

Correspondence

https://doi.org/10.11646/zootaxa.5719.4.8

http://zoobank.org/urn:lsid:zoobank.org:pub:F241C66C-9F2B-4166-9751-B7455024220B

A new species of *Loboscelidia* Westwood (Hymenoptera: Chrysididae: Loboscelidiinae) from Thailand

YU HISASUE^{1,2*} & TOSHIHARU MITA³

¹Ogasawara Division of Japan Wildlife Research Center, Okumura, Chichijima, Ogasawara, Tokyo 100–2101, Japan

hybrizonist@gmail.com; https://orcid.org/0000-0003-4817-2357

Loboscelidinae are rare and highly modified chrysidid wasps. The subfamily contains two genera: *Loboscelidia* Westwood, 1874 and *Rhadinoscelidia* Kimsey, 1988. To date, *Loboscelidia* is known by 67 species from the Oriental and Australian regions (Kimsey 1988, 2012; Li & Xu 2017; Hisasue *et al.* 2023). Thailand is one of the most extensively explored areas for this subfamily, with nine *Loboscelidia* and three *Rhadinoscelidia* species recorded (Kimsey 2012, 2018). Loboscelidinae are known as egg parasitoids of stick insects (Hadlington & Hoschke 1959; Heather 1965; Riek 1970; Hisasue *et al.* 2023), and some may be myrmecophilous (Riek 1970; Krombein 1983; Hisasue & Mita 2020). *Rhadinoscelida lixa* Hisasue & Mita, 2020 was found near Wiang Kosai National Park (Phrae Province, Thailand), at the entrance of the ant nest of *Carebara diversa* (Jerdon, 1851). During the taxonomic study of *Loboscelidia* in Southeast Asia, we found a peculiar, undescribed species of *Loboscelidia* from Thailand. Here we describe it as a new species and briefly discuss its specialized morphological characteristics.

The material used in this study was deposited in the Thailand Natural History Museum, Technopolis, Khlong Luang, Pathum Thani, Thailand (THNHM). The description is based on the holotype only. Images were taken with a Sony α 7R IV digital camera with a Canon MP–E 65 mm lens and edited using Adobe Photoshop C.C.

The morphological terms and measurements mainly follow Kimsey (1988, 2012) and Lanes *et al.* (2020) and the pilosity follows Hisasue *et al.* (2023). The following abbreviations and indices were used: maximum length of median ocellus diameter (MOD), minimum length of postocellar line (POL), minimum length of ocello-ocular line (OOL), shortest distance between the inner margins of the median and lateral ocelli (LOL), and flagellomere 1–11 (F1–F11).

Loboscelidia multistria Hisasue & Mita, sp. nov.

(Figs 1–8)

Description. Holotype male. Body length 4.6 mm (Fig. 1); forewing length 4.5 mm (Fig. 2).

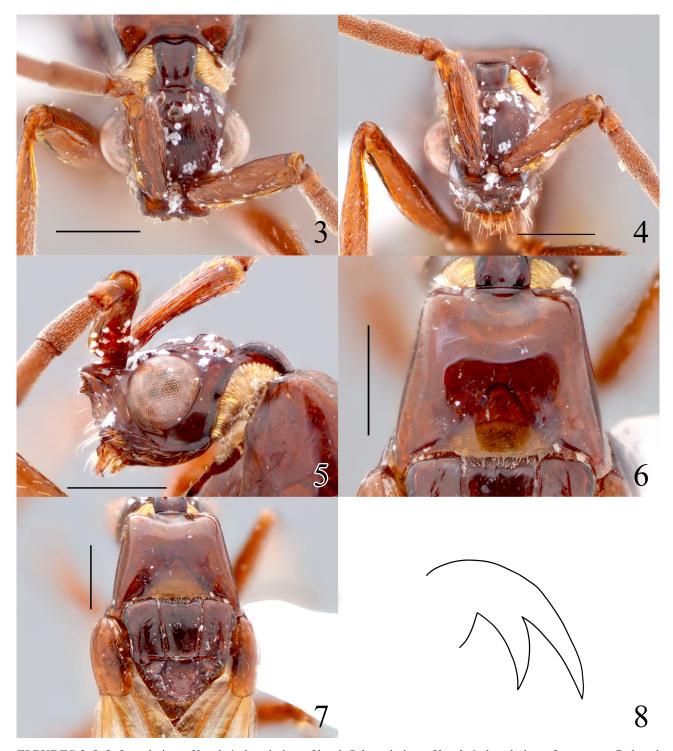
Mesosoma. Pronotal length 0.87× as long as posterior width of pronotum (Fig. 6); posterior width of pronotum 1.5× as wide as anterior width (Fig. 6) and wider than head; anterior margin of pronotum weakly depressed; dorsolateral surface of pronotum rounded (Fig. 1); mesoscutum 0.59× as long as wide (Fig. 7); notauli converging posteriorly (Fig. 7); mesoscutellum punctured (Fig. 7); scrobal area punctured, scrobal sulcus absent (Fig. 1); metascutellum with one median

