Abstract
Fleas (Siphonaptera) are medically important blood-feeding insects responsible for spreading pathogens such as plague, murine typhus, and myxomatosis. The peculiar morphology of fleas resulting from their specialised ectoparasitic lifestyle has meant that the phylogenetic position of this diverse and medically important group has remained one of the most persistent problems in insect evolution. Here we test competing hypotheses on the contentious evolutionary relationships of fleas and antliophoran insects using the largest molecular dataset available to date consisting of over 1,400 protein-coding genes, and a smaller mitogenome and Sanger sequence alignment of 16 genes. By removing ambiguously aligned sequence regions and using site-heterogeneous models, we consistently recover fleas nested within scorpionflies (Mecoptera) as sister to the relictual southern hemisphere family Nannochoristidae. Topology tests accounting for compositional heterogeneity strongly favour the proposed topology over previous hypotheses of antliophoran relationships. This clade is diagnosed by shared morphological characters of the head and sperm pump. Fleas may no longer be regarded as a separate insect order and we propose that Siphonaptera should be treated as an infraorder within Mecoptera, reducing the number of extant holometabolan insect orders to ten.
References
Bajdek, P., Qvarnström, M., Owocki, K., Sulej, T., Sennikov, A.G., Golubev, V.K. & Niedźwiedzki, G. (2016) Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia, 49, 455–477.
https://doi.org/10.1111/let.12156
Beutel, R.G. & Baum, E. (2008) A longstanding entomological problem finally solved? Head morphology of Nannochorista (Mecoptera, Insecta) and possible phylogenetic implications. Journal of Zoological Systematics and Evolutionary Research, 46, 346–367.
https://doi.org/10.1111/j.1439-0469.2008.00473.x
Beutel, R.G. & Friedrich, F. (2019) Phylogeny. In: Beutel, R.G. & Friedrich, F. (Eds). Nannomecoptera and Neomecoptera. Handbook of Zoology: Arthropoda: Insecta. De Gruyter, Berlin, Boston, pp. 159–162.
https://doi.org/10.1515/9783110272543-004
Beutel, R.G., Friedrich, F., Hörnschemeyer, T., Pohl, H., Hünefeld, F., Beckmann, F., Meier, R., Misof, B., Whiting, M.F. & Vilhelmsen, L. (2011) Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics, 27, 341–355.
https://doi.org/10.1111/j.1096-0031.2010.00338.x
Beutel, R.G., Friedrich, F., Yang, X.K. & Ge, S.Q. (2013) Insect morphology and phylogeny: A textbook for students of entomology. Walter de Gruyter, 532 pp.
https://doi.org/10.1515/9783110264043
Beutel, R.G. & Pohl, H. (2006) Endopterygote systematics – where do we stand and what is the goal (Hexapoda, Arthropoda)? Systematic Entomology, 31, 202–219.
https://doi.org/10.1111/j.1365-3113.2006.00341.x
Beutel, R.G., Yavorskaya, M.I., Mashimo, Y., Fukui, M. & Meusemann, K. (2017) The phylogeny of Hexapoda (Arthropoda) and the evolution of megadiversity. Proceedings of Arthropodan Embryological Society of Japan, 51, 1–15.
Biliński, S.M. & Büning, J. (1998) Structure of ovaries and oogenesis in the snow scorpionfly Boreus hyemalis (Linne) (Mecoptera: Boreidae). International Journal of Insect Morphology and Embryology, 27, 333–340.
https://doi.org/10.1016/S0020-7322(98)00026-9
Börner, C. (1904) Zur Systematik der Hexapoda. Zoologischer Anzeiger, 27, 511– 533.
Boudreaux, H.B. (1979) Arthropod phylogeny with special reference to insects. Wiley-Interscience, New York, 320 pp.
Byers, G.W. (1996) More on the origin of Siphonaptera. Journal of the Kansas Entomological Society, 69, 274–277.
