first appearance of ?Aulacoceras otapiriense, which defines the base of the Otapirian stage. Aikikuni et al. (2010) proposed a Triassic-Jurassic boundary zone about 10 –12m thick at Kawhia and Awakino Gorge between Otapirian and Aratauran faunas. To put this in perspective, Kawhia Syncline Otapirian sections are 800 – 1500m thick (MacFarlan 1998).

Campbell (1956) proposed basal and upper Otapirian faunas based on brachiopods and molluscs. Cooper et al. (2004) recognised two informal divisions, an early Otapirian with faunal assemblages characterised by a large undescribed bivalve Antiquilima, and a late Otapirian fauna characterised by the brachiopod Mentzelia kawhiana and the bivalve Otapiria dissimilis. Although there are a few earlier records that require substantiation, Otapiria dissimilis becomes common some distance above Mentzelia kawhiana in most sections.

Geographic and Stratigraphic Setting

The material described here comes from the Téremba Terrane on the west coast of New Caledonia (Campbell et al. 1985, Aitchison et al. 1995), and the Kawhia, Nelson and Southland Synclines, which were deposited within the Murihiku Supergroup, Murihiku Terrane of New Zealand (Campbell et al. 2003, Mortimer et al. 2014). The entire area of continental crust surrounding New Caledonia and New Zealand (Fig. 3) is now seen as forming the largely submerged continent of Zealandia (Mortimer and Campbell 2014, Mortimer et al. 2017).

Stratigraphic Summary

Fossiliferous Otapirian rocks are found on the west coast of New Caledonia (Fig. 4A) in the Baie de St Vincent (Paris 1981, Faucé et al. 1982), the Moindou area and Baie de Téremba to the north (Campbell and Grant-Mackie, 1984, Campbell et al. 1985). All the material cited here comes from the islands of île Ducos and île Hugon in the Baie de St Vincent.

Otapirian beds containing terebratulides are present on the western limb of the Kawhia Syncline from Kawhia Harbour south to Awakino Gorge (Fig. 4B). Significant areas are the open (Tasman Sea) coast of Te Maika Peninsula at and south of Arataura Point (Marwick 1953, Martin 1975, Waterhouse and White 1994), the coast north of Marokopa (Stevens 2012), the coast between Kiritehere and Marokopa (MacFarlan 1998) and Awakino Gorge at the southern end of the exposed syncline (MacFarlan 1959).

Otapirian strata are present in Nelson (Campbell 1974, Johnston 1982, 1983, Rattenbury et al. 1998). Terebratulides are found in the Eighty-Eight Valley and Highfield areas in the southern part of the Nelson Syncline. A large collection including many terebratulides was collected by Alexander McKay in 1878 at N28/f7454 (GS196) (McKay 1878). This material comes from the Otapirian near the axis of the Eighty-Eight Valley Syncline (Johnston 1983).
FIGURE 2. Late Triassic - Jurassic timescale and range chart showing correlations between New Zealand and international stages (adapted from Raine et al. 2015) and ranges of Zealandian terebratulide species.

FIGURE 3. A Zealandia, showing the area of submerged continental crust surrounding New Zealand and extending to New Caledonia. Base map: NIWA (National Institute of Water and Atmospheric Research). B New Caledonia, showing location of Moindou-Téremba area and Baie de St Vincent (Fig. 4A). C New Zealand, showing Kawhia, (Fig. 4B) Nelson and Southland (Fig. 4C) synclines, Alpine Fault and plate boundary.
FIGURE 4. Main areas of Triassic–Jurassic strata in this study with main terebratulide localities shown (red stars): A Baie de St Vincent, New Caledonia, with areas of Late Triassic and Jurassic rocks indicated. Base and geology from Gouvernement de la Nouvelle-Calédonie data. B Southwest Auckland, showing southern part of Kawhia Syncline, with areas of Late Triassic and Jurassic rocks indicated. C Western Southland, showing northwestern part of Southland Syncline. Base for B and C: LINZ (Land Information New Zealand) topographic data with geology from GNS Science (Institute of Geological and Nuclear Sciences) 1: 250,000 geological map (Q-Map; Edbrooke et al. 2014, Heron 2014).
Otapiarian rocks with diverse brachiopod and molluscan faunas are found throughout the northeast limb of the Southland Syncline from the Taringatura Hills to the east coast at Nugget Point (Fig. 4C) (Campbell 1956, Campbell and McKellar 1956, Turnbull and Allibone 2003, Bishop and Turnbull 1996). Terebratulides are sparsely present in most of this area, but more common in the Hokonui Hills, especially the Otapiri Valley (Campbell 1956, Campbell and McKellar 1956). One prolific early Otapiarian locality in the South Taringatura Hills (E45/f 6635) has yielded many small specimens of several species.

Systematic Palaeontology

Phylum BRACHIOPODA Duméril, 1806

Subphylum RHYNCHONELLIFORMEA Williams and others, 1996

Class RHYNCHONELLATA Williams and others, 1996

Order TEREBRATULIDA Waagen, 1883

Suborder TEREBRATULIDINA Waagen, 1883

Superfamily DIELASMATOIDEA Schuchert, 1913

Family DIELASMATIDAE Schuchert, 1913

Subfamily DIELASMATINAE Schuchert, 1913

The cosmopolitan genus Dielasma King 1859 has long been recorded as part of the New Zealand Triassic fauna. Treehmann (1918) described D. zealandica and listed but did not figure D. cf. himalayana Bittner 1899. Wilckens (1927) did illustrate this species and Marwick (1953) suggested that more than one species may be present. Both species are from the Kaikihukan shellbed at Caroline Cutting, Southland. More recently Dagys (1959) suggested that Dielasma hungaricum and D. zealandicum could be included in his new genus Adygella.

Begg (1981) records one species of Dielasmatae from the Malakovian - Etalian (Anisian) of Southland, and a different species from the Oretian (late Carnian - Norian; Cooper et al. 2004). The Malakovian - Etalian species is biconvex. The Oretian species is sulcate but is not figured. Other undescribed species are present in the Late Triassic. The entire group in Zealandia requires revision.

More recent work (Stelhi 1965, Jin et al. 2006) regard Dielasma as a cosmopolitan late Paleozoic genus but do not recognize its presence in the Triassic. Feldman (2017) regarded Tunethyris Calzada et al. 1994 as a homeomorph of Dielasma and described Tunethyris blodgetti from the Middle Triassic of Southern Israel. Tunethyris is biconvex and has little resemblance to the two species described here.

Tibetothyris Jin and Sun, 1976

1976 Tibetothyris Jin and Sun, in Jin et al. 1976 p. 27.
2017 Tibetothyris Jin and Sun, 1976; Sun et al. p. 958.

Type Species Tibetothyris depressa Jin and Sun, 1976 (OD).

Jin and Sun (1976) described Tibetothyris from the Norian of Tulong, Xizang (Tibet). The type species has not been recorded elsewhere. It is strongly folded and of similar shape to the two New Zealand species.

They also included the much more widespread Terebratula julica in Tibetothyris. It was described by Bittner (1890) from the Late Triassic of the European Alps but has since been recorded from Hungary (Bittner 1912, Dete
1970), the Sinai (Awad 1945), China (Jin et al. 1976, Sun et al. 2017), East Timor (Krumbeek 1924, Wanner 1956), and California (Smith 1927). *Tibetothyris julica* is more rounded, with the plicae developed only on the anterior part.

The two species described here were originally identified in collections as *Dielasma* sp. and are included in *Tibetothyris* on their similarity in shape and internal characters to *Tibetothyris depressa* and *T. julica*. On both new species the dental plates are short and begin some distance behind the tip of the beak. It is possible that the posterior ends of these were buried in callus.

Tibetothyris johnstoni new species

Fig. 5: 1–8. Fig. 6 A–B.

Holotype. BR 3420 a double-valved internal mould from N28/f7454, GS 196, Eighty-Eight valley Nelson; collected A. McKay 19/3/1898.

Derivation of name. This species is named for Dr Mike Johnston, geologist, of Nelson.

Material. The data series consists of thirteen specimens, eleven of which yielded valid measurements.

New Caledonia. ile Hugon NC/f109a (AU 7165).

Nelson. Eighty-Eight Valley N28/f7454 (GS 196), Ram Creek; N28/f0045 (PGS 40).

Southland. Taringatura Hills E45/f6635 (JDC 241).

