Skip to main content Skip to main navigation menu Skip to site footer
Type: Monograph
Published: 2024-08-15
Page range: 1-80
Abstract views: 114
PDF downloaded: 15

Reassessment of the phylogenetic position of the spiny-scale pricklefish Hispidoberyx ambagiosus (Teleostei: Hispidoberycidae) based on comparative morphology

Laboratory of Marine Biology and Biodiversity (Systematic Ichthyology); Graduate School of Fisheries Sciences; Hokkaido University; 3-1-1 Minato-cho; Hakodate; Hokkaido 041-8611; Japan; Faculty of Fisheries Sciences; Hokkaido University; 3-1-1 Minato-cho; Hakodate; Hokkaido 041-8611; Japan; Fisheries Science Center; The Hokkaido University Museum; 3-1-1 Minato-cho; Hakodate; Hokkaido 041-8611; Japan
Pisces Beryciformes Stephanoberyciformes anatomy osteology myology phylogeny

Abstract

The spiny-scale pricklefish Hispidoberyx ambagiosus Kotlyar, 1981, the sole member of the family Hispidoberycidae, is known from only a few specimens collected from tropical waters of the Indo-West Pacific region. Because its phylogenetic position has not been well investigated, the present study describes the osteology, myology and other morphological features of H. ambagiosus, and reassesses the phylogenetic position of the species, and its relationships with related taxa. Many significant characters, including Tominaga’s organ, were newly discovered in H. ambagiosus and related taxa. Following a phylogenetic analysis of characters in 80 transformation series, three most parsimonious trees were obtained, with H. ambagiosus inferred as forming a monophyletic group together with Barbourisiidae, Cetomimidae, Gibberichthyidae, Rondeletiidae and Stephanoberycidae. Within this clade, H. ambagiosus was inferred as a sister taxon of a clade including the latter three of the aforementioned families. It is considered that H. ambagiosus retains many primitive features, having fewer derived characters than other species in the clade including the six families.

 

References

  1. Amaoka, K. (1983) Cetostoma regani Zugmayer. In: Amaoka, K., Nakaya, K., Araya, H. & Yasui, T. (Eds.), Fishes from the north-eastern Sea of Japan and the Okhotsk Sea off Hokkaido. Japan Fisheries Resource Conservation Association, Tokyo, pp. 124–125.
  2. Amaoka, K. (1995) Barbourisiidae, Rondeletiidae. In: Okamura, O., Amaoka, K., Takeda, M., Yano, K., Okada, K. & Chikuni, S. (Eds.), Fishes collected by the R/V Shinkai Maru around Greenland. Japan Marine Fishery Resources Research Center, Tokyo, pp. 148–149.
  3. Betancur-R, R., Broughton, R.E., Wiley, E.O., Carpenter, K., Lopez, J.A., Li, C., Holcroft, N.I., Arcila, D., Sanciangco, M., Cureton, J.C. II, Zhang, F., Buser, T., Campbell, M.A., Ballesteros, J.A., Roa-Varon, A., Willis, S., Borden, W.C., Rowley, T., Reneau, P.C., Hough, D.J., Lu, G., Grande, T., Arratia, G. & Ortí, G. (2013) The tree of life and a new classification of bony fishes. PLoS Currents Tree of Life. 1st Edition. 18 April 2013. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
  4. Betancur-R, R., Wiley, E.O., Arratia, G., Acero, A., Bailly, N., Miya, M., Lecointre, G. & Ortí, G. (2017) Phylogenetic classification of bony fishes. BMC Evolutionary Biology, 17, 162. https://doi.org/10.1186/s12862-017-0958-3
  5. Chen, W.-J., Santini, F., Carnevale, G., Chen, J.-N., Liu, S.-H., Lavoué, S. & Mayden, R.L. (2014) New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha). Frontiers in Marine Science, 1, 1–17. https://doi.org/10.3389/fmars.2014.00053
  6. Claes, J.M., Delroisse, J., Grace, M.A., Doosey, M.H., Duchatelet, L. & Mallefet, J. (2020) Histological evidence for secretory bioluminescence from pectoral pockets of the American Pocket Shark (Mollisquama mississippiensis). Scientific Reports, 10, 18762. https://doi.org/10.1038/s41598-020-75656-8
  7. Davesne, D., Gallut, C., Barriel, V., Janvier, P., Lecointre, G. & Otero, O. (2016) The phylogenetic intrarelationships of spiny-rayed fishes (Acanthomorpha, Teleostei, Actinopterygii): fossil taxa increase the congruence of morphology with molecular data. Frontiers in Ecology and Evolution, 4, 129. https://doi.org/10.3389/fevo.2016.00129
  8. de Pinna, M.C.C. (1996) Teleostean monophyly. In: Stiassny, M.L.J., Parenti, L.R. & Johnson, G.D. (Eds.), Interrelationships of Fishes. Academic Press, San Diego, pp. 147–162. https://doi.org/10.1016/B978-012670950-6/50008-4
  9. de Sylva, D.P. & Eschmeyer, W.N. (1977) Systematics and biology of the deep-sea fish family Gibberichthyidae, a senior synonym of the family Kasidoroidae. Proceedings of the California Academy of Sciences, Series 4, 41, 215–231.
