A new species of Pontocrates Boeck, 1871 (Crustacea, Amphipoda, Oedicerotidae) from Cyprus

SERGIO C. GARCIA GÓMEZ1*, ALAN A. MYERS2, ELENI AVRAMIDI3, KLEOPATRA GRAMMATIKI3, MYRSINI M. LYMPERAKI4, VASILIS RESAIKOS5, MAGDALENE PAPATHOLOU6, VASILIS LOUCA3, DIMITRIOS XEVGENOS6 & FRIRTHJOF C. KÜPPER3,7,8

1Freelance-Benthic Macrofauna External Analyst, 48918646-S, Málaga, Spain
2School of Biological, Earth and Environmental Sciences, University College Cork, Cork Enterprise Centre, Distillery Fields, North Mall, Cork, Ireland
3School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, Scotland, UK
4Center of Marine Sciences, Universidade do Algarve, Faro, 8005-139 Portugal
5Enalia Physis Environmental Research Center, Acropoleos 2, CY-2101 Aglantzia, Cyprus
6Faculty Technology, Policy, and Management, Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands
7Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
8Department of Chemistry and Biochemistry, San Diego State University, CA, 92182-1030, USA

*Correspondence author: sgarciagomez@gmail.com; https://orcid.org/0009-0004-5423-8281

Abstract

A new species of the amphipod genus Pontocrates (Boeck 1871), family Oedicerotidae, is described from Cyprus in the south-eastern Mediterranean Sea. It is a sister taxon to Pontocrates moorei (Myers & Ashelby 2022), currently recorded solely from the British Isles. It is the third species of Pontocrates now known to occur in the Mediterranean Sea.

Key words: Amphipoda, Oedicerotidae Pontocrates marmario, new species, Cyprus, Mediterranean

Introduction

The genus Pontocrates (Boeck 1871) is classified in the family Oedicerotidae. Together with the Exoedicerotidae and Paracalliopidae, they form the parvorder Oedicerotidira, a sister taxon to the Eusiridira within the infraorder Amphilochida (Lowry & Myers 2017). Species of the genus Pontocrates are frequently collected in macrobenthic samples from a range of substrates including sands, muds, and shell gravels on the European continental shelf, from the intertidal region to around 200 metres depth. The genus was previously known to include five species worldwide: P. arcticus Sars 1895, P. moorei (Myers & Ashelby 2022), P. arenarius (Spence Bate 1858), P. norwegicus (Boeck 1860) and P. altamarinus (Spence Bate & Westwood 1863), all of which are endemic to the North Atlantic and Mediterranean Sea. Only three species had previously been reported from the Mediterranean, namely P. arenarius, P. norwegicus and P. altamarinus. Samples collected recently in Dhekelia Bay, southeast Cyprus, appeared on first examination to include specimens attributable to Pontocrates moorei (Myers & Ashelby 2022), but on close examination, these proved to represent an undescribed species, a sister taxon to P. moorei. The new species, P. marmario sp. nov. is described and figured here. It differs from its closest congener, P. moorei in numerous metric
aspects (in general the appendages are more slender than they are in *P. moorei*), but it is most readily recognised by the markedly different form of pereopod 6. In the description that follows, character states that distinguish *P. marmario* sp. nov. from its congener *P. moorei* are bolded. At the moment, *P. marmario* sp. nov. is known from the type locality only, in Dhekelia Bay in the south-eastern Mediterranean Sea at depths of 3.0 m and 4.8 m.

Materials and methods

Soft benthos was sampled close to the brine discharge outfall of the Dhekelia desalination plant in Cyprus as part of the investigation of brine impacts on the marine environment in the framework of the EU project WATER-MINING, following multi-year surveys of the same site by the Cyprus Government Department of Fisheries and Marine Research (Xevgenos et al., 2021). Five (5) sampling stations were established in distances of approximately 0 m (D0), 50 m (D50), 100 m (D100), 150 m (D150), and 1250 m (reference station—DRef) east from the brine discharge outfall (Figure 1). In total, four (4) seasonal sampling surveys were performed, namely in May 2022, August 2022, November 2022, and February 2023. Four (4) replicates of soft benthos were sampled at each sampling station using a Van Veen grab of surface area 0.05 m2 on-board or corer of equivalent surface filled by divers. Benthos samples were sieved through 1.0 mm mesh, stained with rose bengal and preserved in formaldehyde (4%) or ethanol (96%). In the laboratory, benthic macroinvertebrates were sorted and identified with microscopy to the lowest taxonomic level possible. At the sampling stations, grain size distribution, total organic carbon (TOC), total Kjedahl nitrogen (TKN), tin (Sn), iron (Fe) and magnesium (Mg) in bottom sediment were measured by a local certified laboratory as well as pH, conductivity, salinity, turbidity, nitrates (NO$_3^-$), nitrites (NO$_2^-$), ammonium (NH$_4^+$), phosphates (PO$_4^{3-}$) in bottom seawater.