Description. Small to medium sized terebratulide with rounded-pentagonal outline. The dorsal valve is moderately convex posteriorly and has a distinct shallow, rounded sulcus anteriorly.

The ventral valve is strongly convex posteriorly, with two close-spaced rounded plicae which diverge behind the beak, separated by a shallow rounded central sulcus. The flanks are broad and slightly concave. The anterior part has a high fold and a narrow, shallowly concave central part. The anterior commissure is strongly sulcate. The shell surface is smooth apart from a few strong, stepped concentrics.

The beak is large and triangular with a bluntly rounded tip. The foramen is large, circular, and mesothyrid, with a short pedicle collar (Fig. 5.1d, 6A). The beak ridges are strong and bluntly rounded. The deltidial plates are small and widely disjunct (Fig. 5.1a, 6A). The dental plates are short, divergent and widely separated (Fig. 5.2a, 5.7a, b).

The dorsal valve has a hingeplate with a deep U-shaped septalium (Fig. 5.1a, 6A, B), a broad, shallow median septum with longitudinal grooves which appear to be muscle attachments (Fig. 5.1a, 5.2a). A small, high, striated cardinal process is present, and is close to the anterior of the foramen (Fig. 5.2a, 6B).

The shell is coarsely and densely punctate.

Dimensions. Dimensions of the holotype and representative specimens, and statistics for all measurable specimens are shown in Table 1. A length vs width graph is shown in Fig. 9A.

Range and Distribution. Otapirian, early Otapirian in New Caledonia and Southland, late Otapirian in Nelson. Of the 13 specimens measured, nine come from one early Otapirian locality (E45/f6635 (JDC 241) in the South Taringatura Hills, western Southland.

TABLE 1. Dimensions, *Tibetothyris johnstoni* n. sp.

<table>
<thead>
<tr>
<th>FR no.</th>
<th>specimen</th>
<th>Lv</th>
<th>Lp</th>
<th>W</th>
<th>H</th>
<th>b<</th>
<th>MS/L</th>
<th>material</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>N28/f7454</td>
<td>BR 3420</td>
<td>19.7</td>
<td>16.7</td>
<td>16.3</td>
<td>10.2</td>
<td>79</td>
<td>0.5</td>
<td>b int</td>
<td>Holotype</td>
</tr>
<tr>
<td>N28/f7454</td>
<td>BR 3419</td>
<td>26.3+</td>
<td>22.5+</td>
<td>20.5</td>
<td>10.1</td>
<td>77</td>
<td>0.5</td>
<td>b int</td>
<td></td>
</tr>
<tr>
<td>E45/f6635</td>
<td>C1963</td>
<td>20.4</td>
<td>18.8</td>
<td>16.4</td>
<td>9.8</td>
<td>60</td>
<td></td>
<td>b pt shelly</td>
<td></td>
</tr>
<tr>
<td>E45/f6635</td>
<td>C1967</td>
<td>21.9</td>
<td>18.9</td>
<td>17.5</td>
<td>8.9</td>
<td>78</td>
<td>0.6</td>
<td>b int</td>
<td></td>
</tr>
<tr>
<td>E45/f6635</td>
<td>C1970</td>
<td>19.3</td>
<td>15.7</td>
<td>16.2</td>
<td>7.2</td>
<td>72</td>
<td>0.5</td>
<td>b int</td>
<td></td>
</tr>
<tr>
<td>All valid specimens</td>
<td>mean</td>
<td>18.9</td>
<td>17.3</td>
<td>15.4</td>
<td>8.4</td>
<td>71.8</td>
<td></td>
<td>11 specimens</td>
<td></td>
</tr>
<tr>
<td>All valid specimens</td>
<td>S.D.</td>
<td>8.96</td>
<td>8.30</td>
<td>7.33</td>
<td>4.07</td>
<td>30.91</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5. *Tibetothyris johnstoni* n. sp.
1 Holotype BR 3420 (N28/f7454) (a) dorsal (b) ventral (c) lateral (d) posterior (e) anterior. 2 BR 3419 (N28/f7454) (a) dorsal (b) ventral (c) lateral (d) posterior. 3 B890 (NC/f0109B) shelly specimen, ventral. 4 C1963 (E45/f6635) partly shelly specimen (a) dorsal (b) ventral (c) lateral (d) anterior. 5 C1965 (E45/f6635) internal mould, distorted, dorsal. 6 C1967 (E45/f6635) internal mould (a) dorsal (b) ventral (c) lateral (d) posterior (e) anterior. 7 C1970 (E45/f6635) internal mould (a) dorsal (b) ventral (c) lateral (d) posterior (e) anterior. 8 C1971 (E45/f6635) internal mould (a) dorsal (b) ventral (c) lateral.
FIGURE 6. Detailed view of beak area, *Tibetothyris johnstoni* n. sp. A Holotype BR 3420 (N28/f7454), dorsal view of internal mould showing pedicle collar, ridged septalium, broad median septum and short, widely divergent dental plates. B C1970 (E45/f6635) dorsal view of internal mould, showing small cardinal process.

Remarks. This species is close to *Tibetothyris depressa* in shape, but the folding differs. *T. depressa* has strong rounded lateral folds and two weak central folds on the dorsal valve, and a weak central fold on the ventral fold. The anterior commissure is sulciplicate to bisulcate (Jin et al. 1976, Jin et al. 2006, Sun et al. 2017). *T. johnstoni* is more strongly folded. The dorsal valve has similar strong rounded lateral folds and a central sulcus. The ventral valve is strongly convex with two low, incipient or poorly developed rounded folds anteriorly. The anterior commissure is unisulcate. *T. depressa* has long dental plates whereas in *T. johnstoni* the dental plates are short and widely separated.

Tibetothyris hamishi n. sp.

Fig. 7 1–9, 8A–B.

2019: *Aulacothyris* sp. A MacFarlan p. 574, fig. 13 a–d. (NZGS BR 3207 only).

Holotype. OU 47309, a shelly specimen with an external mould of the dorsal valve and beak, from F45/f329, JDC 4216, west of Dolamore Park, Hokonui Hills. Collected by J.D. Campbell and S.R. Owen, 21/10/1992. Shell material altered to clay or zeolite.

Derivation of name. This species is named for Dr Hamish Campbell of GNS Science.

Material. The data series consists of fifteen specimens, thirteen of which yielded valid measurements.

New Caledonia. île Ducos: NC/f050 (GS 12763), NC/f0087 (AU 7168)

Description. Small to medium sized terebratulide with elongate elliptical outline. The dorsal valve is moderately convex posteriorly and flatter anteriorly, with a shallow, rounded sulcus developing close to the beak and extending anteriorly.

The ventral valve is strongly convex posteriorly. The anterior part has concave flanks, and a strongly convex central part. The anterior commissure is shallowly sulcate. The shell surface is smooth or has a few strong, stepped concentrics anteriorly. Punctae are coarse and closely spaced.
The beak is large and triangular with a bluntly rounded tip. The foramen is large, circular, mesothyrid, and is surrounded by a short pedicle collar (Fig. 7.1a, 7.3a, 8B). The beak ridges are strong, bluntly rounded. Deltidial plates are poorly shown and are small and widely disjunct (Fig. 7.1a, 7.3a).

On the dorsal valve the hingeplate has a broad, shallow U-shaped septalium supported by a wide, shallow median septum with fine longitudinal grooves which appear to be muscle attachments (Fig 7.8a, 8A, B), and a small cardinal process (Fig. 8B). The posterior tip of the dorsal valve reaches the anterior of foramen. The dental plates are short, widely separated and divergent (Fig. 7.8a, b, 8B).

Dimensions. Dimensions of the holotype and representative specimens, and statistics for all measurable specimens are shown in Table 2. A length vs width graph is shown in Fig. 9A.

Range and Distribution. Otapirian of New Caledonia, Kawhia Syncline and Southland. Nearly all the material is late Otapirian, but the specimen from NC/f0087 (île Ducos, New Caledonia) is early Otapirian.