  10. Dornburg, A., Townsend, J.P., Brooks, W., Spriggs, E., Eytan, R.I., Moore, J.A., Wainwright, P.C., Lemmon, A., Lemmon, E.M. & Near, T.J. (2017) New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset. Molecular Phylogenetics and Evolution, 110, 27–38. https://doi.org/10.1016/j.ympev.2017.02.017
  11. Ebeling, A.W. & Weed, W.H. III (1973) Order Xenoberyces (Stephanoberyciformes). In: Cohen, D.M. (Ed.), Memoir Sears Foundation for Marine Research. No. 1. Fishes of the Western North Atlantic. Part 6. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, pp. 397–478.
  12. Endo, H. (2002) Phylogeny of the order Gadiformes (Teleostei, Paracanthopterygii). Memoirs of the Graduate School of Fisheries Science, Hokkaido University, 49, 75–149.
  13. Farris, J.A. (1970) Method for computing Wagner trees. Systematic Zoology, 19, 83–92. https://doi.org/10.2307/2412028
  14. Fitch, W.M. (1971) Toward defining the course of evolution: minimal change for a specific tree topology. Systematic Zoology, 20, 406–416. https://doi.org/10.2307/2412116
  15. Fricke, R. & Eschmeyer, W.N. (2023) A guide to fish collections in the Catalogue of Fishes. Online version. Updated 7 February 2023. Available from: https://researcharchive.calacademy.org/research/ichthyology/catalog/collections.asp (accessed 24 February 2023)
  16. Fujii, E., Uyeno, T. & Shimaguchi, T. (2007) Miobarbourisia aomori gen. et sp. nov. (order Stephanoberyciformes), Miocene whalefish from Aomori, Japan. Bulletin of the National Museum of Nature and Science, Series C, 33, 89–93.
  17. Fujita, K. (1990) The caudal skeleton of teleostean fishes. Tokai University Press, Tokyo, xii + 897 pp. [in Japanese, with English summary]
  18. Ghedotti, M.J., Dekay, H.M., Maile, A.J., Smith, W.L. & Davis, M.P. (2021) Anatomy and evolution of bioluminescent organs in the slimeheads (Teleostei: Trachichthyidae). Journal of Morphology, 282, 820–832. https://doi.org/10.1002/jmor.21349
  19. Ghezelayagh, A., Harrington, R.C., Burress, E.D., Campbell, M.A., Buckner, J.C., Chakrabarty, P., Glass, J.R., McCraney, W.T., Unmack, P.J., Thacker, C.E., Alfaro, M.E., Friedman, S.T., Ludt, W.B., Cowman, P.F., Friedman, M., Price, S.A., Dornburg, A., Faircloth, B.C., Wainwright, P.C. & Near, T.J. (2022) Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nature Ecology & Evolution, 6, 1211–1220. https://doi.org/10.1038/s41559-022-01801-3
  20. Grace, M.A., Doosey, M.H., Denton, J.S.S., Naylor, G.J.P., Bart, H.L. Jr. & Maisey, J.G. (2019) A new Western North Atlantic Ocean kitefin shark (Squaliformes: Dalatiidae) from the Gulf of Mexico. Zootaxa, 4619 (1), 109–120. https://doi.org/10.11646/zootaxa.4619.1.4
  21. Greenwood, P.H. & Rosen, D.E. (1971) Notes on the structure and relationships of the alepocephaloid fishes. American Museum Novitates, 2373, 1–41.
