Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-01-05
Page range: 006–019
Abstract views: 602
PDF downloaded: 22

Termite coprolites (Blattodea: Isoptera) from the Early Cretaceous of eastern Inner Mongolia, Northeast China

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
Blattodea Isoptera Insecta coprolites termites Early Cretaceous Huolinhe Formation

Abstract

Well-preserved coprolites (fossil faecal pellets) were found from lignite seams of the Lower Cretaceous Huolinhe Formation at the Huolinhe Basin in eastern Inner Mongolia, Northeast China. These coprolites provide a combination of following features: oval to cylindrical shaped with six longitudinal ridges, hexagonal to elliptical cross-sections, and one blunt end and the other pointed end. According to these distinct features and their size range, the producers of these coprolites are attributed to termites. Termites were estimated to have originated in the earliest Cretaceous with an evolutionary radiation in the Early Cretaceous. The presence of wood debris in the coprolites indicate that the Early Cretaceous termites from the Huolinhe Basin had wood-feeding habits; and anatomical features displaying on the wood debris further suggest their feeding preference was coniferous wood. Besides, the results of a k-means clustering analysis performed for these coprolites indicate that three clusters with different proportion were present, suggesting the division of labor in termites’ sociality existed as early as the Early Cretaceous.

References

  1. Bignell, D.E. (2019) Termite ecology in the first two decades of the 21st century: a review of reviews. Insects, 10, 1–10. https://doi.org/10.3390/insects10030060
  2. Bignell, D.E. & Eggleton, P. (2000) Termites in ecosystems. In: Abe, T., Bignell, D.E. & Higashi, M. (Eds), Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publications, Dordrecht, pp. 363–387. https://doi.org/10.1007/978-94-017-3223-9_17
  3. Boucot, A.J. (1990) Evolutionary paleobiology of behavior and coevolution. Elsevier, New York, 750 pp.
  4. Bourguignon, T., Lo, N., Cameron, S.L., Šobotník, J., Hayashi, Y., Shigenobu, S., Watanabe, D., Roisin, Y., Miura, T. & Evans, T.A. (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution, 32, 406–421. https://doi.org/10.1093/molbev/msu308
  5. Buček, A., Šobotník, J., He, S., Shi, M., McMahon, D.P., Holmes, E.C., Roisin, Y., Lo, N. & Bourguignon, T. (2019) Evolution of termite symbiosis informed by transcriptome-based phylogenies. Current Biology, 29, 1–7. https://doi.org/10.1016/j.cub.2019.08.076
  6. Cleveland, L.R. (1923) Correlation between the food and morphology of termites and the presence of intestinal protozoa. American Journal of Hygiene, 3, 444–461. https://doi.org/10.1093/oxfordjournals.aje.a118946
  7. Colin, J.P., Néraudeau, D., Nel, A. & Perrichot, V. (2011) Termite coprolites (Insecta: Isoptera) from the Cretaceous of western France: A palaeoecological insight. Revue de Micropaléontologie, 54, 129–139. https://doi.org/10.1016/j.revmic.2011.06.001
  8. Cui, J.Z. (1995) Studies on the fusinized-wood fossils of Podocarpaceae from Huolinhe Coalfield, Inner Mongolia, China. Acta Botanica Sinica, 37, 636–640. [In Chinese with English abstract]
  9. Dangerfield, J.M., McCarthy, T.S. & Ellery, W.N. (1998) The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology, 14, 507–520. https://doi.org/10.1017/S0266467498000364
  10. Deng, S.H. (1995) Early Cretaceous flora of Huolinhe Basin, Inner Mongolia, Northeast China. Geological Publishing House, Beijing. pp. 1–115.
  11. Eaton, R.A. & Hale, M.D.C. (1993) Wood. Decay, pests and protection. Chapman and Hall, London, 546 pp.
  12. Eggleton, P. (2011) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell, D.E., Roisin, Y., Lo, N. (Eds), Biology of termites: A modern synthesis. Springer, Netherlands, pp. 1–26. https://doi.org/10.1007/978-90-481-3977-4_1
  13. Engel, M.S. & Delclòs, X. (2010) Primitive termites in Cretaceous amber from Spain and Canada (Isoptera). Journal of the Kansas Entomological Society, 83, 111–128. https://doi.org/10.2317/JKES0908.06.1
  14. Engel, M.S., Grimaldi, D.A. & Krishna, K. (2007) Primitive termites from the Early Cretaceous of Asia (Isoptera). Stuttgarter Beiträge zur Naturkunde Serie B, 371, 1–32.