TABLE 2. Dimensions, *Tibetothyris hamishi* n. sp

<table>
<thead>
<tr>
<th>FR no.</th>
<th>specimen</th>
<th>Lv</th>
<th>Lp</th>
<th>W</th>
<th>H</th>
<th>b<</th>
<th>MS/L</th>
<th>material</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>F45/f0329</td>
<td>OU 47309</td>
<td>39.4</td>
<td>33.8</td>
<td>34.9</td>
<td>13.9</td>
<td>90</td>
<td></td>
<td>b pt shelly</td>
<td>Holotype</td>
</tr>
<tr>
<td>NC/f0087</td>
<td>B905</td>
<td>29.6</td>
<td>27.5</td>
<td>24.7</td>
<td>13.4</td>
<td>105</td>
<td></td>
<td>b pt shelly</td>
<td></td>
</tr>
<tr>
<td>R15/f8838</td>
<td>B665</td>
<td>29.8</td>
<td>22.1</td>
<td>24.1</td>
<td>9.0</td>
<td>83</td>
<td></td>
<td>b pt shelly</td>
<td></td>
</tr>
<tr>
<td>F45/f8523</td>
<td>BR 3502</td>
<td>42.0</td>
<td>39.3</td>
<td>31.6</td>
<td>14.7</td>
<td>109</td>
<td>0.4</td>
<td>b int</td>
<td></td>
</tr>
<tr>
<td>All valid</td>
<td>mean</td>
<td>27.9</td>
<td>25.2</td>
<td>23.2</td>
<td>10.0</td>
<td>95.3</td>
<td></td>
<td></td>
<td>13 specimens</td>
</tr>
<tr>
<td>specimens</td>
<td>S.D.</td>
<td>15.25</td>
<td>12.07</td>
<td>10.79</td>
<td>5.13</td>
<td>41.61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 8. Detailed view of beak area, *Tibetothyris hamishi* n. sp. A B822 (R16/f0377) internal mould of dorsal valve, showing median septum and septalium. B BR 3417 (NC/f0050) dorsal view of internal mould, slightly distorted, showing dental plates, foramen with pedicle collar and cardinal process.

Remarks. The shape is distinctive. Specimens from the Oretian and Otamitan of Southland are of similar shape and size but lack the strongly convex central part and concave flanks of the new species. From the limited material examined, they appear to belong to a separate but related species.

BR 3207 (R16/f6898, GS 10009) was figured in MacFarlan (2019, fig 13:13a-d) as *Aulacothyris* sp. A. It is badly distorted, but re-examination shows that it is much better placed in the new species.

This species is larger than *T. johnstoni*, less inflated, and lacks the strong folding on the ventral valve. The dental plates are short and widely separated, resembling those of *T. johnstoni* rather than *T. depressa.*
Family **ANGUSTOTHYRIDIDAE** Dagys, 1972

Rhaetina Waagen 1882

1882 *Rhaetina* Waagen, p.334.
1965a *Rhaetina* Waagen, 1882; Muir-Wood p. 769.
1977 *Rhaetina* Waagen, 1882; Pearson, p. 35.

Type species *Terebratula gregaria* Suess, 1854. OD.

The genus *Rhaetina* Waagen, 1882 is widely recognised in the Late Triassic of central and eastern Europe (Pearson 1977, Siblík 1999, Siblík and Bryda 2005, Michalik 1975). Pearson (1977) commented that the type species *Rhaetina gregaria* was “without doubt the commonest and most widely distributed of the Rhaetian brachiopods” (p. 38). It has also been recorded from western North America (Ager and Westermann 1963, Sandy and Stanley 1993), Iran (Kristin-Tollmann et al. 1979), China (Yang and Xu 1966, Jin et al. 1976, Sun et al. 2017), Turkey (Bittner 1891, Ager et al. 1978), central and eastern Asia (Dagys 1963, 1974) and Vietnam (Khuc 2000). *Rhaetina* is also present in the European Early Jurassic (Pearson 1977).

Rhaetina has not previously been recognised in Zealandia. It is characterised by a large suberect beak, with a large foramen and well-developed pedicle collar. It often shows considerable variability in shape, size and anterior folding (Pearson 1977, Sandy and Stanley 1993) and can occur in large numbers (Michalik 1975, Pearson 1977). While the loop details of the Zealandian form have not been seen, it agrees with *Rhaetina* in shape, and in the development of folding. Like other species of *Rhaetina* it is variable in shape, and occurs in large numbers at a few localities.

Rhaetina rainei n. sp.

Fig. 10, 1–8, Fig. 11, 1–11. Fig. 12A–C

1951 *Coenothyris* sp. Trechmann 1918; Marwick 1953 p. 34, pl. 1: 8, 9.
NON *Coenothyris* sp. Trechmann, p. 218, pl. 23:7 (fide J.D. Campbell, MS)

Holotype. B876 from NC/f0519 AU 7774, île Hugon. Double-valved shelly specimen with some damage to dorsal valve. Collected by J.A. Grant-Mackie.

Derivation of name. This species is named for Dr Ian Raine of GNS Science.

Material. The data series consists of 129 specimens, 38 from New Caledonia and 91 from Nelson; 23 New Caledonia specimens and 68 from Nelson yielded valid measurements.

Southland Syncline. Oreti Valley: E45/f7484 (?GS372).

Description. Medium sized to large terebratulide with an elongate-elliptical to rounded-triangular outline. The dorsal valve is moderately and evenly convex posteriorly, and generally has two rounded folds anteriorly. Some large specimens are not folded.

The ventral valve is strongly convex posteriorly, and in some specimens is strongly folded anteriorly. The initiation of folds is variable, from 1/5 of valve length in some specimens to near anterior in others. The folds are often stronger on the dorsal valve. The strength can be accentuated by distortion. The anterior margin is uniplicate or parasulcate.

The shell surface is smooth or has fine closely spaced growth lines. Some specimens have stronger, rounded concentrics, which may be visible on the valve interior. Punctae appear to be fine but are poorly shown on shelly New Caledonia specimens and the remnant shell material on Nelson specimens due to recrystallisation.
The beak is triangular and suberect with a bluntly rounded tip. The foramen is large, subcircular (Fig. 10.1a) and permesothyrid (Fig. 11.6a, 6d, 12A–C), and is surrounded by a large, thick pedicle collar. The beak ridges are blunt and poorly defined. The deltidial plates are large and disjunct (Fig. 12C).

In the dorsal valve the hingeplate has broad inner socket ridges and narrow outer ridges, with a distinct cardinal process (Fig. 11.4a, 6a, 9, Fig. 12A, B). There is a low, ridge-like median septum which is about 1/3 of valve length, with a shallow muscle field on either side of the septum (Fig. 11.6a). The loop was not seen.

Dimensions. Dimensions of the holotype and representative specimens, and statistics for New Caledonia and Nelson specimens are shown in Table 3. A length vs width graph is shown in Fig. 9B.

Range and Distribution. Otapirian of Nelson and New Caledonia (Hugon and Ducos). The Nelson material is late Otapirian, the New Caledonia material is both early and late Otapirian.

Marwick (1953) figured *Coenothyris* sp., which was originally reported by Trechmann (1918) from the Warepan of Ram Hill, Nelson (N28/7522, GS 4559). Re-examination of Marwick’s figured specimens (BR 1013 and 1014) show them to belong to the new species (Fig. 11.5). Trechmann’s original *Coenothyris* sp. was examined at the Natural History Museum, London, by Dr J.D. Campbell. He stated in an unpublished MS on Late Triassic athyrids of New Zealand and New Caledonia that it is an athyrid.

FIGURE 10. *Rhaetina rainei* n. sp. (New Caledonia).
1 Holotype B876 (NC/f0519) shelly specimen (a) dorsal (b) ventral (c) lateral (d) posterior (e) anterior. 2 B875 (NC/f0519) shelly specimen (a) dorsal (b) lateral. 3 B871 (NC/f0503) shelly specimen, ventral. 4 B844 (NC/f0007A) shelly specimen, ventral. 5 B881 (NC/f0005A) partly shelly specimen (a) dorsal (b) ventral (c) lateral. 6 BR 3414 (NC/f0020) shelly specimen (a) dorsal (b) ventral (c) lateral. 7 B880 (NC/f0005A) dorsal view of beak. 8 B820 (NC/f0087A) shelly specimen, anterior.