  22. Greenwood, P.H., Rosen, D.E., Weitzman, S.H. & Myers, G.S. (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the American Museum of Natural History, 131, 339–456.
  23. Hennig, W. (1966) Phylogenetic systematic. University of Illinois Press, Urbana, 263 pp.
  24. Hughes, L.C., Ortí, G., Huang, Y., Sun, Y., Baldwin, C.C., Thompson, A.W., Arcila, D., Betancur‐R, R., Li, C., Becker, L., Bellora, N., Zhao, X., Li, X., Wang, M., Fang, C., Xie, B., Zhou, Z., Huang, H., Chen, S., Venkatesh, B. & Shi, O. (2018) Comprehensive phylogeny of fishes (Actinopterygii) based on genomic and transcriptomic data. Proceedings of the National Academy of Science of the United States of America, 115, 6249–6254. https://doi.org/10.1073/pnas.1719358115
  25. Johnson, G.D. (1975) The procurrent spur, an undescribed perciform character and its phylogenetic implications. Occasional papers of the California Academy of Sciences, 121, 1–23.
  26. Johnson, G.D. (1992) Monophyly of the euteleostean clades—Neoteleostei, Eurypterygii, and Ctenosquamata. Copeia, 1992, 8–25. https://doi.org/10.2307/1446531
  27. Johnson, G.D. & Patterson, C. (1993) Percomorph phylogeny: a survey of acanthomorphs and a new proposal. Bulletin of Marine Science, 52, 554–626.
  28. Johnson, G.D., Paxton, J.R., Sutton, T.T., Satoh, T.P., Sado, T., Nishida, M. & Miya, M. (2009) Deep-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families. Biology Letters, 5, 235–239. https://doi.org/10.1098/rsbl.2008.0722
  29. Kido, K. (1988) Phylogeny of the family Liparididae, with the taxonomy of the species found around Japan. Memoirs of the Faculty of Fisheries, Hokkaido University, 35, 125–256.
  30. Kobyliansky, S.G., Gordeeva, N.V. & Kotlyar, A.N. (2020) New findings of the rare species Rondeletia bicolor (Stephanoberycoidei) over the Mid-Atlantic Ridge and some peculiarities of the Rondeletiidae family’s phylologeny. Journal of Ichthyology, 60, 13–21. https://doi.org/10.1134/S0032945220010075
  31. Kotlyar, A.N. (1981) A new family, genus and species of Beryciformes, Hispidoberycidae fam. n., Hispidoberyx ambagiosus gen. et sp. n. (Beryciformes). Voprosy Ikhtiologii, 21, 411–416. [In Russian, English translation in Journal of Ichthyology, 21, 9–13.]
  32. Kotlyar, A.N. (1987) Classification and distribution of fishes of the family Anoplogastridae (Beryciformes). Journal of Ichthyology, 27, 133–153.
  33. Kotlyar, A.N. (1991a) Osteology of Hispidoberyx ambagiosus (Hispidoberycidae) and its position within the order Beryciformes. Journal of Ichthyology, 31, 99–108.
  34. Kotlyar, A.N. (1991b) Osteology of the suborder Stephanoberycoidei. Communication 1. The Stephanoberycidae and Gibberichthyidae. Journal of Ichthyology, 31, 18–32.
  35. Kotlyar, A.N. (1995) Osteology and distribution of Barbourisia rufa (Barbourisiidae). Journal of Ichthyology, 35, 140–150.
  36. Kotlyar, A.N. (1996a) Osteological intraspecific structure, and distribution of Rondeletia loricata (Rondeletiidae). Journal of Ichthyology, 36, 207–221.