![Sampling station of soft benthos close to brine discharge outfall of Dhekelia desalination plant, south-eastern Mediterranean Sea, Cyprus.](image-url)

FIGURE 1. Sampling station of soft benthos close to brine discharge outfall of Dhekelia desalination plant, south-eastern Mediterranean Sea, Cyprus.
Results and discussion

Systematic Section

Suborder Amphilochidea Boeck, 1871
Infraorder Amphilochida Boeck, 1871
Parvorder Oedicerotidira Lilljeborg, 1865
Superfamily Oedicerotoidea Lilljeborg, 1865
Family Oedicerotidae Lilljeborg, 1865
Genus Pontocrates Boeck 1871

Diagnosis. Cutting edge of mandible projecting and well toothed; molar medium, ridged. Inner lobes of lower lip poorly developed but separated from each other by incision, outer lobes thus widely gaped. Gnathopod 1 moderately stout, gnathopod 2 slender, carpus of both pairs with sharp strong posterior lobe projecting distally but partially (gnathopod 1) or especially (gnathopod 2) guarding propodus; palm of gnathopod 1 oblique, of gnathopod 2 chelate. Uropod 2 fully reaching end of rami on uropod 3. Uropod 3 well developed.

Pontocrates marmario sp. nov. García Gomez & Myers
(Figures 2–5)

Type material. Holotype female 3.9 mm, locality name: Dhekelia Bay, south-eastern Mediterranean Sea, sampling station: D100, depth: 3.0 m, collection date: February 08, 2023, collection method: Van Veen grab of surface 0.05 m
two, collectors: Frithjof Küpper, Kleopatra Grammatiki, Myrsini Lymeraki, Vasilis Resaikos, repository: The Natural History Museum of Crete (NHMC) in Greece, Accession number: [To be provided soon]

Other material. Paratype female (dissected), locality name: Dhekelia Bay, south-eastern Mediterranean Sea, sampling station: D150, depth: 4.8 m, collection date: February 08, 2023, collection method: Van Veen grab of surface 0.05 m
two, collectors: Frithjof Küpper, Kleopatra Grammatiki, Myrsini Lymeraki, Vasilis Resaikos, repository: Biological Research Collection, Department of Biology, University of Aveiro (CoBI-DBUA), Portugal, Accession number: CoBI-DBUA3242.01.

Etymology. The name used is a combination between Mar (Sea) and Mario with the latter being the name of the son of one of the authors who identified the specimens.

Description (female holotype 3.9 mm) Head. Head rostrum strongly deflected,-Antenna 1 flagellum longer than peduncle, with 7 articles, Antenna 2 longer than 1; article 4 and 5 subequal in length; flagellum longer than peduncle with 9 articles.
Pereon. Gnathopod 1 coxa distal margin substraight; basis moderately stout, about 4 x as long as broad, anterior margin substraight; merus with distal extension; propodus subovoid, less than twice as long as broad, palm smooth, oblique, merging imperceptibly with posterior margin and without club-shaped robust setae. Gnathopod 2 coxa subrectangular, anterior and posterior margins substraight; basis elongate, slender; carpus small but with elongate spur that extends beyond tip of propodus; propodus very elongate, slender, chelate, fused throughout its
length with the carpus. Pereopod 3 coxa subovoid; **basis broad, about 2 x as long as broad, anterior margin substraight, merus anterior margin substraight**; carpus and propodus short; propodus a little longer than carpus, subrectangular, distally truncate; carpus and propodus posterior margins with many stout, robust setae; merus and propodus anterodistal margins clothed in very long slender setae; dactylus small. Pereopod 4 similar to pereopod 3 but basis more slender, over than 3 x as long as broad. Pereopod 5 basis anterior margin convex; merus anterodistal margin strongly convex and with exceedingly long setae; carpus short, posterior margin with long setae; propodus longer than carpus, slender, anterior margin with long setae; dactylus elongate, slender. Pereopod 6 basis anterior margin weakly convex; **merus anterodistal margin strongly produced into convex lobe overhanging carpus; carpus broad, about twice as long as broad; propodus slender, about twice as long as broad**. Pereopod 7 very long, more than half body length, basis subquadriform, distinctly longer than body the posterior margin straight to weakly concave and with a distinct posterodistal lobe; merus, carpus, propodus and dactylus very long and slender.

Figure 3. *Pontocrates marmario* sp. nov. female 3.9 mm, Dhekelia Bay, south-eastern Mediterranean Sea, Cyprus.

Pleon. Epimera 1–3 rounded, with evenly separated long fine marginal setae. Uropods 1–2 slender; peduncles extending about the same length; peduncles longer than subequal rami. Uropod 3 slender; subequal rami longer than peduncle. Telson distally rounded, not incised.