14 · Zootaxa 5374 (1) © 2023 Magnolia Press
FIGURE 11. Rhaetina rainei n. sp. (Nelson).
1 BR 3430 (N28/7454) internal mould (a) dorsal (b) ventral. 2 BR 3461 (N28/7454) internal mould (a) dorsal (b) ventral. 3 BR 3490 (N28/7454) latex of dorsal valve interior. 4 BR 3452 (N28/7454 internal mould (a) dorsal (b) ventral (c) lateral (d) anterior. 5 BR 1014 (N28/7522) ventral view (Specimen figured by Marwick (1953) as Coenothyris sp.; photo Marianna Terezow). 6 BR 3456 (N28/7454) internal mould (a) dorsal (b) ventral (c) lateral (d) posterior. 7 BR 3424 (N28/7454) internal mould with remnant shell (a) dorsal (b) ventral (c) lateral (d) posterior (e) anterior. 8 BR 3500 (N28/7455) internal mould, ventral. 9 BR 3498 (N28/7454) latex of ventral valve interior and beak. 10 BR 3439 (N28/7454) ventral view. 11 BR 3422 (N28/7454) internal mould (a) dorsal (b) ventral.
FIGURE 12. Detailed views of beak area, *Rhaetina rainei* n.sp.

A BR3458 (N28/f7454) dorsal view of internal mould, showing foramen with pedicle collar, and dorsal valve with low, ridgelike median septum.

B BR3456 (N28/f7454) dorsal view of internal mould showing cardinal process.

C B877 (NC/f0519) dorsal view of shelly specimen, slightly abraded, showing disjunct deltidial plates and foramen surrounded by pedicle collar.

The largest collection is from N28/f7454, GS 196 (Eighty-Eight Valley, Nelson), and the species is common in several collections from shellbeds in the Bouraké Formation in île Hugon, New Caledonia. Fragments of a large terebratulide from one collection in Southland may belong to this species.
Remarks. This species is present in large numbers in the Otapidian of île Hugon and of the Eighty-Eight Valley of Nelson. It is also present in île Ducos, and a few specimens are known elsewhere. The distribution suggests that it may be a shallow water form.

The variation in shape in this species is considerable, with the larger collections from île Hugon and Nelson showing a range from medium-sized forms with strong folding anteriorly to large, elongate-elliptical specimens with blunt, rounded folds developed only on the anterior part.

<table>
<thead>
<tr>
<th>TABLE 3. Dimensions, Rhaetina rainei n. sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR no.</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>NC/f0519</td>
</tr>
<tr>
<td>NC/0007A</td>
</tr>
<tr>
<td>NC/0503</td>
</tr>
<tr>
<td>NC/f0519</td>
</tr>
<tr>
<td>N28/I7454</td>
</tr>
<tr>
<td>N28/I7454</td>
</tr>
<tr>
<td>N28/I7454</td>
</tr>
<tr>
<td>N28/I7454</td>
</tr>
<tr>
<td>New Caledonia</td>
</tr>
<tr>
<td>S.D.</td>
</tr>
<tr>
<td>Nelson</td>
</tr>
<tr>
<td>S.D.</td>
</tr>
</tbody>
</table>

Family LOBOTHYRIDIDAE Makridin, 1964

Subfamily LOBOTHYRIDINAE Makridin, 1964

Lobothyris Buckman, 1918

1918 *Lobothyris* Buckman, p. 107.
1934 *Lobothyris* Buckman, 1918; Muir-Wood, p. 539.
1965a *Lobothyris* Buckman, 1918; Muir-Wood, p. H784.
1983 *Lobothyris* Buckman, 1918; Cooper, p. 103.
1990 *Lobothyris* Buckman, 1918; Ager, p. 11.
2006 *Lobothyris* Buckman, 1918; Lee et al. p. 2103.
2014 *Lobothyris* Buckman, 1918; Alméras et al. p. 71.
2019 *Lobothyris* Buckman, 1918; MacFarlan p. 558.

Type species *Terebratula punctata* J. Sowerby, 1813 in 1812-1815, p. 46, OD.

The genus *Lobothyris* Buckman 1918 is found in Jurassic sequences throughout the world “literally from China to Chile” (Ager 1967). In the most recent revision of the genus, Alméras et al. (2014) gave a time range of Hettangian to Aalenian. Other workers include the Late Triassic species *L. praepunctata* Bittner, 1890 in the genus. This species is recorded from the Late Triassic of Austria (Siblik 1994, Siblik and Bryda 2005), Italy (Torti and Angiolini 1997), the Russian Federation (Dagys 1963), East Timor (Wanner 1956), Alaska (Blodgett and Clautice 2000) and Peru (Sandy 1994). Krumbek (1924) figured *Terebratula* aff. *praepunctata* and *Terebratula* (?*Waldheimia*) sp. aff. *praepunctata* Bittner, 1890 from Timor.

Dagys (1963) described *Lobothyris monstrifera* and *L. tutchkovi* from the Russian Federation and *L. mu* and *L. kushlini* from Tajikistan. Dagys (1974) made *L. kushlini* the type genus of *Pamirotthyris*.

Trechmann (1918) figured *Terebratula* cf. *hungarica* from the Otamita Stream section, Hokonui Hills. The
locality is Otamitan (Campbell and McKellar 1960). Terebratula hungarica Bittner, 1890 was described from Derno (now Drnava in Slovakia) where it is part of an uppermost Norian fauna. It was placed by Siblík (1967) in Lobothyris. Whether Trechmann’s material can be included in Lobothyris requires further work.

Lobothyris richardsi n. sp.

Fig. 13, 1–17, 14A–D.

Holotype. BR 3286, a double-valved shelly specimen, slightly distorted, from R15/f8585, GS 6754, south of Arataura Point, Kawhia. Collected by H.C. Arnold.

Derivation of name. This species is named for Marcus Richards of the Geology Department, University of Otago.

Material. The data series consists of 42 specimens, 8 from the Kawhia Syncline, 26 from the Taringatura Hills locality E45/f6635, and 8 from other Southland Syncline localities. 41 of these yielded valid measurements.

Description. Medium-sized terebratulide with elongate, rounded-triangular outline and a straight to slightly convex anterior margin. Both valves are moderately inflated, the ventral valve generally more so. The dorsal valve on some specimens has a broad, shallow flat-floored fold involving almost full width of valve, but there is no definite sulcus. The anterior commissure is deflected by shallow uniplication. The shell exterior is generally smooth, with fine, irregular growth lines. The shell is densely and coarsely punctate.

In the ventral valve the beak is small, erect to suberect, with a rounded tip. The foramen is small, round, epithyrid, and surrounded by a short pedicle collar (Fig. 13.3a, 13.15c, 14A, D) Deltidial plates are small and conjunct (Fig. 14A). The beak ridges are sharply rounded (Fig. 13.9c, 14C). There are no dental plates.

In the dorsal valve the hingeplate is short, narrow and triangular, with a small narrow cardinal process (Fig. 14B, D). There is no median septum. Muscle scars are poorly shown on the dorsal valve of some specimens (Fig. 13.10a, 14C).

Dimensions. Dimensions of the holotype and representative specimens, and statistics for all measurable specimens are shown in Table 4. A length vs width graph is shown in Fig. 9C.

Range and Distribution. Small specimens are common at one locality in the South Taringatura Hills (E45/ f6635), which is early Otapi. All other material comes from the late Otapi. The species has a wide distribution from Kawhia to Awakino in the Kawhia Syncline, and in the latest Otapi part of the Taylors Stream – Otapiri section (Southland Syncline), where it is found with Zeilleria spiculata. It does not extend into the Aratauran.

Table 4. Dimensions, Lobothyris richardsi n. sp.