  37. Kotlyar, A.N. (1996b) Beryciform Fishes of the World Ocean. VNIRO Publishing, Moscow, 368 pp. [in Russian, with English summary]
  38. Kotlyar, A.N. (2004a) Family Hispidoberycidae Kotlyar 1981–hispidoberycids. California Academy of Sciences Annotated Checklists of Fishes, 26, 1–2.
  39. Kotlyar, A.N. (2004b) Family Gibberichthyidae Parr 1933–gibberfishes. California Academy of Sciences Annotated Checklists of Fishes, 28, 1–3.
  40. Kotlyar, A.N. (2004c) Family Stephanoberycidae Gill 1884–pricklefishes. California Academy of Sciences Annotated Checklists of Fishes, 27, 1–3.
  41. Maddison, W.P. & Maddison, D.R. (2023) Mesquite: a modular system for evolutionary analysis. version 3.81. Available from: http://www.mesquiteproject.org (accessed 15 June 2023)
  42. Mincarone, M.M., Di Dario, F. & Costa, P.A.S. (2014) Deep-sea bigscales, pricklefishes, gibberfishes and whalefishes (Teleostei: Stephanoberycoidei) off Brazil: new records, range extensions for the south-western Atlantic Ocean and remarks on the taxonomy of Poromitra. Journal of Fish Biology, 85, 1546–1570. https://doi.org/10.1111/jfb.12515
  43. Miya, M., Kawaguchi, A. & Nishida, M. (2001) Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Molecular Biology and Evolution, 18, 1993–2009. https://doi.org/10.1093/oxfordjournals.molbev.a003741
  44. Miya, M., Satoh, T.P. & Nishida, M. (2005) The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences. Biological Journal of the Linnean Society, 85, 289–306. https://doi.org/10.1111/j.1095-8312.2005.00483.x
  45. Miya, M., Takeshima, H., Endo, H., Ishiguro, N.B., Inoue, J.G., Mukai, T., Satoh, T.P., Yamaguchi, M., Kawaguchi, A., Mabuchi, K., Shirai, S.M. & Nishida, M. (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Molecular Biology and Evolution, 26, 121–138. https://doi.org/10.1016/S1055-7903(02)00332-9
  46. Moore, J.A. (1993) Phylogeny of the Trachichthyiformes (Teleostei: Percomorpha). Bulletin of Marine Science, 52, 114–136.
  47. Near, T.J., Dornburg, A., Eytan, R.I., Keck, B.P., Smith, W.L., Kuhn, K.L., Moore, J.A., Price, S.A., Burbrink, F.T., Friedman, M. & Wainwright, P.C. (2013) Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proceedings of the National Academy of Science of the United States of America, 110, 12738–12743. https://doi.org/10.1073/pnas.1304661110
  48. Near, T.J., Eytan, R.I., Dornburg, A., Kuhn, K.L., Moore, J.A., Davis, M.P., Wainwright, P.C., Friedman, M. & Smith, W.L. (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Science of the United States of America, 109, 13698–13703. https://doi.org/10.1073/pnas.1206625109
  49. Near, T.J. & Thacker, C.E. (2024) Phylogenetic classification of living and fossil ray-finned fishes (Actinopterygii). Bulletin of the Peabody Museum of Natural History, 65 (1), 3–302. https://doi.org/10.3374/014.065.0101
  50. Nelson, J.S., Grande, T.C. & Wilson, M.V.H. (2016) Fishes of the world, 5th ed. John Wiley & Sons, Hoboken, New Jersey, xli + 707 pp.
  51. Okamura, O. (1985) 220 Barbourisia rufa Parr, 221 Rondeletia loricata Abe and Hotta. In: Okamura, O. (Ed.), Fishes of the Okinawa Trough and the adjacent waters II. Japan Fisheries Resource Conservation Association, Tokyo, pp. 440–443.
