Skip to main content Skip to main navigation menu Skip to site footer
Type: Short Communication
Published: 2021-06-29
Page range: 228–230
Abstract views: 452
PDF downloaded: 19

Impact of the choices of calibration points for molecular dating: a case study of Ensifera

Institut de Systématique, Évolution, Biodiversité (ISYEB) Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier 75005 Paris, France
Insecta phylogeny dating fossil taxa

Abstract

Fossils are crucial for molecular clade dating (Warnock et al., 2012, 2015). But it is necessary to have a rigorous approach, without rejecting taxa on poor arguments or ignoring some of them without any reasons. Here we show through two very recent examples of phylogenetic studies on the Orthoptera, that such behaviours can have dramatic consequences on the value of the results of the studies.

References

  1. Béthoux, O. (2012) Grylloptera—a unique origin of the stridulatory file in katydids, crickets, and their kin (Archaeorthoptera). Arthropod Systematics & Phylogeny, 70, 43–68.
  2. Chang, H.H., Qiu, Z.Y., Yuan, H., Wang, X.Y., Li, X.J., Sun, H.M., Guo, X.Q., Lu, Y.C., Feng, X.L., Majid, M. & Huang, Y. (2020) Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Molecular Phylogenetics and Evolution, 145 (106734), 1–10. https://doi.org/10.1016/j.ympev.2020.106734
  3. Chivers, B.D., Béthoux, O., Sarria-S, F.A., Jonsson, T., Mason, A.C. & Montealegre-Z, F. (2017) Functional morphology of tegmina-based stridulation in the relict species Cyphoderris monstrosa (Orthoptera: Ensifera: Prophalangopsidae). Journal of Experimental Biology, 220, 1112–1121. https://doi.org/10.1242/jeb.153106
  4. Desutter-Grandcolas, L., Jacquelin, L., Hugel, S., Boistel, R., Garrouste, R., Henrotay, M., Warren, B.H., Chintauan-Marquier, I.C., Nel, P., Grandcolas, P. & Nel, A. (2017) 3-D imaging reveals four extraordinary cases of convergent evolution of acoustic communication in crickets and allies (Insecta). Scientific Reports, 7 (7099), 1–8. https://doi.org/10.1038/s41598-017-06840-6
  5. Evangelista, D.A., Wipfler, B., Béthoux, O., Donath, A., Fujita, M., Kohli, M.K., Legendre, F., Liu S.-l., Machida, R., Misof, B., Peters, R.S., Podsiadlowski, L., Rust, J., Schuette, K., Tollenaar, W., Ware, J.L., Wappler, T., Zhou, X., Meusemann, K. & Simon, S. (2019) An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society, (B), Biological Sciences, 286 (20182076), 1–9. https://doi.org/10.1098/rspb.2018.2076
  6. Garrouste, R., Hugel, S., Jacquelin, L., Rostan, P., Steyer, J.-S., Desutter-Grandcolas, L. & Nel, A. (2016) Insect mimicry of plants dates back to the Permian. Nature Communications, 7 (13735), 1–6. https://doi.org/10.1038/ncomms13735
  7. Gorochov, A.V. (1988) The Lower and Middle Jurassic superfamily Hagloidea (Orthoptera). Paleontological Journal, 22, 50–61.
  8. Gorochov, A.V. (1995) Sistema i evolyutsiya pryamokrylykh podotryada Ensifera (Orthoptera) [System and Evolution of the suborder Ensifera (Orthoptera).] Parts 1 and 2. Trudy Zoologicheskogo Instituta [Russian Academy of Sciences, Proceedings of the Zoological Institute] St.-Petersburg, 260, 3–224 & 261, 3–212 [In Russian].
  9. Gorochov, A.V. (2001) New taxa of Anostostomatidae and Prophalangopsidae (Orthoptera). Zoosystematica Rossica, 9, 299–315.
  10. Gorochov, A.V. (2010) New and little-known orthopteroid insects (Polyneoptera) from fossil resins: communication 4. Paleontological Journal, 44, 657–671. https://doi.org/10.1134/S0031030110060080
  11. Gorochov, A.V., Jarzembowski, E.A. & Coram, R.A. (2006) Grasshoppers and crickets (Insecta: Orthoptera) from the Lower Cretaceous of Southern England. Cretaceous Research, 27, 641–662. https://doi.org/10.1016/j.cretres.2006.03.007
  12. Gorochov, A.V. & Rasnitsyn, A.P. (2002) Superorder Gryllidea Laicharting, 1781 (= Orthopteroidea Handlirsch, 1903). In: Rasnitsyn, A.P. & Quicke, D.L.J. (Eds), History of Insects. Kluwer Academic Publishers, Dordrecht, 293–301.
  13. Gu, J.J., Qiao, G.X. & Ren, D. (2010) Revision and new taxa of fossil Prophalangopsidae (Orthoptera: Ensifera). Journal of Orthoptera Research, 19, 41–56. https://doi.org/10.1665/034.019.0110
  14. Jouault, C., Legendre, F., Grandcolas, P. & Nel, A. (2021) Revising dating estimates and the antiquity of eusociality in termites using the fossilized birth-death process. Systematic Entomology, 46, 592–610. https://doi.org/10.1111/syen.12477
  15. Li, L.M., Ren, D. & Wang, Z.H. (2007) New prophalangopsids from Late Mesozoic of China (Orthoptera, Prophalangopsidae, Aboilinae). Acta Zootaxonomica Sinica, 32, 412–422.
  16. Ren, D. & Meng, X.M. (2006) New Jurassic protaboilins from China (Orthoptera: Prophalangopsidae, Protaboilinae). Acta Zootaxonomica Sinica, 31, 513–519.
  17. Song, H.J., Béthoux, O., Shin, S., Donath, A., Letsch, H., Liu, S.L., McKenna, D.D., Meng, G.L., Misof, B., Podsiadlowski, L., Zhou, X., Wipfler, B. & Simon, S. (2020) Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nature Communications, 11 (4939), 1–16. https://doi.org/10.1038/s41467-020-18739-4
  18. Warnock, R.C., Yang, Z. & Donoghue, P.C. (2012) Exploring uncertainty in the calibration of the molecular clock. Biology Letters, 8, 156–159. https://doi.org/10.1098/rsbl.2011.0710
  19. Warnock, R.C., Parham, J.F., Joyce, W.G., Lyson, T.R. & Donoghue, P.C. (2015) Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proceedings of the Royal Society B: Biological Sciences, 282 (1798), 20141013. https://doi.org/10.1098/rspb.2014.1013
  20. Wolfe, J.M., Daley, A.C., Legg, D.A. & Edgecombe, G.D. (2016) Fossil calibrations for the arthropod Tree of Life. Earth-Science Reviews, 160, 43–110. https://doi.org/10.1016/j.earscirev.2016.06.008