<table>
<thead>
<tr>
<th>FR no.</th>
<th>specimen</th>
<th>Lv</th>
<th>Lp</th>
<th>W</th>
<th>H</th>
<th>b<</th>
<th>material</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R15/f8585</td>
<td>BR 3286</td>
<td>29.7</td>
<td>27.4</td>
<td>20.5</td>
<td>10.9</td>
<td>101</td>
<td>b pt shelly</td>
<td>Holotype sl distorted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>beak distorted, pt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ext</td>
<td></td>
</tr>
<tr>
<td>E45/f279</td>
<td>OU 18796</td>
<td>22.1</td>
<td>20.1</td>
<td>17.4</td>
<td>8.5</td>
<td>100</td>
<td>b int</td>
<td></td>
</tr>
<tr>
<td>F45/f217</td>
<td>OU 17887</td>
<td>22.6</td>
<td>21.5</td>
<td>16.2</td>
<td>11.3</td>
<td>95</td>
<td>b int</td>
<td>good spn</td>
</tr>
<tr>
<td>Kawhia Syncline</td>
<td>S.D.</td>
<td>20.3</td>
<td>18.8</td>
<td>15.6</td>
<td>5.8</td>
<td>93.8</td>
<td>6 specimens</td>
<td></td>
</tr>
<tr>
<td>E45/f6635</td>
<td>mean</td>
<td>5.45</td>
<td>4.05</td>
<td>2.50</td>
<td>2.67</td>
<td>5.26</td>
<td>26 specimens</td>
<td></td>
</tr>
<tr>
<td>Taringatura Hills</td>
<td>S.D.</td>
<td>14.4</td>
<td>13.0</td>
<td>11.6</td>
<td>5.8</td>
<td>79.8</td>
<td>7 specimens</td>
<td></td>
</tr>
<tr>
<td>Other Southland Syncline</td>
<td>S.D.</td>
<td>3.46</td>
<td>3.14</td>
<td>2.36</td>
<td>1.57</td>
<td>9.08</td>
<td>7 specimens</td>
<td></td>
</tr>
<tr>
<td>Syncline</td>
<td>S.D.</td>
<td>22.3</td>
<td>20.9</td>
<td>16.5</td>
<td>8.5</td>
<td>96.6</td>
<td>7 specimens</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.39</td>
<td>7.89</td>
<td>5.81</td>
<td>3.89</td>
<td>37.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 13. *Lobothyris richardsi* n. sp.
1 Holotype BR 3286 (R15/f8585) partly shelly specimen (a) dorsal (b) ventral (c) lateral (d) anterior. 2 OU 46808 (E45/f9900) internal mould, ventral. 3 OU 17887 (F45/f0217) internal mould (a) dorsal (b) lateral (c) anterior (d) posterior. 4 B907 (R17/f8574) internal mould, dorsal. 5 OU 46812 (E45/f0073) internal mould, ventral. 6 OU 18756 (E45/f0279) internal mould (a) dorsal (b) ventral (c) lateral. 7 B906 (R18/f6582) internal mould, ventral. 8 BR 3507 (R16/f8650) shelly specimen, ventral. 9 C2009 (E45/f6635) internal mould with remnant shell (a) dorsal (b) ventral (c) lateral. 10 C2018 (E45/f6635) internal mould (a) dorsal (b) ventral. 11 C2029 (E45/f6635) internal mould (a) dorsal (b) ventral. 12 C2020 (E45/f6635) internal mould, ventral. 13 OU 46811 (E45/f0073) internal mould, dorsal. 14 C2010 (E45/f6635) partly shelly internal mould, (a) dorsal (b) ventral (c) lateral. 15 C2025 (E45/f6635) internal mould (a) dorsal (b) ventral (c) lateral (d) posterior. 16 C2017 (E45/f6635) partly shelly internal mould (a) dorsal (b) ventral (c) lateral. 17 OU 47230 (E45/f6635) partly shelly internal mould (a) dorsal (b) ventral (c) lateral. 18 C2010 (E45/f6635) partly shelly internal mould (a) dorsal (b) ventral (c) lateral. 19 OU 47230 (E45/f6635) partly shelly internal mould (a) dorsal (b) ventral (c) lateral.

Remarks. This species is included in *Lobothyris* on its shape and internal characters.

The straight anterior margin and small beak distinguish this species from the Jurassic *Lobothyris simesi*. It has a similar shape to the Siberian species *L. monstrifera* Dagys (see Dagys 1963, pl. xxv11 4 – 6), but that species is generally more convex.

L. cf. monstrifera is recorded from Alaska (Blodgett and Clautice 2000, Sandy 2001), but Sandy (2001) comments that “serial sections indicate internal differences between this form and typical *Lobothyris* and it is thought to represent a new genus” (p. 397).

Suborder TEREBRATELLIDINA Muir-Wood, 1955

Superfamily ZEILLERIOIDEA Schuchert, 1929

Family ZEILLERIIIDEA Schuchert, 1929
Subfamily ZEILLERIINAE Schuchert, 1929

Following Manceñido (1993), Baeza-Carratala and Garcia Joral (2014) and Halamski (2015), the authorship of the Zeillerioidea, Zeilleriidae and Zeilleriinae is accepted as being Schuchert in Schuchert and LeVene (1929), rather than Allan (1940).

Genus Zeilleria Bayle, 1878

1878 Zeilleria, Bayle, pl. 9.
1974 Zeilleria Bayle, 1878; Delance, p. 69.
2006 Zeilleria Bayle, 1878; MacKinnon et al., p. H2164.
2015 Zeilleria Bayle, 1878; Alméras et al., p. 7.
2016 Zeilleria Bayle, 1878; MacFarlan, p. 488.
2019 Zeilleria Bayle, 1878; MacFarlan, p. 568.

Type species. Terebratula cornuta Sowerby, 1824 in 1823–1825. SD Douvillé, 1879, p. 275.

The cosmopolitan genus Zeilleria Bayle has been recognised in Zealandia for some time. Zeilleria spiculata MacFarlan and Campbell, 2003 spans the Triassic-Jurassic boundary. Five further species were described from the Jurassic by MacFarlan (2016) and (2019), plus one form left in open nomenclature. This study recognises a further new species from the Late Triassic and one which is represented by a single specimen and is left in open nomenclature.

Zeilleria spiculata MacFarlan and Campbell, 2003

2003 Zeilleria spiculata MacFarlan and Campbell, p 213, Fig. 2-3.
2009 Zeilleria spiculata MacFarlan and Campbell, 2003; MacFarlan et al. p. 266.

For description see MacFarlan and Campbell (2003).

This species is common in the latest Otapidian and earliest Aratauran of the Taylors Creek – Otapiri section in the Hokonui Hills (Southland Syncline). There are also a few records in the late Otapidian in other Murihiku Terrane sections (MacFarlan 2019). This study has added a few further records which are listed in Appendix 1.

Zeilleria minima n. sp.

Fig. 15: 1–15. 16 A–C.

Holotype C81, a double-valved internal mould from E44/f6635, JDC 241, South Taringatura Hills. Collected by J.D. Campbell, May 1949.

Derivation of name. This is the smallest of the Zeilleria species from the Zealandian Mesozoic.

Material. The data series consists of 19 specimens; 12 of these came from the South Taringatura Hills locality E45/f6635, six from late Tertiary localities in New Caledonia, the Kawhia Syncline and Nelson, and one from E44/f8637, a Warepan locality in the South Taringatura Hills. All yielded valid measurements.

Awakino Gorge R18/f6562B (AU 8986).
...Figure legend continued on the next page
FIGURE 15. Zeilleria minima n. sp.

1 Holotype C81 (E45/f6635), internal mould (a) dorsal (b) ventral (c) lateral (d) anterior (e) posterior. 2 C79 (E45/f6635), internal mould (a) dorsal (b) ventral (c) lateral. 3 C78 (E45/f6635), internal mould (a) dorsal (b) ventral (c) lateral. 4 C82 (E45/f6635), internal mould (a) dorsal (b) lateral. 5 C80 (E45/f6635), internal mould (a) dorsal (b) ventral (c) lateral (d) anterior (e) posterior. 6 C83 (E45/f6635), internal mould (a) dorsal (b) ventral (c) lateral (d) anterior (e) posterior. 7 C86 (E45/f6635), internal mould with remnant shell material, (a) dorsal (b) ventral (c) lateral. 8 C1992 (E45/f6635), internal mould (a) dorsal (b) ventral (c) lateral. 9 C88 (E45/f6635), internal mould (a) dorsal (b) ventral (c) lateral. 10 C1652 (E44/f6637), internal mould (a) dorsal (b) ventral (c) lateral. 11 BR 3421 (N28/f7454) internal mould (a) dorsal (b) ventral (c) lateral (d) anterior (e) posterior. 12 B904 (NC/f0018A) shelly specimen (a) dorsal (b) lateral. 13 BR 3504 (R16/f8899A) internal mould, dorsal. 14 B903 (NC/f0018A) decorticated shelly specimen (a) dorsal (b) anterior. 15 B897 (R18/f6562B) internal mould (a) dorsal (b) ventral (c) anterior (d) posterior (e) latex of beak and dorsal valve exterior.