  52. Overseas Fishery Cooperation Foundation, Japan & Agency for Marine and Fisheries Research, Ministry of Marine Affairs and Fisheries, Indonesia (2006a) The Japan-Indonesia Deep Sea Fishery Resources Joint Exploration Project (Final Report). Overseas Fishery Cooperation Foundation of Japan, Tokyo, VIII + 154 + 58 pp.
  53. Overseas Fishery Cooperation Foundation, Japan & Agency for Marine and Fisheries Research, Ministry of Marine Affairs and Fisheries, Indonesia (2006b) The Japan-Indonesia Deep Sea Fishery Resources Joint Exploration Project (Photo Album). Overseas Fishery Cooperation Foundation of Japan, Tokyo, 71 pp.
  54. Patterson, C. & Johnson, G.D. (1995) The intermuscular bones and ligaments of teleostean fishes. Smithsonian Contribution to Zoology, 559, 1–85. https://doi.org/10.5479/si.00810282.559
  55. Paxton, J.R. (1974) Morphology and distribution patterns of the whalefishes of the family Rondeletiidae. Journal of the Marine Biological Association of India, 15, 175–188.
  56. Paxton, J.R. (1989) Synopsis of the whalefishes (family Cetomimidae) with descriptions of four new genera. Records of the Australian Museum, 41, 135–206. https://doi.org/10.3853/j.0067-1975.41.1989.141
  57. Paxton, J.R. (2008) Family Rondeletiidae, Family Barbourisiidae. In: Gomon, M.F., Bray, D.J. & Kuiter, R.H. (Eds.), Fishes of Australia’s southern coast. New Holland Publishers, Sydney, pp. 413–414.
  58. Paxton, J.R. (2015) 133 Family Rondeletiidae. In: Roberts, C.D., Stewart, A.L. & Struthers, C.D. (Eds.), The fishes of New Zeeland. Te Papa Press, Wellington, pp. 994–995.
  59. Paxton, J.R., Johnson, G.D. & Trnski, T. (2001) Larvae and juveniles of the deepsea “Whalefishes” Barbourisia and Rondeletia (Stephanoberyciformes: Barbourisiidae, Rondeletiidae), with comments on family relationships. Records of the Australian Museum, 53, 407–425. https://doi.org/10.3853/j.0067-1975.53.2001.1352
  60. Potthoff, T. (1984) Clearing and staining techniques. In: Moser, H.G., Richards, W.J., Cohen, D.M., Fahay, M.P., Kendall, A.W. Jr & Richardson, S.L. (Eds.), Ontogeny and systematics of fishes. The American Society of Ichthyologists and Herpetologists, Lawrence, pp. 35–37.
  61. Poulsen, J.Y. (2019) New observations and ontogenetic transformation of photogenic tissues in the tubeshoulder Sagamichthys schnakenbecki (Platytroctidae, Alepocephaliformes). Journal of Fish Biology, 94, 62–76. https://doi.org/10.1111/jfb.13857
  62. Rojo, A.L. (1991) Dictionary of evolutionary fish osteology. CRC Press, Boca Raton, Florida, 273 pp.
  63. Rosen, D.E. (1973) Interrelationships of higher euteleostean fishes. In: Greenwood, P.H., Miles R.S. & Patterson, C. (Eds.), Interrelationships of Fishes. Academic Press, New York, pp. 397–513.
  64. Sasaki, K., Tanaka, Y. & Takata, Y. (2006) Cranial morphology of Ateleopus japonicus (Ateleopodidae: Ateleopodiformes), with a discussion on metamorphic mouth migration and lampridiform affinities. Ichthyological Research, 53, 254–263. https://doi.org/10.1007/s10228-006-0343-5
  65. Springer, V.G. & Johnson, G.D. (2004) Study of the dorsal gill-arch musculature of teleostome fishes, with special reference to the Actinopterygii. Bulletin of the Biological Society of Washington, 11, i–vi + 1–260, pls. 1–205. https://doi.org/10.5962/bhl.title.49077
  66. Stewart, A.L. (2015) 132 Family Stephanoberycidae. In: Roberts, C.D., Stewart, A.L. & Struthers, C.D. (Eds.), The fishes of New Zeeland. Te Papa Press, Wellington, pp. 992–993.