  15. Engel, M.S., Grimaldi, D.A. & Krishna, K. (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 3650, 1–27. https://doi.org/10.1206/651.1
  16. Engel, M.S., Nel, A., Azar, D., Soriano, C., Tafforeau, P., Néraudeau, D., Colin, J.P. & Perrichot, V. (2011) New, primitive termites (Isoptera) from Early Cretaceous ambers of France and Lebanon. Palaeodiversity, 4, 39–49. http://hdl.handle.net/1808/13199
  17. Engel, M.S., Barden, P., Riccio, M.L. & Grimaldi, D.A. (2016a) Morphologically specialized termite castes and advanced sociality in the early cretaceous. Current Biology, 26, 522–530. https://doi.org/10.1016/j.cub.2015.12.061
  18. Engel, M.S., Barden, P.M. & Grimaldi, D.A. (2016b) A replacement name for the cretaceous termite genus Gigantotermes (Isoptera). Novitates Paleoentomologicae, 14, 1–2. https://doi.org/10.17161/np.v0i14.5694
  19. Evangelista, D.A., Wipfler, B., Béthoux, O., Donath, A., Fujita, M., Kohli, M.K., Legendre, F., Liu S.L., Machida, R., Misof, B., Peters, R.S., Podsiadlowski, L., Rust, J., Schuette, K., Tollenaar, W., Ware, J.L., Wappler, T., Zhou, X., Meusemann, K. & Simon, S. (2019) An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society B, 286, 20182076. https://doi.org/10.1098/rspb.2018.2076
  20. Francis, J.E. & Harland, B.M. (2006) Termite borings in Early Cretaceous fossil wood, Isle of Wight, UK. Cretaceous Research, 27, 773–777. https://doi.org/10.1016/j.cretres.2006.02.001
  21. Genise, J.F. (1995) Upper Cretaceous trace fossils in permineralized plant remains from Patagonia, Argentina. Ichnos, 3, 287–299. https://doi.org/10.1080/10420949509386399
  22. Grimaldi, D.A., Engel, M.S. & Krishna, K. (2008) The species of Isoptera (Insecta) from the Early Cretaceous Crato Formation: A Revision. American Museum Novitates, 3626, 1–30.
  23. Guo, C.J. (1995) Sporopollen from the lower part of the Huolinhe Formation, Huolinhe Basin, Inner Mongolia and its significance. Petroleum Exploration and Development, 22, 37–44. [In Chinese with English abstract]
  24. Inward, D.J., Vogler, A.P. & Eggleton, P. (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331–335. https://doi.org/10.1098/rsbl.2007.0102
  25. Jarzembowski, E.A. (1981) An early Cretaceous termite from southern England (Isoptera Hodotermitidae). Systematic Entomology, 6, 91–96. https://doi.org/10.1111/j.1365-3113.1981.tb00018.x
  26. Jouault, C., Legendre, F., Grandcolas, P. & Nel, A. (2021) Revising dating estimates and the antiquity of eusociality in termites using the fossilized birth-death process. Systematic Entomology, 46, 592–610. https://doi.org/10.1111/syen.12477
  27. Kjer, K.M., Carle, F.L., Litman, J. & Ware, J. (2006) A molecular phylogeny of Hexapoda. Arthropod Systematics Phylogeny, 64, 35–44.
  28. Klass, K.D. & Meier, R. (2006) A phylogenetic analysis of Dictyoptera (Insecta) based on morphological characters. Entomologische Abhandlungen, 63 (12), 3–50.