Byers, G.W. (2009) Mecoptera: scorpionflies, hangingflies. In: V. H. Resh and R. T. Cardé (Eds). Encyclopedia of insects (Second edition). Academic Press, San Diego, pp. 611–614.
https://doi.org/10.1016/B978-0-12-374144-8.00170-3
Chalwatzis, N., Hauf, J., Van De Peer, Y., Kinzelbach, R. & Zimmermann, F.K. (1996) 18S ribosomal RNA genes of insects: primary structure of the genes and molecular phylogeny of the Holometabola. Annals of the Entomological Society of America, 89, 788–803.
https://doi.org/10.1093/aesa/89.6.788
Criscuolo, A. & Gribaldo, S. (2010) BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 10, 210.
https://doi.org/10.1186/1471-2148-10-210
Dallai, R., Lupetti, P., Afzelius, B.A. & Frati, F. (2003) Sperm structure of Mecoptera and Siphonaptera (Insecta) and the phylogenetic position of Boreus hyemalis. Zoomorphology, 122, 211–220.
https://doi.org/10.1007/s00435-003-0087-y
Feuda, R., Dohrmann, M., Pett, W., Philippe, H., Rota-Stabelli, O., Lartillot, N., Wörheide, G. & Pisani, D. (2017) Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Current Biology, 27, 3864–3870.e4.
https://doi.org/10.1016/j.cub.2017.11.008
Fraulob, M., Wipfler, B., Hünefeld, F., Pohl, H. & Beutel, R.G. (2012) The larval abdomen of the enigmatic Nannochoristidae (Mecoptera, Insecta). Arthropod Structure & Development, 41, 187–198.
https://doi.org/10.1016/j.asd.2011.11.001
Hennig, W. (1969) Die Stammesgeschichte der Insekten. 1st ed. Waldemar Kramer, Frankfurt, 436 pp.
Hinton, H.E. (1958) The phylogeny of the panorpoid orders. Annual Review of Entomology, 3, 181–206.
https://doi.org/10.1146/annurev.en.03.010158.001145
Hinton, H.E. (1981) Biology of insect eggs. Vol. II. Pergamon Press, Oxford, 778 pp.
Huang, D.Y., Engel, M.S., Cai, C.Y. & Nel, A. (2013) Mesozoic giant fleas from northeastern China (Siphonaptera): Taxonomy and implications for palaeodiversity. Chinese Science Bulletin, 58, 1682–1690.
https://doi.org/10.1007/s11434-013-5769-3
Huang, D.Y., Engel, M.S., Cai, C.Y., Wu, H. & Nel, A. (2012) Diverse transitional giant fleas from the Mesozoic era of China. Nature, 483, 201–204.
https://doi.org/10.1038/nature10839
Inagaki, Y. & Roger, A.J. (2006) Phylogenetic estimation under codon models can be biased by codon usage heterogeneity. Molecular Phylogenetics and Evolution, 40, 428–434.
https://doi.org/10.1016/j.ympev.2006.03.020
Inward, D., Beccaloni, G. & Eggleton, P. (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331–335.
https://doi.org/10.1098/rsbl.2007.0102
Ishiwata, K., Sasaki, G., Ogawa, J., Miyata, T. & Su, Z.H. (2011) Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Molecular Phylogenetics and Evolution, 58, 169–180.
https://doi.org/10.1016/j.ympev.2010.11.001
Johnson, K.P., Dietrich, C.H., Friedrich, F., Beutel, R.G., Wipfler, B., Peters, R.S., Allen, J.M., Petersen, M., Donath, A., Walden, K.K.O., Kozlov, A.M., Podsiadlowski, L., Mayer, C., Meusemann, K., Vasilikopoulos, A., Waterhouse, R.M., Cameron, S.L., Weirauch, C., Swanson, D.R., Percy, D.M., Hardy, N.B., Terry, I., Liu, S., Zhou, X., Misof, B., Robertson, H.M. & Yoshizawa, K. (2018) Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences, 115, 12775–12780.
https://doi.org/10.1073/pnas.1815820115
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589.
https://doi.org/10.1038/nmeth.4285
Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.
https://doi.org/10.1093/molbev/mst010
Kjer, K.M. (2004) Aligned 18S and insect phylogeny. Systematic Biology, 53, 506–514.
https://doi.org/10.1080/10635150490445922
Kjer, K.M., Carle, F.L., Litman, J. & Ware, J. (2006) A molecular phylogeny of Insecta. Arthropod Systematics and Phylogeny, 64, 35–44.