  67. Stiassny, M.L.J. (1986) The limits and relationships of the acanthomorph teleosts. Journal of Zoology, 1, 411–460. https://doi.org/10.1111/j.1096-3642.1986.tb00644.x
  68. Stiassny, M.L.J. (1996) Basal ctenosquamate relationships and the interrelationships of the myctophiform (scopelomorph) fishes. In: Stiassny, M.L.J., Parenti, L.R. & Johnson, G.D. (Eds.), Interrelationships of Fishes. Academic Press, San Diego, pp. 405–426. https://doi.org/10.1016/B978-012670950-6/50016-3
  69. Stiassny, M.L.J. & Moore, J.A. (1992) A review of the pelvic girdle of atherinomorph fishes. Zoological Journal of Linnean Society, 104, 209–242. https://doi.org/10.1111/j.1096-3642.1992.tb00923.x
  70. Su, Y., Lin, C.-H. & Ho, H.-C. (2023) Redescription of the hispidoberycid, Hispidoberyx ambagiosus Kotlyar, 1981 from Taiwan, with comments on its morphology (Beryciformes, Stephanoberycoidei, Hispidoberycidae). ZooKeys, 1182, 19–34. https://doi.org/10.3897/zookeys.1182.111296
  71. Swofford, D.L. (2002) PAUP*: phylogenetic analysis using parsimony, version 4. Sinauer Associates, Sunderland, Massachusetts. [program]
  72. Swofford, D.L. & Maddison, W.P. (1987) Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences, 87, 199–229. https://doi.org/10.1016/0025-5564(87)90074-5
  73. Tominaga, Y. (1970) On the glandular organs before the eyes of the red-coated whalefish, Rondeletia loricata. Zoological Magazine, 79, 368. [in Japanese]
  74. Vilasri, V. (2013) Comparative anatomy and phylogenetic systematics of the family Uranoscopidae (Actinopterygii: Perciformes). Memoirs of the Faculty of Fisheries Science, Hokkaido University, 55, 1–106.
  75. Watrous, L.E. & Wheeler, Q.D. (1981) The out-group comparison method of character analysis. Systematic Zoology, 30, 1–11. https://doi.org/10.2307/2992297
  76. Webb, J.F. (1989) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain, Behavior and Evolution, 33, 34–53. https://doi.org/10.1159/000115896
  77. Weber, M.D. (2020) Shedding light into the darkness: using molecular data to resolve whalefish (Cetomimidae) phylogenetics and the historical demography of populations of deep-pelagic fishes. Master’s thesis, Texas A & M University. Available from: https://hdl.handle.net/1969.1/191915 (accessed 16 June 2022)
  78. Wiley, E.O. (1981) Phylogenetics: the theory and practice of phylogenetic systematics. Wiley-interscience, New York, 439 pp.
  79. Wiley, E.O. & Johnson, G.D. (2010) A teleost classification based on monophyletic groups. In: Nelson, J.S., Schultze, H.-P. & Wilson, M.V.H. (Eds.), Origin and Phylogenetic Interrelationships of Teleosts. Verlag Dr. Friedrich Pfeil, München, pp. 123–182.
  80. Winterbottom, R. (1974) A descriptive synonymy of the striated muscles of the Teleostei. Proceedings of the Academy of Natural Sciences of Philadelphia, 125, 225–317.
  81. Yabe, M. (1985) Comparative osteology and myology of the superfamily Cottoidea (Pisces: Scorpaeniformes), and its phylogenetic classification. Memoirs of the Faculty of Fisheries, Hokkaido University, 32, 1–130.
  82. Yang, Y.-R., Zeng, B.-G. & Paxton, J.R. (1988) Additional specimens of the deepsea fish Hispidoberyx ambagiousus [sic] (Hispidoberycidae, Berciformes [sic]) from the South China Sea, with comments on the family relationships. Uo, 38, 3–8.
  83. Zehren, S.J. (1979) The comparative osteology and phylogeny of the Beryciformes (Pisces: Teleostei). Evolutionary Monographs, 1, 1–389.