  29. Klass, K.D., Nalepa, C. & Lo, N. (2008) Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana. Molecular Phylogenetics and Evolution, 46, 809–817. https://doi.org/10.1016/j.ympev.2007.11.028
  30. Korb, J. (2010) The ecology of social evolution in termites, ecology of social evolution. Springer Verlag, Berlin Heidelberg, pp. 151–174. https://doi.org/10.1007/978-3-540-75957-7_7
  31. Korb, J. & Thorne, B. (2017) Society in termites. In: Rubenstein, D.R. & Abbot, P. (Eds), Comparative social evolution. Cambridge University Press, New York, pp. 124–153. https://doi.org/10.1017/9781107338319.006
  32. Lacasa-Ruiz, A. & Martínez-Delclòs, X. (1986) Maiatermes. Nuevo género fósil de insecto isóptero (Hodotermitidae) de las calizas Necomienses del Montsec (Provincia de Lérida, España). Institut d’Estudis Ilerdencs, Lleida. 65 pp.
  33. Lance, J.F. (1946) Fossil arthropods of California. 9. Evidence of termites in the Pleistocene asphalt of Carpinteria, California. Southern California Academy of Sciences Bulletin, 45, 21–27.
  34. Li, S.T., Huang, J.F., Yang, S.G., Zhang, X.M., Cheng, S.T., Zhao, G.R., Li, D.N., Li, G.L. & Ding, J.L. (1982) Depositional and structural history of the Late Mesozoic Huolinhe Basin and its characteristics of coal accumulation. Acta Geologica Sinica, 3, 244–254. [In Chinese with English abstract]
  35. Lo, N., Tokuda, G., Watanabe, H., Rose, H., Slaytor, M., Maekawa, K., Bandi, C. & Noda, H. (2000). Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Current Biology, 10, 801–804. https://doi.org/10.1016/S0960-9822(00)00561-3
  36. Maksoud, S., Azar, D., Granier, B. & Gèze, R. (2017) New data on the age of the Lower Cretaceous amber outcrops of Lebanon. Palaeoworld, 26, 331–338. https://doi.org/10.1016/j.palwor.2016.03.003
  37. Mei, M.T & Cui, J.Z. (1994) Analysis of coal-forming plants from underlying coal-bearing member, Huolinhe Formation, Huolinhe Coal Field, Inner Mongolia. Coal Geology of China, 6, 19–21. [In Chinese]
  38. Moreau, J.D., Trincal, V., Nel, A., Simon-Coinçon, R., Sallé, V., Couls, M.L., Néraudeau, D. & Fernandez, V. (2019) Hidden termite coprolites revealed by synchrotron microtomography inside Eocene‒Oligocene filled wood-borings from the Malzieu Basin, Lozère, southern France. Lethaia, 53, 106–117. https://doi.org/10.1111/let.12344
  39. Pellens, R., D’Haese, C.A., Belle’s, X., Piulachs, M.D., Legendre, F., Wheeler, W.C. & Grandcolas, P. (2007) The evolutionary transition from subsocial to eusocial behaviour in Dictyoptera: phylogenetic evidence for modification of the “shift-in-dependent-care” hypothesis with a new subsocial cockroach. Molecular Phylogenetics and Evolution, 43, 616–626. https://doi.org/10.1016/j.ympev.2006.12.017
  40. Pires, E.F. & Sommer, M.G. (2009) Plant-arthropod interaction in the Early Cretaceous (Berriasian) of the Araripe Basin, Brazil. Journal of South American Earth Sciences, 27, 50–59. https://doi.org/10.1016/j.jsames.2008.09.004
  41. Ren, D., Lu, L.W., Guo, Z.G. & Ji, S.A. (1995) Faunae and stratigraphy of Jurassic-Cretaceous in Beijing and the adjacent areas. Geological Publishing House, Beijing, 222 pp. [In Chinese with English summary]
  42. Rogers, A.F. (1938) Fossil termite pellets in opalized wood from Santa Maria, California. American Journal of Sciences, 86, 389–392. https://doi.org/10.2475/ajs.s5-36.215.389
  43. Rohr, D.M., Boucot, A.J., Miller, J. & Abbott, M. (1986) Oldest termite nest from the Upper Cretaceous of West Texas. Geology, 14, 87–88. https://doi.org/10.1130/0091-7613(1986)14<87:OTNFTU>2.0.CO;2
  44. Rozefelds, A.C. & De Baar, M. (1991) Silicified Kalotermitidae (Isoptera) frass in conifer wood from a mid-Tertiary rainforest in central Queensland, Australia. Lethaia, 24, 439–442. https://doi.org/10.1111/j.1502-3931.1991.tb01498.x
  45. Shi, G.L., Li, J.G., Tan, T., Dong, C., Li, Q.L., Wu, Q., Zhang, B.L., Yin, S.X., Herrera, F., Herendeen, P.S. & Crane, P.R. (2021a) Age of the Houlihan Formation in the Huolinhe Basin, eastern Inner Mongolia, China: Evidence from U-Pb zircon dating and palynological assemblages. Journal of Stratigraphy, 45 (1), 69–81.