Description. Small terebratulide with robust shells and elongate-elliptical outline. Both valves are moderately, evenly and about equally convex with no definite fold or sulcus. The anterior commissure is rectimarginate or with a shallow, poorly-defined unipllication. The beak is sharply rounded, erect, and large in proportion to the shell. The foramen is elliptical and permesothyrid. There is no pedicle collar. Deltidial plates are small, triangular and conjunct. The beak ridges are strong and sharply rounded. The shell is coarsely punctate.

The dorsal valve has a narrow hingeplate, with a small poorly defined cardinal process. The median septum is high, wall-like, and generally 0.2 – 0.5 of valve length (Fig. 16A, C). Adductor muscle scars are paired (Fig. 15.6a) and of variable strength at the anterior end of median septum.

The ventral valve has short, thick slightly divergent dental plates (Fig. 15.1a, 6a, 10a, b, Fig. 16B). Diductor muscle scars are prominent in some specimens (Fig. 15.6b, 10b, 16B), located to the anterior of the beak and between the dental plates.

Dimensions. Dimensions of the holotype and representative specimens, and statistics for all measurable specimens are shown in Table 5. A length vs width graph is shown in Fig. 9D.

TABLE 5. Dimensions, Zeilleria minima n. sp.

<table>
<thead>
<tr>
<th>FR no.</th>
<th>specimen</th>
<th>Lv</th>
<th>Lp</th>
<th>W</th>
<th>H</th>
<th>b<</th>
<th>MS/L</th>
<th>material</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E34/f6635</td>
<td>C80</td>
<td>8.1</td>
<td>7</td>
<td>5.9</td>
<td>4.3</td>
<td>77</td>
<td>0.5</td>
<td>b int</td>
<td>Holotype</td>
</tr>
<tr>
<td>E34/f6635</td>
<td>C79</td>
<td>9.1</td>
<td>8</td>
<td>6.5</td>
<td>3.2</td>
<td>0.5</td>
<td>b int</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E34/f6635</td>
<td>C82</td>
<td>9.7</td>
<td>8.3</td>
<td>6.7</td>
<td>4.1</td>
<td>72</td>
<td>0.6</td>
<td>b int</td>
<td></td>
</tr>
<tr>
<td>N28/f7454</td>
<td>BR 3421</td>
<td>12.5</td>
<td>10.8</td>
<td>7.8</td>
<td>6.2</td>
<td>83</td>
<td>0.3</td>
<td>b int</td>
<td></td>
</tr>
<tr>
<td>All valid</td>
<td>mean</td>
<td>10.8</td>
<td>9.6</td>
<td>7.9</td>
<td>4.3</td>
<td>83.2</td>
<td>19 specimens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>5.76</td>
<td>5.25</td>
<td>4.14</td>
<td>2.21</td>
<td>39.54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 16. Detailed view of beak area, Zeilleria minima n. sp.

A Holotype, C81 (E45/f6635) dorsal view of internal mould showing beak with long divergent dental plates, median septum on dorsal valve. B same specimen, ventral view showing diductor muscles. C C78, same locality, dorsal view of internal mould showing foramen, hingeplate and trace of muscle scars on dorsal valve.

Remarks. This new species forms part of a group of small rectimarginate Zeilleria which include the Early Jurassic *Z. terezowae* MacFarlan, 2019 and the Middle to Late Jurassic *Z. opuatiaensis* MacFarlan, 2016. The new species most closely resembles *Z. terezowae* but is smaller. The larger specimens are proportionately more elongate and more inflated.

Specimens from R16/f050 and R18/f6562 are wider and closer to *Z. terezowae* in shape. They could represent a different species.

Zeilleria n. sp.

Fig. 17.1a–d.

A single specimen, B832 from NC/f0007A (AU 7149) is moderately large with a strongly inflated dorsal valve. It is distinct in shape and size from any other Zealandian *Zeilleria*.

Description. Terebratulide of moderately large size with a rounded-heptagonal outline. Both valves are well-inflated, with the dorsal valve more inflated posteriorly. The dorsal valve has a shallow fold anteriorly. The ventral valve lacks a definite fold. The anterior commissure has a broad, shallow uniplication which is about half of the valve width. The exterior of both valves is smooth posteriorly, with low stepped growth lines anteriorly.

In the ventral valve the beak is short, broad, triangular and slightly incurved. The foramen is small, and poorly shown. It is probably submesothyrid. The beak ridges are strong and sharply rounded.

Punctae were not seen, probably due to recrystallisation.

Details of hinge and loop were not seen. The median septum in the dorsal valve is poorly shown but probably about one-third of valve length.

Dimensions. Dimensions of the specimen are shown in Table 6.

<table>
<thead>
<tr>
<th>FR no.</th>
<th>specimen</th>
<th>Lv</th>
<th>Lp</th>
<th>W</th>
<th>H</th>
<th>b<</th>
<th>MS/L</th>
<th>material</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC/f0007A</td>
<td>B832</td>
<td>39.5</td>
<td>37.8</td>
<td>35.3</td>
<td>26.3</td>
<td>131</td>
<td>b shelly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks. The sole specimen has much greater inflation than *Zeilleria spiculata*, especially of the dorsal valve, and a much smaller beak. It is larger than any measured specimen of *Z. spiculata* (Fig. 9D, MacFarlan 2021). It has much less resemblance to the other Zealandian Late Triassic and Jurassic zeilleriides.

FIGURE 17. Zeilleria n. sp. (x1)
1 B832 (NC/f0007A) shelly specimen (a) dorsal (b) ventral (c) lateral (d) anterior
Discussion

Faunal Affinities

Tibetothyris, Rhaetina, and Zeilleria are cosmopolitan. Fig. 18 suggests a circumpacific distribution, although all appear absent from Argentina. *Tibetothyris* is present in Zealandian faunas from the Oretian, and *Zeilleria* is present in the Warepan. *Rhaetina* may also be present in the Warepan. *Lobothyris* is ubiquitous in the Jurassic, and less common but essentially cosmopolitan in the Triassic.

Tibetothyris does not survive the end-Triassic crisis. *Rhaetina* also disappears at or before the end of the Triassic.

Lobothyris richardsi is present, along with *Zeilleria spiculata*, in the highest Otapirian beds of Taylors Stream and the Otapiri Stream in Southland. *Z. spiculata* flourishes in the immediately overlying basal Aratauran in this area, while *L. richardsi* is absent. The basal Aratauran is not recognised in other Murihiku Terrane sections (Stevens 2004, MacFarlan 2019). The genus reappears as *Lobothyris simesi* in higher Aratauran beds and is an important member of late Aratauran and Ururoan faunas.

A total of seven Otapirian (Rhaetian) terebratulide species from Zealandia are recorded here, while MacFarlan (2019) records eleven species from the Aratauran (Hettangian-Sinemurian and early Pliensbachian). *Zeilleria spiculata* spans the Otapirain-Aratauran boundary. In a global context, Curry and Brunton (2007) record 36 Norian terebratulide genera, 23 Rhaetian, 20 Hettangian and 25 Sinemurian (Hettangian figure calculated from Fig. 1931 and 1932).

Zeilleria minima has not been found in the highest Otapirian beds. The larger *Z. terezowae* appears later in the Aratauran and is the other common Early Jurassic terebratulide.
Conclusions

The Rhaetian terebratulide fauna of Zealandia is essentially cosmopolitan, with links to Europe, Asia and North America. This is in contrast to the spiriferinides, which have both strongly endemic and cosmopolitan aspects.

Acknowledgements

To Neville Hudson, School of Earth Sciences, University of Auckland (Auckland), Ewan Fordyce, Sophie White and Marcus Richards, Geology Department, University of Otago (Dunedin); and Mariana Terezow and Chris Clowes, GNS Science (Lower Hutt), for their assistance with access to collections and loan specimens in their care. To Daphne Lee, Geology Department, University of Otago (Dunedin) and Hamish Campbell, GNS Science (Lower Hutt), for reviewing this manuscript, and for advice and encouragement throughout. To Moses MacFarlan for his help with specimen handling and packing in the Panmure fossil store. To the librarians at the GNS Library and the University of Otago Library for their help in finding obscure and rarely used literature. To Katie MacFarlan for help with the French language. To Adam Halamski (Warsaw for a thorough and helpful review of the manuscript.

References

Appendix A: Locality data

New Caledonian grid references are in terms of IGN72 Grand Terre – UTM Zone 58S
New Zealand grid references are in terms of New Zealand Mapping Grid (NZMG).
Zelandian Stage abbreviations: Bo – Otapirian, Ha - Aratauran, Hu - Ururoan, Kt - Temaikan
“Probable” identifications are indicated by a question mark in front of the collection number
Collections that are not registered in the Fossil record File are listed with the NZMS260 map sheet number.