²Systematic Zoology Laboratory, Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397 Japan.

³Entomological Laboratory, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

^{*}Corresponding author

longitudinal ridge, 0.44× as long as mesoscutellum; propodeal angle weakly developed; propodeal declivity without transverse carina above foramen.


Legs. Tibiae polished; flange on profemur 0.39×100 longer than and as wide as tubular part of profemur; flange on protibia 0.58×100 longer than and 0.4×100 longer than tubular part of protibia; flange on mesofemur 0.16×100 longer than and 0.71×100 longer than tubular part of mesofemur; flange on mesotibia 0.57×100 longer than and 0.2×100 longer than tubular part of mesotibia; dorsolateral surface of metacoxa with longitudinal carinae; metafemur moderately stout basally, as wide as distal part (Fig. 1); outer margin of metafemur flat (Fig. 1); ventral margin of metafemur flat (Fig. 1); flange on metafemur 0.52×100 longer than and 0.5×100 wider than tubular part of metafemur; flange on metatibia 0.8×100 longer than and 0.73×100 wider than tubular part of metafemur; flange on metatibia 0.8×100 longer than and 0.73×100 longer than tubular part of metatibia; tarsal claw of metaleg with one median tooth (Fig. 8); median tooth extending half of tarsal claw of metaleg (Fig. 8).

Forewing (Fig. 2). A two-third as long as Cu+M; M almost absent, present only basal portion; R1 0.58× as long as R; cu-a absent; Rs 1.6× as long as R.

Pilosity. Frons with sparse simple setae (Fig. 4); ventral area of gena with sparse simple setae (Fig. 5); temple with sparse simple setae (Fig. 5); cervical expansion with sparse simple setae (Fig. 4); scape with sparse suberect simple setae (Fig. 3); pedicel with sparse simple setae; dorsal pronotal area with sparse simple setae (Fig. 6); propleuron with sparse simple setae (Fig. 1); mesoscutum with sparse simple setae (Fig. 7); tegula with sparse simple setae, shorter than MOD (Fig. 7); mesopleuron with sparse simple setae (Fig. 1); metapectal-propodeal complex with sparse simple setae in lateral view (Fig. 1); apical half of coxae with sparse simple setae; femora with sparse suberect simple setae (Fig. 1); tibiae with sparse suberect simple setae (Fig. 1).

FIGURES 1–2. Loboscelidia multistria sp. nov. (holotype). 1, lateral habitus; 2, forewing. Scale bar = 1.0 mm.

FIGURES 3–8. 3, frontal view of head; 4, dorsal view of head; 5, lateral view of head; 6, dorsal view of pronotum; 7, dorsal view of mesosoma; 8, hind tarsal claw. Scale bar =0.5 mm.

Coloration. Body reddish brown (Fig. 1); antenna brown (Figs. 1, 3); legs brown (Fig. 1); flanges yellowish brown; ribbon-like setae of gena, cervical expansion, and anterolateral margin of pronotum whitish yellow.

Material examined. Holotype ♂, Thailand, Chiang Mai Province, Doi Suthep, 5 Aug. 2001, T. Tanizaki leg. (THNHM).

Distribution. Thailand (Northern Thailand).