Kjer, K.M., Simon, C., Yavorskaya, M. & Beutel, R.G. (2016) Progress, pitfalls and parallel universes: a history of insect phylogenetics. Journal of The Royal Society Interface, 13, 20160363.
https://doi.org/10.1098/rsif.2016.0363
Kristensen, N.P. (1975) The phylogeny of hexapod “orders”. A critical review of recent accounts. Journal of Zoological Systematics and Evolutionary Research, 13, 1–44.
https://doi.org/10.1111/j.1439-0469.1975.tb00226.x
Kristensen, N.P. (1981) Phylogeny of insect orders. Annual Review of Entomology, 26, 135–157.
https://doi.org/10.1146/annurev.en.26.010181.001031
Kristensen, N.P. (1991) Phylogeny of extant hexapods. In: CSIRO Division of Entomology. The insects of Australia: a textbook for students and research workers. 2nd ed. Vol. 1. Melbourne University Press, Carlton, pp. 125–140.
Kristensen, N.P. (1999) Phylogeny of endopterygote insects, the most successful lineage of living organisms. European Journal of Entomology, 96, 237–253.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35, 1547–1549.
https://doi.org/10.1093/molbev/msy096
Lartillot, N., Brinkmann, H. & Philippe, H. (2007) Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evolutionary Biology, 7, S4.
https://doi.org/10.1186/1471-2148-7-S1-S4
Lartillot, N., Lepage, T. & Blanquart, S. (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics, 25, 2286–2288.
https://doi.org/10.1093/bioinformatics/btp368
Lewis, R.E. (1998) Resume of the Siphonaptera (Insecta) of the world. Journal of Medical Entomology, 35, 377–389.
https://doi.org/10.1093/jmedent/35.4.377
Marlétaz, F., Peijnenburg, K.T.C.A., Goto, T., Satoh, N. & Rokhsar, D.S. (2019) A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Current Biology, 29, 312–318.
https://doi.org/10.1016/j.cub.2018.11.042
McKenna, D.D. & Farrell, B.D. (2010) 9-genes reinforce the phylogeny of Holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS ONE, 5, e11887.
https://doi.org/10.1371/journal.pone.0011887
Medvedev, S.G. (2017) Adaptations of fleas (Siphonaptera) to parasitism. Entomological Review, 97, 1023–1030.
https://doi.org/10.1134/S0013873817080012
Michelsen, V. (1997) A revised interpretation of the mouthparts in adult fleas (Insecta, Siphonaptera). Zoologischer Anzeiger, 235, 217–223.
Mickoleit, G. (2008) Die Sperma-Auspreßvorrichtung der Nannochoristidae (Insecta: Mecoptera. Entomologia Generalis, 193–226.
https://doi.org/10.1127/entom.gen/31/2008/193
Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE), pp. 1–8.
https://doi.org/10.1109/GCE.2010.5676129
Misof, B., Liu, S., Meusemann, K., Peters, R.S., Donath, A., Mayer, C., Frandsen, P.B., Ware, J., Flouri, T., Beutel, R.G., Niehuis, O., Petersen, M., Izquierdo-Carrasco, F., Wappler, T., Rust, J., Aberer, A.J., Aspöck, U., Aspöck, H., Bartel, D., Blanke, A., Berger, S., Böhm, A., Buckley, T.R., Calcott, B., Chen, J., Friedrich, F., Fukui, M., Fujita, M., Greve, C., Grobe, P., Gu, S., Huang, Y., Jermiin, L.S., Kawahara, A.Y., Krogmann, L., Kubiak, M., Lanfear, R., Letsch, H., Li, Y., Li, Z., Li, J., Lu, H., Machida, R., Mashimo, Y., Kapli, P., McKenna, D.D., Meng, G., Nakagaki, Y., Navarrete-Heredia, J.L., Ott, M., Ou, Y., Pass, G., Podsiadlowski, L., Pohl, H., Reumont, B.M. von, Schütte, K., Sekiya, K., Shimizu, S., Slipinski, A., Stamatakis, A., Song, W., Su, X., Szucsich, N.U., Tan, M., Tan, X., Tang, M., Tang, J., Timelthaler, G., Tomizuka, S., Trautwein, M., Tong, X., Uchifune, T., Walzl, M.G., Wiegmann, B.M., Wilbrandt, J., Wipfler, B., Wong, T.K.F., Wu, Q., Wu, G., Xie, Y., Yang, S., Yang, Q., Yeates, D.K., Yoshizawa, K., Zhang, Q., Zhang, R., Zhang, W., Zhang, Y., Zhao, J., Zhou, C., Zhou, L., Ziesmann, T., Zou, S., Li, Y., Xu, X., Zhang, Y., Yang, H., Wang, J., Wang, J., Kjer, K.M. & Zhou, X. (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763–767.
https://doi.org/10.1126/science.1257570
Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.