Male unknown.
Habitat. Considering the grain size distribution and statistical (Blott & Pye 2001) analysis results, the sediment in D100 was characterized as sand and in D150 as slightly gravelly sand following the Folk classification for fine-grained sediment (Folk, 1954). Around the stations D100 and D150, there was mainly hard substrate, however spots of soft substrate were observed around the patches or meadows of seagrass Posidonia oceanica. The study of Xevgenos et al. 2021 as well as the macroscopic observations during diving surveys of May 2022, August 2022,
November 2022, and February 2023 demonstrated a very localised impact of the brine discharge on *Posidonia oceanica* meadows, with the impact reduced markedly at 150 m from the discharge point. At stations D100 and D150, the measurements of physicochemical parameters in bottom seawater and soft benthos do not show a significantly impacted environment from anthropogenic pressures. More specifically, pH and turbidity values for D100 and D150 were within typical range while conductivity values were higher in these stations, i.e., 51.64 mS/cm for D100, 51.94 mS/cm for D150 in comparison to the value of 41.23 mS/cm in DRef. The concentration of nutrients in water were low as it was expected for the oligotrophic sea of Cyprus. The ratio of organic carbon to Kjeldahl nitrogen (TOC/TKN) in bottom sediment at both sampling stations was greater than 10 showing anthropogenic influence (Boehm 1983). Concentration of metals—especially iron, magnesium, and tin—were found to be at similar levels with the reference station. No significant difference in species composition of benthic macroinvertebrates was observed at the sampling stations D100 and D150. Species richness and abundance were low as expected for the oligotrophic condition of the marine environment in Cyprus.

FIGURE 5. *Pontocrates marmario* sp. nov. female 3.9 mm, Dhekelia Bay, south-eastern Mediterranean Sea, Cyprus. G2 showing fusion of carpus and propodus; G2 coxa.

Distribution. Currently known only from the type locality at Dhekelia Bay, Cyprus. More specifically, this taxon was found in the soft benthos samples of the stations D100 (X: 33°45.663’ E, Y: 34°58.768’ N, coordinate system WGS 84, depth: 3.0 m) and D150 (X: 33°45.689’ E, Y: 34°58.785’ N, coordinate system WGS 84, depth: 4.8 m) during the 4th sampling survey conducted in February 2023.

Remarks. In having pereopod 3 and 4 carpus short, gnathopod 1 with a drawn-out meral distal extension and coxa 2 posterior margin straight, *P. marmario* sp. nov. is closely similar to *P. moorei* (Myers & Ashelby 2022),
from the British Isles. It differs in the shape of pereopod 6 that has the anterodistal margin of the merus strongly produced into a convex lobe (weakly produced in *P. moorei*—Figure 4) and the carpus short about twice as long as broad (almost 4 x as long as broad in *P. moorei*). It differs from *P. moorei* also in the basis of pereopod 3 in which the anterior margin is substraight without proximal concavity (sinuous with strong proximal concavity in *P. moorei*) and in the basis of pereopod 7 that is longer than broad (almost as broad as long in *P. moorei*—Figure 4).

Key to the Mediterranean species of Pontocrates Boeck

1. Pereopods 3–4 carpus short only a little longer than broad 2
 - Pereopods 3–4 carpus much longer than broad .. 2
2. Gnathopod 1 merus with long distal finger-like extension 3
 - Gnathopod 1 merus distally blunt or with small short distal spine *P. norwegicus* (Boeck)
3. Coxa 2 posterior margin sinuous ... *P. arenarius* (Spence Bate)
 - Coxa 2 posterior margin substraight ... *P. marmario* sp. nov.

Acknowledgements

We are grateful to the Department of Fisheries and Marine Research of the Cypriot Ministry of Agriculture, Rural Development and Environment for providing access to its research vessel and support during sampling surveys. We thank Brian Cunningham (Faculty of Biology-Málaga University) for assistance in the sorting of the material and Pablo Saenz Arias (Faculty of Biology-Sevilla University) for his assistance during the identification process.

The authors are grateful to the European Commission for supporting the activities carried out in the framework of the H2020 European project WATER-MINING (project under grant agreement No. 869474). This work also received support from the Marine Alliance for Science and Technology for Scotland pooling initiative. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.

References

https://doi.org/10.1002/esp.261

Boeck, A. (1860) Bemserknininger angaaende de ved de norske Kyster forekommende Amphipoder. *Forhandlinger ved de Skandinaviske Naturforskeres, København*, 8–14 Juli, 1860, 631–676. [N.B. This edition of the Forhandlinger is printed with the date 1861, however, the edition in the Oslo Museum archives, where Boeck worked, has a handwritten note: 1860, so that date is accepted here as the official publication year]

https://doi.org/10.5962/bhl.title.2056

https://doi.org/10.1086/626171

https://doi.org/10.11646/zootaxa.4265.1.1

https://doi.org/10.11646/zootaxa.5115.4.8