<table>
<thead>
<tr>
<th>FR Number</th>
<th>NCTM Easting</th>
<th>NCTM Northing</th>
<th>Locality</th>
<th>Stage</th>
<th>Collection no:</th>
<th>Collectors</th>
<th>Terebratulide species</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC/f0004A</td>
<td>607730</td>
<td>7563290</td>
<td>North île Hugon</td>
<td>Bo(L)</td>
<td>AU 7148</td>
<td>J.A. Grant-Mackie</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0005A</td>
<td>607720</td>
<td>7563010</td>
<td>North île Hugon</td>
<td>Bo(U)</td>
<td>AU 7146</td>
<td>J.A. Grant-Mackie</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0007A</td>
<td>607870</td>
<td>7563170</td>
<td>North île Hugon</td>
<td>Bo(U)</td>
<td>AU 7149</td>
<td>J.A. Grant-Mackie</td>
<td>Rhaetina rainei Zueileria sp.</td>
</tr>
<tr>
<td>NC/f008A</td>
<td>607690</td>
<td>7562830</td>
<td>North île Hugon</td>
<td>Bo(U)</td>
<td>AU 7795</td>
<td>J.A. Grant-Mackie</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0010A</td>
<td>607960</td>
<td>7563100</td>
<td>North île Hugon</td>
<td>Bw-Bo</td>
<td>AU 7155</td>
<td>J.A. Grant-Mackie</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0018A</td>
<td>605680</td>
<td>7567350</td>
<td>North île Ducos</td>
<td>Bo(U)</td>
<td>AU 6074</td>
<td>J.A. Grant-Mackie</td>
<td>Zeilleria minima</td>
</tr>
<tr>
<td>NC/f0020</td>
<td>605690</td>
<td>7567220</td>
<td>North île Ducos</td>
<td>Bo(U)</td>
<td>GS 12733</td>
<td>HJ Campbell</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0023</td>
<td>606080</td>
<td>7567050</td>
<td>North île Ducos</td>
<td>Bo(U)</td>
<td>GS 12736</td>
<td>HJ Campbell</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0050</td>
<td>608760</td>
<td>7565740</td>
<td>East île Ducos</td>
<td>Bo</td>
<td>GS 12636</td>
<td>HJ Campbell</td>
<td>Tibetothyris hamishi ?Zeilleria spiculata</td>
</tr>
<tr>
<td>NC/f0060A</td>
<td>607720</td>
<td>7566280</td>
<td>Baie des Moustiques, Ducos</td>
<td>Bo</td>
<td>AU 7214</td>
<td>J.A. Grant-Mackie</td>
<td>?Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0087</td>
<td>605820</td>
<td>7563780</td>
<td>SW île Ducos</td>
<td>AU 6073</td>
<td>H.J. Campbell</td>
<td>Rhaetina rainei</td>
<td></td>
</tr>
<tr>
<td>NC/f0087A</td>
<td>605820</td>
<td>7563780</td>
<td>SW île Ducos</td>
<td>Bo(l)</td>
<td>AU 7168</td>
<td>J.A. Grant-Mackie</td>
<td>Tibetothyris hamishi Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0109A</td>
<td>607710</td>
<td>7562110</td>
<td>Central north île Hugon</td>
<td>Bo(L)</td>
<td>AU 7165</td>
<td>J.A. Grant-Mackie</td>
<td>Tibetothyris johnstoni</td>
</tr>
<tr>
<td>NC/f0503</td>
<td>607720</td>
<td>7563060</td>
<td>Northernmost slope île Hugon</td>
<td>Bo(L)</td>
<td>AU 7147</td>
<td>J.A. Grant-Mackie</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0518</td>
<td>607780</td>
<td>7563130</td>
<td>île Hugon</td>
<td>Bo(U)</td>
<td>AU 7773</td>
<td>J.A. Grant-Mackie</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f0519</td>
<td>607810</td>
<td>7563070</td>
<td>île Hugon</td>
<td>Bo(L)</td>
<td>AU 7774</td>
<td>J.A. Grant-Mackie</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>NC/f1110</td>
<td>563200</td>
<td>7599200</td>
<td>Tribu Kere, Moindou</td>
<td>Ha</td>
<td>NC256</td>
<td>M. Wiley</td>
<td>?Zeilleria spiculata</td>
</tr>
<tr>
<td>FR Number</td>
<td>NZMG Easting</td>
<td>NZMG Northing</td>
<td>Locality</td>
<td>Stage</td>
<td>Collection no:</td>
<td>Collector and date.</td>
<td>Terebratulide species</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>---------------</td>
<td>----------</td>
<td>-------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>R15/f0182</td>
<td>2663000</td>
<td>6341500</td>
<td>N side Arataura Point</td>
<td>Bo</td>
<td>AU 12686</td>
<td>Z. Wangping, J.A. Grant-Mackie, Y. Jingshan, L. Xiaochi 3/12/1988</td>
<td>Zeilleria spiculata</td>
</tr>
<tr>
<td>R15/f0189</td>
<td>2663000</td>
<td>6341500</td>
<td>SW Kawhia Coast, N face of Arataura Point.</td>
<td>Bo</td>
<td>AU 12683</td>
<td></td>
<td>Zeilleria spiculata</td>
</tr>
<tr>
<td>R15/f8585</td>
<td>2662731</td>
<td>6341307</td>
<td>S of Arataura Point, S Kawhia</td>
<td>Bo</td>
<td>GS 6754</td>
<td>HC Arnould</td>
<td>Lobothyris richardi</td>
</tr>
<tr>
<td>R15/f8834</td>
<td>2662912</td>
<td>6341257</td>
<td>S of Arataura Point, S Kawhia</td>
<td>Bo</td>
<td>AU 64</td>
<td>K.R. Martin 5/1965</td>
<td>Zeilleria spiculata</td>
</tr>
<tr>
<td>R15/f8837</td>
<td>2662865</td>
<td>6341212</td>
<td>S of Arataura Point, S Kawhia</td>
<td>Bo</td>
<td>AU 69</td>
<td>K.R. Martin 5/1965</td>
<td>Tibetothyris hamishi</td>
</tr>
<tr>
<td>R15/f8838</td>
<td>2662818</td>
<td>6341167</td>
<td>S of Arataura Point, S Kawhia</td>
<td>Bo</td>
<td>AU 70</td>
<td>K.R. Martin 5/1965</td>
<td>Tibetothyris hamishi</td>
</tr>
<tr>
<td>R16/f0337</td>
<td>2659836</td>
<td>6319805</td>
<td>Coast between Marokopa river mouth and Waipaua Stream</td>
<td>Bo</td>
<td>AU 12074</td>
<td>F. Hasibuan, J.A. Grant-Mackie, J.D.; Campbell, H.J. Campbell. 29/1/1966</td>
<td>Tibetothyris hamishi</td>
</tr>
<tr>
<td>R16/f0896</td>
<td>2660163</td>
<td>6326518</td>
<td>Coast north of Marokopa River</td>
<td>Bo</td>
<td>GS 10007</td>
<td>C.R. Lennie, B.E. Thomson 1/1967</td>
<td>Lobothyris richardi</td>
</tr>
<tr>
<td>R16/f0898</td>
<td>2660110</td>
<td>6329492</td>
<td>South side of Anaputa Bay, north of Marokopa River</td>
<td>Bo</td>
<td>GS 10009</td>
<td>BE Thomson 1/1966, BE Thomson, CR Lennie 9/5/68</td>
<td>Tibetothyris hamishi 🔎Lobothyris richardi</td>
</tr>
<tr>
<td>R16/f6899A</td>
<td>2660202</td>
<td>6331090</td>
<td>South side of Parahaki Head, north of Marokopa River</td>
<td>Bo</td>
<td>GS 10010</td>
<td>C.R. Lennie, G.R. Stevens, B.E. Thomson, 9/5/1968</td>
<td>Zeilleria minima</td>
</tr>
<tr>
<td>R16/f8645</td>
<td>2659992</td>
<td>6325288</td>
<td>Headland N of Tauhua Stream, coast north of Marokopa River</td>
<td>Bo</td>
<td>GS 10006</td>
<td>C.R. Lennie, G.R. Stevens, B.E. Thomson, 1/1967</td>
<td>☑️Tibetothyris hamishi</td>
</tr>
<tr>
<td>R16/f8650</td>
<td>2659997</td>
<td>6325471</td>
<td>Headland N of Tauhua Stream, coast north of Marokopa River</td>
<td>Bo</td>
<td>GS 10037</td>
<td>B.E. Thomson 1/1967</td>
<td>Lobothyris richardi Zeilleria spiculata</td>
</tr>
<tr>
<td>R16/f8877A</td>
<td>2663000</td>
<td>6314200</td>
<td>Pomarangai Rd NE of Moeatoa</td>
<td>Bo</td>
<td>AU 8987</td>
<td>J.A. Grant-Mackie, N. Hudson. 17/1/1982</td>
<td>Tibetothyris hamishi</td>
</tr>
</tbody>
</table>