Etymology. The epithet multistria from Latin many striae referring to the wrinkled frons.

Discussion. This species is similar to *Loboscelidia defecta* Kieffer, 1916 and *L. reducta* Maa & Yoshimoto, 1961 by having the transverse depression located posterior to ocelli, the scapes more than 4.0× longer than wide, the pronotum with antero-lateral corner convex. However, *L. multistria* has the frons longitudinally costate, the scrobal sulci defined by one row of contiguous punctures, the tibiae with flanges, the metacoxae carinate, outer surface of metacoxae costate, and the M vein of the forewings present only basal 1/4, whereas *L. defecta* and *L. reducta* have the frons smooth, the scrobal sulci has no rows of contiguous punctures, the tibiae without flanges, the metacoxae smooth and ecarinate, and the outer surface of the metacoxae smooth. Additionally, M vein of the forewings is fully present in *L. defecta*.

The morphological state of the M vein is important for the identification of Loboscelidia species. Previously, L. bakeri Fouts, 1922, L. fulgens Kimsey, 2012, L. guangxiensis Xu, Weng & He, 2006, L. incompleta Kimsey, 2012 and L. reducta Maa & Yoshimoto, 1961 were known as species with an undeveloped M vein, species treated after couplet 2 of the key in Kimsey (2012). The new species has the frontal projection moderately projected, the frons with fine longitudinal furrows, the scape 4.0× as long as wide, the basal area of metafemora expanded, the dorsolateral surface of metacoxae with longitudinal carinae, the metafemora moderately stout basally, the ventral margin of metafemora flat, the femoral flanges $0.5\times$ as long as the tubular part of metafemora; the tibial flanges more than $0.5\times$ as wide as the tubular part, whereas other four species have the scapes less than 3.5× as long as wide, the dorsolateral surface of metacoxae without longitudinal carinae, the metafemora as wide as the distal part, ventral margin of metafemora swollen medially, L. bakeri has the basal area of metafemora not expanded, and as wide as the apical area of metafemora, the femoral flanges much shorter than 0.3× as long as the tubular part of the metafemora, the tibial flanges almost absent, L. fulgens has the basal area of metafemora not expanded, and as wide as the apical area of metafemora, the frons without fine grooves, L. guangxiensis has the basal area of metafemora not expanded, and as wide as the apical area of metafemora, the frons without fine grooves, L. incompleta has the frontal projection strongly projected, L. reducta has the basal area of metafemora not expanded, and as wide as the apical area of metafemora, the frons without fine grooves,. Collectively, these traits establish L. multistria sp. nov. as a morphologically discrete species within the group with an undeveloped M vein.

The distinctive combination of characteristics observed in *Loboscelidia multistria* **sp. nov.** extends the range of morphological variations currently recognized within this genus. Its discovery in Thailand, one of the most surveyed regions for loboscelidid wasps in Southeast Asia, demonstrates that the full spectrum of morphological diversity of the genus has not yet been captured. This finding indicates that additional, as yet unknown, combinations of diagnostic characteristics are likely to be found.

After the description of *Loboscelidia multistria* **sp. nov.**, it can be included in the first couplet of the key to males of Indo-Chinese *Loboscelidia* (Hisasue *et al.* 2023) as follows:

Acknowledgements

We express our cordial thanks to K. Watanabe (Kanagawa Prefectural Museum of Natural History), W. Jaitrong (THNHM) and K. Matsumoto (Tokyo University of Agriculture) for their kind help in facilitating access to the holotype specimen, D.A.A. Lucena (Universidade de São Paulo), the anonymous reviewer, and C.O. Azevedo (Universidade Federal do Espírito Santo) for their valuable comments and suggestions. This study was supported by a Sasakawa Scientific Research Grant from The Japan Science Society (No. 2020-5031) and JST SPRING (Grant Number: JPMJSP2136) for YH, Grant-in-Aid for Scientific Research (KAKENHI, JP19H00942, JP19K06824, JP21H05181), JSPS Bilateral Program (JPJSBP120249601), the Asahi glass foundation and the Sumitomo foundation for TM.