https://doi.org/10.1093/molbev/msu300
Niehuis, O., Hartig, G., Grath, S., Pohl, H., Lehmann, J., Tafer, H., Donath, A., Krauss, V., Eisenhardt, C., Hertel, J., Petersen, M., Mayer, C., Meusemann, K., Peters, R.S., Stadler, P.F., Beutel, R.G., Bornberg-Bauer, E., McKenna, D.D. & Misof, B. (2012) Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Current Biology, 22, 1309–1313.
https://doi.org/10.1016/j.cub.2012.05.018
Palmer, C. (2010) Diversity of feeding strategies in adult Mecoptera. Terrestrial Arthropod Reviews, 3, 111–128.
https://doi.org/10.1163/187498310X519716
Peters, R.S., Meusemann, K., Petersen, M., Mayer, C., Wilbrandt, J., Ziesmann, T., Donath, A., Kjer, K.M., Aspöck, U., Aspöck, H., Aberer, A., Stamatakis, A., Friedrich, F., Hünefeld, F., Niehuis, O., Beutel, R.G. & Misof, B. (2014) The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evolutionary Biology, 14, 52.
https://doi.org/10.1186/1471-2148-14-52
Philippe, H., Brinkmann, H., Lavrov, D.V., Littlewood, D.T.J., Manuel, M., Wörheide, G. & Baurain, D. (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biology, 9, e1000602.
https://doi.org/10.1371/journal.pbio.1000602
Pinto, I.D. & de Ornellas, L.P. (1978) New fossil insects from the White Band Formation (Permian), South Africa. Pesquisas em Geociências, 10, 96–104.
https://doi.org/10.22456/1807-9806.21778
Pisani, D., Pett, W., Dohrmann, M., Feuda, R., Rota-Stabelli, O., Philippe, H., Lartillot, N. & Wörheide, G. (2015) Genomic data do not support comb jellies as the sister group to all other animals. Proceedings of the National Academy of Sciences, 112, 15402–15407.
https://doi.org/10.1073/pnas.1518127112
Richards, A.G. (1965) The proventriculus of adult Mecoptera and Siphonaptera. Entomological News, 76, 253–256.
Richards, P.A. & Richards, A.G. (1969) Acanthae: a new type of cuticular process in the proventriculus of Mecoptera and Siphonaptera. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere, 86, 158–176.
Rohdendorf, B.B. (1957) Basic trends in the historical development of the Diptera. Tezisy dokladov 2. soveshchaniya Vesesoyuznogo Entomologicheskogo Obshchestva, 1, 115–119.
Ross, H. (1965) A textbook of entomology. 3rd ed. John Wiley and Sons, London, 539 pp.
Rota-Stabelli, O., Lartillot, N., Philippe, H. & Pisani, D. (2013) Serine codon-usage bias in deep phylogenomics: Pancrustacean relationships as a case study. Systematic Biology, 62, 121–133.
https://doi.org/10.1093/sysbio/sys077
Rothschild, M.L., Schlein, J., Parker, K., Neville, C., Sternberg, S. & Pringle, J.W.S. (1975) The jumping mechanism of Xenopsylla cheopis III. Execution of the jump and activity. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 271, 499–515.
https://doi.org/10.1098/rstb.1975.0064
Schrempf, D., Lartillot, N. & Szöllősi, G. (2020) Scalable empirical mixture models that account for across-site compositional heterogeneity. Molecular Biology and Evolution, msaa145.
https://doi.org/10.1093/molbev/msaa145
Schwentner, M., Combosch, D.J., Nelson, J.P. & Giribet, G. (2017) A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Current Biology, 27, 1818–1824.
https://doi.org/10.1016/j.cub.2017.05.040
Sharov, A.G. (1966) Basic arthropodan stock, with special reference to insects. 1st ed. Pergamon Press, Oxford, 271 pp.