......Continued on the next page
Kawhia Syncline (Continued)

<table>
<thead>
<tr>
<th>FR Number</th>
<th>NZMG Easting</th>
<th>NZMG Northing</th>
<th>Locality</th>
<th>Stage</th>
<th>Collection no:</th>
<th>Collector and date</th>
<th>Terebratulide species</th>
</tr>
</thead>
<tbody>
<tr>
<td>R17/f8574</td>
<td>2657433</td>
<td>6280089</td>
<td>North bank Awakino River, in lower gorge</td>
<td>Bo</td>
<td>JAG-M 37, AU 341</td>
<td>J.A. Grant-Mackie 2/1956</td>
<td>Lobothyris richardsi</td>
</tr>
<tr>
<td>R18/f6562</td>
<td>2657520</td>
<td>6279904</td>
<td>Awakino Gorge, road cutting on sharp corner</td>
<td>Bo</td>
<td>JAG-M 20, AU 326, 386</td>
<td>J.A. Grant-Mackie 10/1955</td>
<td>Zeilleria spiculata, Lobothyris richardsi, Zeilleria minima</td>
</tr>
</tbody>
</table>

Nelson

<table>
<thead>
<tr>
<th>FR Number</th>
<th>NZMG Easting</th>
<th>NZMG Northing</th>
<th>Locality</th>
<th>Stage</th>
<th>Collection no:</th>
<th>Collector</th>
<th>Terebratulide species</th>
</tr>
</thead>
<tbody>
<tr>
<td>N28/f0045</td>
<td>2509300</td>
<td>5968999</td>
<td>West side Ram Creek valley</td>
<td>Bo</td>
<td>PGS 40</td>
<td>P.G Scadden 16/5/1978</td>
<td>Tibothyris johnstonii, Rhaetina rainei</td>
</tr>
<tr>
<td>N28/f0045</td>
<td>2509300</td>
<td>5968999</td>
<td>West side Ram Creek valley</td>
<td>Bo</td>
<td>McF D21</td>
<td>D.A.B. MacFarlan 6/12/1979</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>N28/f7454</td>
<td>2509003</td>
<td>5968482</td>
<td>Trigonia beds, Eighty-eight Valley.</td>
<td>Bo</td>
<td>GS 196</td>
<td>A. McKay 19/3/1878</td>
<td>Tibothyris johnstonii, Rhaetina rainei, Zeilleria minima</td>
</tr>
<tr>
<td>N28/f7455</td>
<td>2509003</td>
<td>5968482</td>
<td>'Spiriferina beds' Eighty-eight Valley, Nelson.</td>
<td>Bo</td>
<td>GS 197</td>
<td>A, McKay, 1878</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>N28/f7860</td>
<td>2509088</td>
<td>5968821</td>
<td>Hillside track north of Ram Ck</td>
<td>Bo</td>
<td>AU 7885</td>
<td>JA Grant-Mackie 7/1/1967</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>N28/f7864</td>
<td>2509039</td>
<td>5968967</td>
<td>Hillside track north of Ram Ck, boulders</td>
<td>Bo</td>
<td>AU 6521</td>
<td>JA Grant-Mackie 8/1/1967</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>N28/f7522</td>
<td>2508996</td>
<td>5968847</td>
<td>West side of Ram Hill</td>
<td>Bw-Bo</td>
<td>GS 4559</td>
<td>H.W. Wellman, D. Hamilton 1/1948</td>
<td>Rhaetina rainei</td>
</tr>
<tr>
<td>FR Number</td>
<td>NZMG Easting</td>
<td>NZMG Northing</td>
<td>Locality</td>
<td>Stage</td>
<td>Collector & Date</td>
<td>Terebratulide species</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>---------------</td>
<td>----------</td>
<td>-------</td>
<td>------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>E44/f8637</td>
<td>2134071</td>
<td>5477895</td>
<td>Sunnyvale, South Taringaturas</td>
<td>Bw</td>
<td>JDC 655 JD Campbell 4/1950</td>
<td>Zeilleria minima</td>
<td></td>
</tr>
<tr>
<td>E45/f0279</td>
<td>2161500</td>
<td>5459399</td>
<td>Taylors Stream, Otapiri Vly</td>
<td>Bo</td>
<td>JDC 4059 J.D. Campbell 25/4/1993</td>
<td>Tibetothyris hamishi</td>
<td></td>
</tr>
<tr>
<td>E45/f6635</td>
<td>2140152</td>
<td>5469593</td>
<td>South Taringatura Hills</td>
<td>Bo</td>
<td>JDC 241 J.D. Campbell 24/5/1993</td>
<td>Tibetothyris johnstoni</td>
<td></td>
</tr>
<tr>
<td>E45/f7484</td>
<td>2150403</td>
<td>5468580</td>
<td>Oreti Railway Cutting, Dipton</td>
<td>Bo</td>
<td>GS 372 A McKay 1878</td>
<td>?Rhaetina rainei</td>
<td></td>
</tr>
<tr>
<td>E45/f9462</td>
<td>2161984</td>
<td>5459275</td>
<td>East Branch, Taylors Stream, Otapiri Vly</td>
<td>Bo</td>
<td>GS 359 A McKay 27/3/1878</td>
<td>?Lobothyris richardi</td>
<td></td>
</tr>
<tr>
<td>E45/f9578</td>
<td>2149286</td>
<td>5464449</td>
<td>Benmore railway cutting</td>
<td>Bo</td>
<td>JDC 730 J.D. Campbell 1/1954</td>
<td>?Lobothyris richardi</td>
<td></td>
</tr>
<tr>
<td>E45/f9621</td>
<td>2159000</td>
<td>5461999</td>
<td>Otapiri Stream above Taylors Stream</td>
<td>Bo</td>
<td>JDC 1295 J.D. Campbell 13/5/1987</td>
<td>Lobothyris richardi</td>
<td></td>
</tr>
<tr>
<td>E45/f9622</td>
<td>2158754</td>
<td>5461139</td>
<td>Otapiri Stm, downstream of Taylors Crossing</td>
<td>Bo</td>
<td>JDC 1296 I.C. McKellar, J.D. Campbell, 27/1/1955</td>
<td>Tibetothyris hamishi</td>
<td></td>
</tr>
<tr>
<td>E45/f9910</td>
<td>2160589</td>
<td>5460713</td>
<td>Outcrop north of NW branch Taylors Stream</td>
<td>JDC 2095</td>
<td>J.D. Campbell, B.R. Paterson 18/6/1965</td>
<td>Lobothyris richardi</td>
<td></td>
</tr>
<tr>
<td>F45/f0217</td>
<td>2183500</td>
<td>5454599</td>
<td>South of Waterfall Creek, Otamita Valley</td>
<td>Bo</td>
<td>EW coll E Wright 12/4/1989.</td>
<td>Lobothyris richardi</td>
<td></td>
</tr>
<tr>
<td>F45/f0329</td>
<td>2186700</td>
<td>5452699</td>
<td>Dolamore Park to Otamita Downs road</td>
<td>Bo</td>
<td>JDC 4216 J.D. Campbell, S.R. Owen 21/10/1992</td>
<td>Tibetothyris hamishi</td>
<td></td>
</tr>
<tr>
<td>F45/f8523</td>
<td>2186681</td>
<td>5452658</td>
<td>Roadside, Waimumu Valley</td>
<td>Bo</td>
<td>GS 5188 A.C. Beck, B.L. Wood 16/8/1948</td>
<td>Tibetothyris hamishi</td>
<td></td>
</tr>
</tbody>
</table>