References

Fouts, R.M. (1922) New parasitic Hymenoptera from the Oriental islands. *The Philippine Journal of Science*, 20, 619–637. https://doi.org/10.5281/zenodo.26811

Hadlington, P. & Hoschke, F. (1959) Observations on the Ecology of the Phasmatid *Ctenomorphodes tessulatus* (Gray). *Proceedings of the Linnaean Society of New South Wales*, 84, 146–159.

- Heather, N.W. (1965) Occurrence of Cleptidae (Hymenoptera) parasites in eggs of *Ctenomorphodes tessulatus* (Gray) (Phasmida: Phasmidae) in Queensland. *Journal of the Entomological Society of Queensland*, 4, 86–87. https://doi.org/10.1111/j.1440-6055.1965.tb00662.x
- Hisasue, Y. & Mita, T. (2020) *Rhadinoscelidia lixa* sp. nov. (Hymenoptera, Chrysididae, Loboscelidiinae) found on an ant nest in Thailand. *ZooKeys*, 975, 1–9. https://doi.org/10.3897/zookeys.975.54952
- Hisasue, Y., Pham, H.T. & Mita, T. (2023) Taxonomic revision of the genus *Loboscelidia* Westwood, 1874 (Hymenoptera: Chrysididae: Loboscelidiinae) from Vietnam. *European Journal of Taxonomy*, 887, 1–68. https://doi.org/10.5852/ejt.2023.877.2203
- Jerdon, T.C. (1851) A catalogue of the species of ants found in Southern India. *Madras Journal of Literature and Science*, 17, 103–127.
- Kiefffer, J.J. (1916) Beiträge zur Kenntnis der Gattung *Loboscelidia* Westwood (Hymenoptera). *Philippine Journal of Science*, 11, 399–401.
- Kimsey, L.S. (1988) Loboscelidiinae, new species and a new genus from Malaysia (Hymenoptera: Chrysididae). *Psyche*, 95 (1/2), 67–79.
 - https://doi.org/10.1155/1988/16535
- Kimsey, L.S. (2012) Review of the odd chrysidid genus *Loboscelidia* Westwood, 1874 (Hymenoptera, Chrysididae, Loboscelidiinae). *ZooKeys*, 213, 1–40. https://doi.org/10.3897/zookeys.213.2985
- Kimsey, L.S. (2018) Morphology and review of the odd genus *Rhadinoscelidia* Kimsey, 1988 (Hymenoptera, Chrysididae, Loboscelidiinae). *Journal of Hymenoptera Research*, 62, 45–54. https://doi.org/10.3897/jhr.62.20888
- Krombein, K.V. (1983) Biosystematic studies of Ceylonese wasps: A monograph of the Amiseginae and Loboscelidiinae (Hymenoptera: Chrysididae). *Smithsonian Contributions to Zoology*, 376, 1–79. https://doi.org/10.5479/si.00810282.376
- Lanes, G.O., Kawada, R., Azevedo, C.O. & Brothers, D.J. (2020) Revisited morphology applied for Systematics of flat wasps (Hymenoptera, Bethylidae). *Zootaxa*, 4752 (1), 1–127. https://doi.org/10.11646/zootaxa.4752.1.1
- Li, T.-Q. & Xu, Z.-F. (2017) A new species of *Loboscelidia* (Hymenoptera: Chrysididae: Loboscelidiinae) from China. *Entomotaxonomia*, 39 (2), 163–168.
- Maa, T.C. & Yoshimoto, C.M. (1961) Loboscelidiidae, a new family of Hymenoptera. Pacific Insects, 3, 523-548.
- Riek, E.F. (1970) Loboscelidiidae. *In*: Naumann, I.D. (Ed,), *The Insects of Australia*. Melbourne University Press, Melbourne, pp. 910.
- Westwood, J.O. (1874) Thesaurus Entomologicus Oxoniensis. Clarendon Press, Oxford, 314 pp. https://doi.org/10.5962/bhl.title.14077
- Xu, Z.-F., Weng, L.-Q. & He, J.-H. (2006) A new species of the genus *Loboscelidia* (Insecta, Hymenoptera) from China. *Acta Zootaxonomia Sinica*, 31 (1), 208–210.