  46. Shi, G.L., Herrera, F., Herendeen, P.S., Elizabeth, G.C. & Crane, P.R. (2021b) Mesozoic cupules and the origin of the angiosperm second integument. Nature, 594, 223–226. https://doi.org/10.1038/s41586-021-03598-w
  47. Stuart, A.M. (1969) Social behavior and communication. In: Krishna, K. & Weesner, T.M. (Eds), Biology of termites. Academic Press, New York and London, pp. 193–232. https://doi.org/10.1016/B978-0-12-395529-6.50011-8
  48. Sutherland, J.I. (2003) Miocene petrified wood and associated borings and termite faecal pellets from Ukatere Peninsula, Kaipara Harbour, North Auckland, New Zealand. Journal of the Royal Society of New Zealand, 33, 395–414. https://doi.org/10.1080/03014223.2003.9517736
  49. Sweetman, H.L. (1965) Recognition of structural pests and their damage. Dubuque, Iowa, W.C. Brown, 371 pp.
  50. Terry, M.D. & Whiting, M.F. (2005) Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics, 21, 240–257. https://doi.org/10.1111/j.1096-0031.2005.00062.x
  51. Thorne, B.L., Grimaldi, D.A. & Krishna, K. (2000) Early fossil history of termites. In: Abe, T., Bignell, D.E. & Higashi, M. (Eds), Termites: evolution, sociality, symbioses, ecology. Dordrecht, Kluwer Academic Publishers, pp. 77–93. https://doi.org/10.1007/978-94-017-3223-9_4
  52. Traniello, J.F.A. & Leuthold, R.H. (2000) Behavior and ecology of foraging in termites. In: Abe, T., Bignell, D.E. & Higashi, M. (Eds), Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, pp. 141–168. https://doi.org/10.1007/978-94-017-3223-9_7
  53. Vršanský, P. & Aristov, D. (2014) Termites (Isoptera) from the Jurassic/Cretaceous boundary: Evidence for the longevity of their earliest genera. European Journal of Entomology, 111, 137–141. https://doi.org/10.14411/eje.2014.014
  54. Wipfler, B., Letsch, H., Frandsen, P.B., Kapli, P., Mayer. C., Bartel, D., Buckley, T.R., Donath, A., Edgerly-Rooks, J., Fujita, M., Liu, S.L., Machida, R., Mashimo, Y., Misof, B., Niehuis, O., Peters, R., Petersen, M., Podsiadlowski, L., Schütte, K., Shimizu, S., Uchifune, T., Wilbrandt, J., Yan, E., Zhou, X. & Simon, S. (2019) Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proceedings of the National Academy of Sciences of the United States of America, 116, 3024–3029. https://doi.org/10.1073/pnas.1817794116
  55. Wilson, E.O. & Hölldobler, B. (2005) Eusociality: origin and consequences. Proceedings of the National Academy of Sciences of the United States of America, 102, 13367‒13371. https://doi.org/10.1073/pnas.0505858102
  56. Zhao, Z.P., Eggleton, P., Yin, X.C., Gao, T.P., Shih, C.K. & Ren, D. (2019) The oldest known mastotermitids (Blattodea: Termitoidae) and phylogeny of basal termites. Systematic Entomology, 44, 612–623. https://doi.org/10.1111/syen.12344
  57. Zhao, Z.P., Yin, X.C., Shih, C.K., Gao, T.P. & Ren, D. (2020a) Termite colonies from mid-Cretaceous Myanmar demonstrate their early eusocial lifestyle in damp wood. National Science Review, 7, 381–390. https://doi.org/10.1093/nsr/nwz141
  58. Zhao, Z.P., Shih, C.K., Gao, T.P. & Ren, D. (2020b) Termite communities and their early evolution and ecology trapped in Cretaceous amber. Cretaceous Research, 117, 104612. https://doi.org/10.1016/j.cretres.2020.104612