Simiczyjew, B. (2002) Structure of the ovary in Nannochorista neotropica Navás (Insecta: Mecoptera: Nannochoristidae) with remarks on mecopteran phylogeny. Acta Zoologica, 83, 61–66.
https://doi.org/10.1046/j.1463-6395.2002.00099.x
Simion, P., Philippe, H., Baurain, D., Jager, M., Richter, D.J., Di Franco, A., Roure, B., Satoh, N., Quéinnec, É., Ereskovsky, A., Lapébie, P., Corre, E., Delsuc, F., King, N., Wörheide, G. & Manuel, M. (2017) A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Current Biology, 27, 958–967.
https://doi.org/10.1016/j.cub.2017.02.031
Song, F., Li, H., Jiang, P., Zhou, X., Liu, J., Sun, C., Vogler, A.P. & Cai, W. (2016) Capturing the phylogeny of Holometabola with mitochondrial genome data and Bayesian site-heterogeneous mixture models. Genome Biology and Evolution, 8, 1411–1426.
https://doi.org/10.1093/gbe/evw086
Tillyard, R.J. (1935) The evolution of the scorpion-flies and their derivatives (order Mecoptera). Annals of the Entomological Society of America, 28, 1–45.
https://doi.org/10.1093/aesa/28.1.1
Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27, 171–180.
https://doi.org/10.1111/j.1096-0031.2010.00329.x
Wheeler, W.C., Whiting, M., Wheeler, Q.D. & Carpenter, J.M. (2001) The phylogeny of the extant hexapod orders. Cladistics, 17, 113–169.
https://doi.org/10.1111/j.1096-0031.2001.tb00115.x
Whiting, M. (2003) Phylogeny of the holometabolous insects. The most successful group of terrestrial organisms. In: Cracraft, J. & Donghue, M. (Eds). Assembling the Tree of Life. Oxford University Press, Oxford, pp. 345–364.
Whiting, M., Whiting, A.S. & Hastriter, M.W. (2003) A comprehensive phylogeny of Mecoptera and Siphonaptera. Entomologische Abhandlungen, 61, 169.
Whiting, M.F. (2002a) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta, 31, 93–104.
https://doi.org/10.1046/j.0300-3256.2001.00095.x
Whiting, M.F. (2002b) Phylogeny of the holometabolous insect orders: molecular evidence. Zoologica Scripta, 31, 3–15.
https://doi.org/10.1046/j.0300-3256.2001.00093.x
Whiting, M.F., Carpenter, J.C., Wheeler, Q.D. & Wheeler, W.C. (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46, 1–68.
https://doi.org/10.1093/sysbio/46.1.1
Whiting, M.F., Whiting, A.S., Hastriter, M.W. & Dittmar, K. (2008) A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics, 24, 677–707.
https://doi.org/10.1111/j.1096-0031.2008.00211.x
Wiegmann, B.M., Trautwein, M.D., Kim, J.-W., Cassel, B.K., Bertone, M.A., Winterton, S.L. & Yeates, D.K. (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biology, 7, 34.
https://doi.org/10.1186/1741-7007-7-34
Wiegmann, B.M., Trautwein, M.D., Winkler, I.S., Barr, N.B., Kim, J.-W., Lambkin, C., Bertone, M.A., Cassel, B.K., Bayless, K.M., Heimberg, A.M., Wheeler, B.M., Peterson, K.J., Pape, T., Sinclair, B.J., Skevington, J.H., Blagoderov, V., Caravas, J., Kutty, S.N., Schmidt-Ott, U., Kampmeier, G.E., Thompson, F.C., Grimaldi, D.A., Beckenbach, A.T., Courtney, G.W., Friedrich, M., Meier, R. & Yeates, D.K. (2011) Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences, 108, 5690–5695.
https://doi.org/10.1073/pnas.1012675108
Wille, A. (1960) The phylogeny and relationships between the insect orders. Revista de biologia tropical, 8, 93–123.
Willmann, R. (2003) Die phylogenetischen beziehungen der Insecta: offene fragen und probleme. Verhandlungen Westdeutscher Entomologentag, 2001, 1–64.
Wood, D.M. & Borkent, A. (1989) Phylogeny and classification of the Nematocera. In: McAlpine, J.F. & Wood, D.M. (Eds). Manual of Nearctic Diptera. Vol. 3. Research Branch, Agriculture Canada, Ottawa, pp. 1333–1370.
Yoshizawa, K. & Johnson, K.P. (2010) How stable is the “polyphyly of lice” hypothesis (Insecta: Psocodea)? A comparison of phylogenetic signal in multiple genes. Molecular Phylogenetics and Evolution, 55, 939–951.
https://doi.org/10.1016/j.ympev.2010.02.026
Zhao, X., Wang, B., Bashkuev, A.S., Aria, C., Zhang, Q., Zhang, H., Tang, W. & Engel, M.S. (2020) Mouthpart homologies and life habits of Mesozoic long-proboscid scorpionflies. Science Advances, 6, eaay1259.